
141 

 

*Corresponding author 

Email address: rajmech03@gmail.com 

 
 

 

Identification of rotor bearing parameters using vibration response 

data in a turbocharger rotor 
 

 

Rajasekhara Reddy Mutra* and J. Srinivas  

 
Department of Mechanical Engineering, National Institute of Technology, Rourkela, Odisha,769008, India 

 

 
 

Article info:  Abstract  

Turbochargers are most widely used in automotive, marine and locomotive 

applications with diesel engines. To increase the engine performance nowadays, 

in aerospace applications also turbochargers are used. Mostly the turbocharger 

rotors are supported over the fluid film bearings. With the operation, lubricant 

properties continuously alter leading to different load bearing capacities. This 

paper deals with the diagnostic approach for prediction of shaft unbalance and 

the bearing parameters using the measured frequency responses at the bearing 

locations. After validating the natural frequencies of the rotor finite element 

model with experimental analysis, the response histories of the rotor are 

recorded. The influence of the parameters such as bearing clearance, oil 

viscosity and casing stiffness on the unbalance response is studied. By 

considering three levels each for shaft unbalance and oil viscosity, the output 

data in terms of four statistical parameters of equivalent Hilbert envelopes in the 

frequency domain are measured. The data are inversely trained using Radial 

Basis Function (RBF) neural network model to predict the unbalance and oil 

viscosity indices from given output response characteristics. The outputs of the 

RBF model are validated thoroughly. This approach finds changes in the rotor 

bearing parameters from the measured responses in a dynamic manner. The 

results indicate that there is an appreciable effect of lubricant viscosity at two 

different temperatures compared to other parameters within the operating speed 

range. The identification methodology using the neural network is quite fast and 

reliable 
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1. Introduction  

 

Today most of the diesel engines are equipped 

with turbochargers. In principle, turbocharger 

works on a closed cycle, which receives 

expanded hot burnt exhaust gases at the turbine 

wheel’s to allow its compressor wheel to 

pressurize the atmospheric air required for 

engine combustion. Due to its relatively smaller 

sizes, often its speeds are of order 100-300 krpm. 

If proper maintenance is not followed, it may 

hamper the usual operation of the entire engine. 

Sometimes the unburnt gases/fuel particles 

coming out of the engine may result in improper 

expansion on the turbine of the turbocharger 

forming pitting and corrosion defects in blades. 

Therefore, the turbocharger rotors have time to 

time unbalance and bearing faults due to 
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surrounding high-temperature conditions. The 

small malfunctioning at high speeds of operation 

amplifies the changes in vibration signals. The 

schematic of the turbocharger rotor is shown in 

the Fig. 1 with input and outputs from the engine. 

 

 
Fig. 1. Turbocharger sketch; 1.Exhaust channel of the 

engine, 2.Intake duck of engine, 3.Turbocharger 

bearing housing, 4. Turbine, 5.Compressor, 6.Journal 

bearings. 

 

To predict the accurate performance and 

emission in the engine, the turbocharger 

simulations are very important. Sakellaridis et al. 

[1] described the performance of the 

turbocharger and parameters of the closed cycle 

with a variation of the load and validated the 

predictions with the experimental test. 

Kozhenkov and Deitch [2] presented an 

application of the developed procedure to model 

the dynamics of high-velocity turbocharger’s 

rotor system. Some previous works  [3–5] 

explain the stability analysis and manufacturing 

tolerance clearances on the dynamic 

characteristics of the turbochargers, which were 

placed in the engines. Gjika et al. [6] explained 

the prediction of the lateral dynamic response of 

the rotor-bearing system in the turbocharger and 

validated this with the test data obtained from the 

large speed turbocharger. Some of the literature 

[7, 8] present the experimental and theoretical 

methodologies  to obtain the mechanical and 

frictional losses in the automotive turbocharger 

model. Wang et al. [9] proposed an algorithm to 

identify the bearing coefficients, and residual 

unbalances of the rotor based on the unbalance 

response by using the Rayleigh method. Yao et 

al.  [10] described the modal expansion 

technique for the identification and optimization 

of the rotor-bearing system. This method allows 

for identifying the axial unbalance and its phase 

and magnitude.  

