Hydraulic and Pneumatic Systems
Mahdi Moghimi
Abstract
Using experimental models along with conducting numerical analysis have been widely used in performance recognition and optimization of hydraulic equipments. Numerical modeling has lower cost rather than experimental one; however practical tests are commonly used because of the hydraulic structure importance ...
Read More
Using experimental models along with conducting numerical analysis have been widely used in performance recognition and optimization of hydraulic equipments. Numerical modeling has lower cost rather than experimental one; however practical tests are commonly used because of the hydraulic structure importance especially in dams. Meanwhile numerical methods could be used for future designs through validating numerical models. In this paper, volume of fluid method, VOF, has been employed to simulate the free surface flow at the dam bottom outlet form bell mouth section up to the downstream channel. Since the flow through the gates has high Reynolds number, the standard k-ε and also Reynolds Stress Model, RSM, turbulence models is used and the results compared. The discharge coefficient and the ventilated air velocity through the vents is computed numerically and compared with the experimental data. Comparison between the experimental data and numerical simulation results shows good compatibility, especially in RSM turbulence model rather than k-ε turbulence model. The results show that the maximum error percentage in simulation of the discharge coefficient and the ventilated air velocity is 9% and 3% respectively.
Hydraulic and Pneumatic Systems
M. Maghroory; A. Farhadi; P. Naderi
Abstract
To maintain the stability trajectory of vehicles under critical driving conditions, anti lock-anti skid controllers, consisting of four anti-lock sub-controllers for each wheel and two anti-skid sub-controllers for left and right pair wheels have been separately designed. Wheel and body systems have ...
Read More
To maintain the stability trajectory of vehicles under critical driving conditions, anti lock-anti skid controllers, consisting of four anti-lock sub-controllers for each wheel and two anti-skid sub-controllers for left and right pair wheels have been separately designed. Wheel and body systems have been simulated with seven degrees of freedom to evaluate the proper functioning of controllers. Anti-lock controllers control brake torque through persistent monitoring of wheels velocity and acceleration and prevent them from locking up by cutting and releasing the brake fluid flow into wheel brake cylinder. On the other hand, anti-skid controllers have been designed in order to maintain the vehicle along a stable trajectory, calculated from the stable spin theory, and to monitor the vehicle’s trajectory during braking. This controller maintains the vehicle along the desirable trajectory by monitoring vehicle yaw angle and comparing it with the reference yaw angle, and also by adjusting the level of brake fluid input into each wheel’s caliper, and subsequently by adjusting brake torque. At the end of the current research, the use of yaw rate control input in place of yaw angle control input in anti-skid controllers has been suggested through a comparative analysis.