Various sound and vibration based diagnostic 

approaches are available for monitoring the 

engine condition. Von Flotow [11] explained the 

basic measurement techniques, along with 

damage signatures with the sensors, for health 

monitoring of blade and disk. Holzenkamp et al. 

[12] explained the data-driven processing and 

signal-monitoring techniques to classify the seed 

fault imposed on the compressor ring bearing in 

the turbocharger. Pantelelis et al. [13] proposed 

a method to find the automatic fault diagnosis of 

the engine by creating a turbocharger model 

using finite element method. The complete faults 

of the system were predicted from neural 

networks. Machado et al. [14] proposed a 

method to predict the faults parameters in real 

systems with the use of response measurements. 

Chandra and Sekhar [15] identified the speed 

dependent damping and natural frequencies of 

the multi-degree rotor-bearing system with the 

wavelet-based method. Vencl and Rac [16] 

explained the most of the bearing failures due to 

the different parameters such as surface fatigue, 

adhesive, and abrasive, and also explained wear 

types in the bearing materials. Machado and 

Cavalca [17] described the numerical model to 

analyze the influence of wear on the dynamic 

response of the rotor-bearing system in the 

frequency domain. Chatterton et al. [18] 

proposed a method to know the effect of the 

electrical pitting on the static behavior of the 

bearing. Barelli et al. [19] developed a diagnostic 

procedure, specifically for the turbochargers, 

installed on the internal combustion engines. 

Serrano et al. [20] explained the procedure to 

identify the turbocharger rotor precession 

movement in an automobile application. This 

technique was based on infrared light diode 

sensors. Some recent studies [21, 22] conducted 

experimental analysis on the turbocharger rotor 

bearing system to investigate the thermos 

hydrodynamic performance and operational 

characteristics of the turbine. Novotny et al. [23] 

experimentally verified the numerical 

computational model of the turbocharger of a 

diesel engine for transient analysis with the 

inclusion of influence of oil and structure 
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temperature changes. They also explained the 

dynamic analysis of a turbocharger rotor bearing 

system under different conditions. The influence 

of unbalances and bearing parameters on the 

dynamics of the system is very essential. 

Although many studies are available in the 

literature, the identification of rotor bearing 

parameters in inverse modeling was found in a 

few papers. 

The present work deals with some studies 

relating to condition monitoring of an ideal 

engine turbocharger rotor-bearing system. The 

rotor model is developed using finite element 

analysis and is first validated with experimental 

work on a prototype. Unbalance, bearing oil 

viscosity, bearing clearances and casing stiffness 

are altered, and the changes in the dynamic 

response are observed at different operating 

speeds. As a practical study in condition 

monitoring, the unbalance and bearing oil 

viscosity are predicted using the Fourier 

transform of the Hilbert envelopes. The 

statistical representative parameters of the 

signals in terms of Mean, Variance, Kurtosis and 

Skewness values are computed. In order to 

predict the condition measures in terms of 

unbalance and oil viscosity, an inversely trained 

neural network model is employed. After testing 

the model, it is used as a successful paradigm to 

give the state of system unbalance and bearing 

viscosity by simply providing the frequency 

response at the bearing. A test case of short 

bearing approximation is considered to evaluate 

nonlinear bearing forces.  

 

2. Modeling based condition monitoring rotor 

 

The dynamic model of the rotor system is 

analyzed as a finite element model represented 

by the following equations of motion: 

 

  }{}]{[}{][][}]{[ FqKqGCqM    (1) 

 
Here, [M], [C], [G] and [K] are respectively the 

assembled global mass, damping, gyroscopic 

and stiffness matrices of the shaft and disc 

elements [24]. {F} is a force vector containing 

unbalance, gravity and bearing forces. {q} is the 

displacement vector represented by bending in 

two planes as follows: 
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The mass and gyroscopic matrices for the disc 

elements can be written as: 
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Fig. 2 shows the finite element model of the rotor 

system considered in the present work.  

The model consists of eight elements with each 

element having eight degrees of freedom 

corresponding to bending in two planes resulting 

in a total of 36 degrees of freedom. Shear 

deformation is taken into consideration, and the 

discs are assumed to be rigid and lumped at 

respective nodes in the model. Also, the bearing 

is assumed as a short journal type, and the 

corresponding dynamic bearing forces are 

applied at respective bearing nodes on either 

side. The model considers oil film forces given 

by short bearing approximation. The time-

varying forces together with unbalance, gravity, 

and gyroscopic terms are solved with the global 

equations of motion using fourth order Range-

Kutta time marching integration scheme. The 

short bearing forces, considered in terms of 

nodal displacements and velocities, are obtained 

from a simplified Reynold’s equation [25]. 

These are given by: 

 

 

 
Fig. 2. Finite element model of the rotor system. 
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where: 

 

rC

e
 ,  22 yxe   

(7) 

 

 and,  is the dynamic viscosity,  is the 

rotational speed, Cr is the radial clearance of the 

bearing, and e represents the eccentricity. The 

component forces in X and Y directions are 

given as: 

 

 sincos rtx FFF     (8) 

 sincos try FFF   (9) 

 

2.1 Condition monitoring 

 

For the system described by Eq. (1), in order to 

identify the states, due to variations in unbalance 

and bearing forces (F), the motion of the 

system can be obtained as: 
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3. Numerical studies 

 

The reliability of the model is first validated with 

experimental analysis. After validation of the 

model, it is employed to generate the signals at 

different unbalance conditions in the discs and 

the bearing force variations due to the oil film at 

different oil viscosities.  

In fact, the unbalance in the compressor (left) is 

due to the speed variation occurring because of 

the variations in the pressure of expanded gases 

on the turbine due to insufficient combustion. 

Similarly, a variation of the bearing forces may 

be due to inadequate maintenance of bearing 

fluid. The flowchart of the methodology is 

shown in Fig. 3.  

As it is not possible to conduct experiments by 

inducing the faults in the test rig for safety 

reasons, simulated experimental data is derived 

from the finite element model. Based on the 

parametric studies the frequency responses are 

distinguished using statistical data. Further, the 

data are used to estimate the corresponding 

unbalance and bearing oil viscosities by means 

of the trained neural network model.  

 

 
Fig. 3. Flowchart of the methodology. 

 

 

3.1. Validation of the model (Experimental) 

 

The prototype used for experimental work is 

shown in the Fig. 4, where a dual disk rotor is 

placed on the two oil-film bearings. The motor is 

connected to the shaft with the help of a jaw-

coupler. To measure the output signals two 

accelerometers (PG 109 Mo, frequency range 1 

to 10,000 Hz) are placed in two lateral directions 

on each bearing. Using a digital storage 

oscilloscope (model- DPO 43034) the output 

signals are observed. 
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Fig. 4. Rotor model used for experimental work. 

 

Table 1 shows the data of the rotor system which 

are used in the experimental work. 

From the experimental data and using the Hilbert 

transformation method the time envelope and 

Fast Fourier Transform (FFT) are plotted at the 

left bearing at a rotor speed of 900 rpm. Fig. 5 

shows the time history and FFT plots obtained 

from the experimental data at the left bearing in 

X-direction. 

Fig. 6 shows the frequency response at the left 

bearing node obtained from the finite element 

model with the same input data. It is observed 

that the fundamental frequencies obtained from 

the experimental and finite element model are 

close to each other, and this model now can be 

used to carry out the parametric studies. 

 
Table 1. System data for experimental work 

Properties Value 

Left disc mass ( md1 (kg)) 1.4 

Right disc mass (md2 (kg)) 1 

Rotor diameter (dsh  (m)) 0.016 

Rotor length (m) 0.48 

Left disc diameter moment of 

inertia (Id1 (kgm2)) 

6.3×10-4 

Right disc diameter moment of 

inertia (Id2 (kgm2))  

4.5×10-4 

Left disc polar moment of inertia 

(Jd1 (kgm2))  

1.2×10-3 

 

Right disc polar moment of inertia 

(Jd2 (kgm2))  

9×10-4 

 

Rotor material density (kg/m3) 7800 

Young’s modulus (E (GPa)) 200 

Initial lubricant viscosity  (Pa-s)  265.7×10-4 

Distance between the bearings (m) 0.22 

Distance from disc1 to left bearing 0.09 

Distance from disc2 to right 

bearing 

0.09 

 

 

 
(a) 

 
(b) 

Fig. 5. Experimental results; (a) time history at left 

bearing and (b) frequency response at left bearing. 

 

 
Fig. 6. Frequency response at left bearing from finite 

element method. 



JCARME                                            Rajasekhara Reddy Mutra, et al.                                  Vol. 9, No. 1 

 

146 

 

3.2. Parametric studies 

The various signal processing methods such as 

FFT, Hilbert Transform (HT),Wavelet 

Transform (WT) and Short Time Fourier 

Transform (STFT) have been utilized to analyze 

vibration signals to diagnose the condition of the 

system. Some limitations such as mother wavelet 

selection and level/scale play a major role in 

capturing the inherent features in wavelet 

analysis.   Recently, other time-frequency 

analysis methods named HT and Hilbert–Huang 

Transform (HHT) have become more and more 

popular because of their better time-frequency 

resolution. Continuous Wavelet Transform 

(CWT) requires proper selection of scale, while 

HT is applicable only to the mono-component 

signal. 

In the present work, the difference in the 

responses for each fault cases are amplified 

using  FFT and  HT. Finally, based on the fault 

studies, the type and severity of the fault are 

estimated using neural network models. 

In the field of signal theory,  HT is one of the 

most important operators. Either by the direct 

method using the  FFT or Kronig-Kramers 

relations using an analytical signal theory the HT 

is computed numerically.  HT can be applied on 

a single frequency response function which  is 

measured using a single excitation level.  HT can 

be used to create an analytic signal from a real 

signal. The ±π/2 phase-shift operator is the basic 

property of  HT. Thus, the  HT of a real signal:  

 

   ttf 0cos   is given by    ttf 0sinˆ  .   

 

Together they form an analytic signal where the 

instantaneous amplitude is expressed as[26]: 
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The instantaneous frequency can be obtained 

from the phase: 
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(12) 

where ω0=ω(t). Healthy and faulty vibration 

signal are found to be associated with unique 

predominant frequency components and unique 

instantaneous amplitudes. These frequencies and 

amplitude information can be used for the 

detection of common faults, such as a broken 

rotor bar, unbalanced rotor, bowed rotor, bearing 

defect, voltage unbalance and stator faults. Fig. 7 

shows the Campbell diagram for the rotor 

system. The critical speed is found to be at 3000, 

8000, 20000, 32000 and 38000 rpm 

approximately 

 

 
Fig. 7. Campbell diagram. 

 

The rotor unbalance is considered through 

increasing unbalance at the left disc node. The 

generalized mathematical expression for altering 

the unbalance is taken as md1e1= (×md×e). Here, 

 is increasing unbalance factor, which is greater 

than or equal to 1. The bearing force variations 

are due to changes in the clearance and oil film 

viscosities (). The viscosity of the oil depends 

on the operating temperature. Here the 

temperature ranges are taken from 400 C to 900 C 

[27]. The effect of the unbalance and variation of 

the oil viscosities on the dynamics of the rotor 

system is illustrated at different speeds. Fig. 8 

shows the frequency response plots at the 

different values of the  and  at a rotor speed of 

20,000 rpm. 
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                             (a)                                                                                     (b) 

 
                                           (c)                                                                                       (d) 

Fig. 8.  Frequency response at the left bearing node at rotor speed (Ω)=20000 rpm; (a)  =1.2, =145.8e-4 Pa-s, 

(b)  =2 ,=145.8e-4 Pa-s, (c) =1.6, =145.8 e-4  Pa-s, and (d) =1.6 =910.5 e-4  Pa-s. 

 

It is observed that when the increase of the 

unbalance instability of the system occurs, the 

change in the oil dynamic viscosity also 

influences the stability of the rotor system. And 

it is also noted that due to consideration of the 

unbalance and variation of the oil dynamic 

viscosity the multiple peaks in frequency 

response represents an unstable condition of the 

rotor.  

Fig. 9 shows the frequency response of the 

system at different values of the bearing 

clearance at a rotor speed of 20000 rpm. Here, 

the unbalance and viscosity are considered as 

=1.2, =265.7×10-4 Pa-s.   

It is observed that as the bearing clearance 

increases the amplitude of the system increases 

slightly, but it does not influence the dynamics 

of the system much. Fig. 10 shows the frequency 

response of the system with different bearing 

casing stiffnesses (Kc) at a rotor speed of 10000 

rpm. It is observed that as the bearing casing 

stiffness increases, the sub-synchronous 

amplitude reduces slightly. From all the above 

studies, the dynamics of the rotor system is much 

influenced by the unbalance and viscosity of the 

lubricant. So in inverse modeling, these two 

parameters are only considered. 

In order to identify each frequency domain 

response, four statistical parameters are 

considered. These are Mean, Variance, Kurtosis, 

and Skewness [28]. Even two FFT plots are 

identical, there is a marked difference between 

the four statistical parameters. The first central 

moment or Mean is shown in Eq. (13). In 

practice, the Mean is estimated by the average, 

expressed in Eq. (14). 

 

)()( ZEZE   (13) 
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(a) 

 
(b) 

Fig. 9.  Frequency response at the left bearing node 

for different bearing clearances; (a) C=200×10-6  m 

and (b) C=500×10-6  m. 

 

 
(a) 

 
                                     (b) 

Fig. 10.  Frequency response at the left bearing node 

for different bearing casing stiffness; (a) Kc=1×106  

N/m and (b) Kc=1×107  N/m. 

Estimated by:  
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The variance or second central moment is given 

in Eq. (15) along with its estimator in Eq. (16). 

The standard deviation is shown in Eq. (17). 
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The Skewness or the third central moment is 

given in Eq. (18), and its estimator is shown in 

the Eq. (19). 
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The fourth central moment, Kurtosis, and its 

estimator are  shown in Eqs. (20 and 21), 

respectively. 
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where m is the sample size. 

 

The variation of statistical parameters, respect to 

temperature, is shown in Fig. 11. As the 

temperature changes, the viscosity of the 

lubricant also changes. Further viscosity 

variation influences the dynamics of the system. 

It is observed that as the temperature increases 

the Mean and Variance of the response also  rise, 

whereas Kurtosis and Skewness reduce. Table 2 

shows the set of these statistical parameters 

calculated by parametric studies. 
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(a)                                                                      (b) 

 
                                                     (c)                                                                       (d) 

Fig. 11. Variation of statistical parameters at different temperature values; (a) Mean, (b) Variance, (c) Kotosis, 

and (d) Skewness.  

 
Table 2. Central moments data for different values of  and  .

Sl. no   ()=10000 rpm ()=20000 rpm 

  
(Pa-s) 

×10-4 

Mean 

×10-15 

Variance 

×10-27 

Kurtosis 

×103 
Skewness 

Mean 

×10-14 

Variance 

×10-25 

Kurtosis 

×103 
Skewness 

1 1.2 910.5 5.54 3.31 0.94 24.138 2.538 1.315 1.731 37.220 

2 1.2 265.7 5.49 3.29 0.917 23.88 2.524 1.269 1.670 36.551 

3 1.2 145.8 10.14 10.61 0.443 18.52 2.385 1.04 1.386 33.326 

4 1.6 910.5 8.75 16.9 5.22 63.69 2.552 1.315 1.732 37.230 

5 1.6 265.7 8.72 17.1 5.24 63.71 2.53 1.27 1.67 36.563 

6 1.6 145.8 14.0 33.3 3.77 51.40 2.37 1.012 1.33 32.74 

7 2 910.5 13.3 57.4 6.30 72.68 2.63 1.32 1.710 36.92 

8 2 265.7 13.3 57.9 6.30 72.69 2.61 1.28 1.64 36.25 

9 2 145.8 19.7 100.6 5.69 67.649 2.73 1.31 1.11 29.763 

3.3 Inverse model development 

 

Fig. 12 shows the input and output of the 

proposed radial basis function network model 

for the prediction of the unbalance attenuation 

and bearing oil dynamic viscosity. Radial basis 

functions are embedded into a two-layer feed-

forward neural network. Set of iputs and outputs 

is characterized by such a network. There is a 

layer,  processed between the inputs and outputs, 

is represented as hidden units. The RBF network 

function is expressed as: 
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Table 3. Results of identification. 

Sl. no 
Mean 

×10-14 

Variance 

×10-26 

Kurtosis 

×103 
Skewness 

Output parameters 

 predicted 

act 

predicted  (Pa-s) ×10-4 
act×10-4

 

(Pa-s) RBF 
 

BP 
RBF 

 
BP 

1 2.18 9.24 1.588 18.61 1.05 0.93 1.0 449 437 455 

2 2.45 6.63 1.73 24.19 1.58 1.75 1.6 640 649 637 

Network parameter: 

 

     
jjjjjjw   (23) 

 

In the present work, the network is used to  

predict the faulty factors. A training data, 

consisting of the central moment data such as 

Mean, Variance, Kurtosis, and Skewness as the 

inputs, and the corresponding faulty factors (α, 

) are employed as the outputs to train an RBF 

Network. Details of training can be found in the 

open literature [29]. 

 
 

 
Fig. 12. The architecture of radial basis function 

network. 

 

The convergence trend, with nine hidden nodes, 

is shown in Fig. 13.  There is no much more 

difference in the mean square error between 

inputs and outputs with increasing the hidden 

nodes. 

The test data containing two situations of the 

available targets are shown in Table 3. The 

results predicted by the RBF and three-layer 

backpropagation (BP) network are compared 

with the measured values. It is seen that the 

deviation between predicted and actual values of 

α and  is less than two percent in both cases, but 

RBF has more effectiveness with limited 

parameters required during training. 
 

 

Fig. 13. Trend of convergency. 

 

4. Conclusions  
 

In the present work, the dynamic modeling and 

fault identification of the rotor-bearing system of 

the turbocharger is presented. A dual-disk rotor 

is analyzed by finite element modeling, and the 

faults are simulated with unbalance response. 

After validation with the experimental work, the 

central moment data (Mean, Variance, Kurtosis, 

and Skewness) are recorded for various fault 

conditions. A training data containing the central 

moments as the inputs and corresponding fault 

factors as the output is employed to train the 

RBF network. The results of the identification of 

two test cases are reported. It was found that the 

deviation between the predicted and actual data 

is less than 3%. The present neural network 

model can be extended for obtaining the bearing 

wear parameters along with multiple other faults. 

Further, the trained neural network model may 

be employed as a function estimator for an 

optimum design problem of the faulty system.   

 

References 

 

[1] N. F. Sakellaridis, S.I. Raptotasios, A.K. 

Antonopoulos, G.C. Mavropoulos, D.T. 

Hountalas, "Development and 

validation of a new turbocharger 



JCARME                                         Identification of rotor bearing . . .                                   Vol. 9, No. 1 

151 

 

simulation methodology for marine two 

stroke diesel engine modelling and 

diagnostic applications", Energy. Vol. 

91, No. 1, pp. 952-966 (2015).  

[2] A. A. Kozhenkov, R.S. Deitch, 'Three-

Dimensional Finite Element Simulation 

of Nonlinear Dynamic Rotor Systems of 

a Turbocharger", J. Vib. Acoust. Vol. 

130, No. 3, pp. 031003-8, (2008).  

[3] Hao Zhang, Zhanqun Shi, Shunxin 

Zhang, Fengshou Gu, Andrew Ball, 

"Stability analysis for a turbocharger 

rotor system under nonlinear 

hydrodynamic forces", Research and 

Essay. Vol. 8, No. 1, pp. 1495-1511, 

(2013).  

[4] L. Wang, G. Bin, X. Li, X. Zhang, 

"Effects of floating ring bearing 

manufacturing tolerance clearances on 

the dynamic characteristics for 

turbocharger", Chin. J. Mech. Eng, Vol. 

28, No. 3, pp.  530-540, (2015). 

[5] B. Schweizer, "Dynamics and stability 

of turbocharger rotors", Arch Appl 

Mech, Vol. 80, No. 9, pp. 1017-1043, 

(2009).  

[6] K. Gjika, L. San Andrés, G. D. Larue, 

“Nonlinear Dynamic Behavior of 

Turbocharger Rotor-Bearing Systems 

with Hydrodynamic Oil Film and 

Squeeze Film Damper in Series: 

Prediction and Experiment”, J. Comput. 

Nonlinear Dyn, Vol. 5, No. 4, pp. 

041006-8, (2010). 

[7] J. R. Serrano, P. Olmeda, A. Tiseira, L. 

M. García-Cuevas, A. Lefebvre, 

“Theoretical and experimental study of 

mechanical losses in automotive 

turbochargers”, Energy, Vol. 55, No. 1, 

pp. 888-898, (2013).  

[8] M. Deligant, P. Podevin, G. Descombes, 

“Experimental identification of 

turbocharger mechanical friction losses, 

Energy”. Vol. 39, No. 1, pp. 388-394, 

(2012).  

[9] A. Wang, W. Yao, K. He, G. Meng, X. 

Cheng, J. Yang, "Analytical modelling 

and numerical experiment for 

simultaneous identification of 

unbalance and rolling-bearing 

coefficients of the continuous single-

disc and single-span rotor-bearing 

system with Rayleigh beam model", 

Mech. Syst. Signal Process., Vol. 116, 

No. 1, pp. 322-346, (2019).  

[10] J. Yao, L. Liu, F. Yang, F. Scarpa, J. 

Gao, "Identification and optimization of 

unbalance parameters in rotor-bearing 

systems", J. Sound Vib., Vol. 431, No. 

1, pp. 54-69, (2018).  

[11] A. Von Flotow, M. Mercadal, P. 

Tappert, “Health monitoring and 

prognostics of blades and disks with 

blade tip sensors”, "IEEE Aerosp. Conf. 

Proc.”, Montana, USA, Vol. 6, pp. 433-

440, (2000). 

[12] M. Holzenkamp, J. R. Kolodziej, S. 

Boedo, S. Delmontte, “Seeded Fault 

Testing and Classification of 

Dynamically Loaded Floating Ring 

Compressor Bearings”, ASCE-ASME J. 

Risk Uncertain. Eng. Syst. Part B Mech. 

Eng, Vol. 2, No. 2, pp. 021003-1, 

(2016).  

[13] N. G. Pantelelis, A. E. Kanarachos, N. 

Gotzias, “Neural networks and simple 

models for the fault diagnosis of naval 

turbochargers”, Math. Comput. Simul, 

Vol. 51, No. 3-4, pp. 387-397, (2000). 

[14] T. H. Machado, R. U. Mendes, K. L. 

Cavalca, “Directional frequency 

response applied to wear identification 

in hydrodynamic bearings”, Mech. Res. 

Commun, Vol. 74, No. 1, pp.60-71, 

(2016). 

[15] N. H. Chandra, A. S. Sekhar, "Wavelet 

transform based estimation of modal 

parameters of rotors during operation", 

Measurement, Vol. 130, No. 1, pp. 264-

278, (2018).  

[16] A. Vencl, A. Rac, “Diesel engine 

crankshaft journal bearings failures: 

Case study, Eng. Fail. Anal., Vol. 44, 

No. 1, pp. 217-228, (2014).  

[17] T. H. Machado, and K. L. Cavalca, 

“Modeling of hydrodynamic bearing 

wear in rotor-bearing systems”, Mech. 

Res. Commun, Vol. 69, No. 1, pp. 15-23, 

(2015).  



JCARME                                            Rajasekhara Reddy Mutra, et al.                                  Vol. 9, No. 1 

 

152 

 

[18] S. Chatterton, P. Pennacchi, A. Vania, 

“Electrical pitting of tilting-pad thrust 

bearings: Modelling and experimental 

evidence”, Tribol. Int. Vol. 103, No. 1, 

pp. 475-486, (2016).  

 [19] L. Barelli, G. Bidini, F. Bonucci, 

“Diagnosis methodology for the 

turbocharger groups installed on a 1 

MW internal combustion engine”, Appl. 

Energy. Vol. 86, No. 12, pp. 2721-2730, 

(2009).  

 [20] J. R. Serrano, C. Guardiola, V. Dolz, M. 

A. López, F. Bouffaud, “Study of the 

turbocharger shaft motion by means of 

infrared sensors”, Mech. Syst. Signal 

Process. Vol. 56-57, No. 1, pp. 246-258, 

(2015).  

 [21] Y. Li, F. Liang, Y. Zhou, S. Ding, F. Du, 

M. Zhou, J. Bi, Y. Cai, “Numerical and 

experimental investigation on 

thermohydrodynamic performance of 

turbocharger rotor-bearing system”, 

Appl. Therm. Eng. Vol. 121, No. 5, pp. 

27-38, (2017).  

[22] L. Shao, J. Zhu, X. Meng, X. Wei, X. 

Ma, “Experimental study of an organic 

Rankine cycle system with radial inflow 

turbine and R123”, Appl. Therm. Eng. 

Vol. 124, No. 1, pp. 940-947, (2017).  

[23] P. Novotný, P. Škara, J. Hliník, "The 

effective computational model of the 

hydrodynamics   Journal   floating   ring  

 

 

 

 

 

 

 

bearing for Simulations of long transient  

regimes of turbocharger rotor 

dynamics", Int. J. Mech. Sci. Vol. 148, 

No. 1, pp. 611-619, (2018).  

[24] W. Li, Y. Yang, D. Sheng, J. Chen, “A 

novel nonlinear model of 

rotor/bearing/seal system and numerical 

analysis”, Mech. Mach. Theory. Vol. 46, 

No. 5, pp. 618-631, (2011). 

[25] M. Dakel, S. Baguet, R. Dufour, 

“Nonlinear dynamics of a support-

excited flexible rotor with 

hydrodynamic journal bearings”, J. 

Sound Vib, Vol. 333, No. 10, pp. 2774-

2799, (2014). 

[26] P. Konar, and P. Chattopadhyay, 

“Multi-class fault diagnosis of induction 

motor using Hilbert and Wavelet 

Transform”, Appl. Soft Comput. Vol. 30, 

No. 1, pp. 341-352, (2015). 

[27] Viscopedia A free encyclopedia for 

viscosity. http://www.viscopedia.com/ 

(accessed September 20, 2016). 

[28] S. G. Mattson, and S. M. Pandit, 

“Statistical moments of autoregressive 

model residuals for damage localisation, 

Mech. Syst. Signal Process, Vol. 20, No. 

3, pp.627-645, (2006). 

[29] R. Rojas, Neural Networks, Springer 

Berlin Heidelberg, Berlin, Heidelberg, 

(1996). 

 

 

 

 

 

 

 

 

How to cite this paper: 

 
Rajasekhara Reddy Mutra and J. Srinivas,“  Identification of rotor bearing 

parameters using vibration response data in a turbocharger rotor” Journal 

of Computational and Applied Research in Mechanical Engineering, Vol. 

9, No. 1, pp. 141-152, (2019). 

 

DOI:  10.22061/jcarme.2018.3165.1347 

 

URL:  http://jcarme.sru.ac.ir/?_action=showPDF&article=901 

 

 

http://jcarme.sru.ac.ir/?_action=showPDF&article=901



