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In the present article, the dynamic behavior of sandwich plates with embedded 

shape memory alloy (SMA) wires is evaluated for two cases wherein (i) the 

stress-strain curve of the superelastic behavior of the SMA wires is symmetric 

and (ii) the mentioned curve is non-symmetric. A modified version of Brinson’s 

constitutive model is proposed and used. The high non-linearity in the behavior 

stems from the SMA wires embedded in the sandwich plate. In this regard, in 

addition to the proposed advanced algorithm for the determination of the 

martensite volume fraction, a Picard iterative solution algorithm is used in 

conjunction with Newmark’s numerical time integration method for solving the 

resulting finite element equations. To improve the accuracy of the results, the 

variation of martensite volume fraction and material properties of individual 

points of the structure are updated continuously. Therefore, the kinetic equations 

of the phase transformation of the SMA are coupled with the motion equations, 

to accurately model the nonlinear behavior of the sandwich plate. For analysis 

of the thick sandwich plate, a higher-order global-local theory with novel 3D-

equilibrium-based corrections is utilized. One of the features of this theory is the 

estimation capability of the nonlinear in-plane displacement components, and 

precise assessment of the transverse shear stresses through satisfying the 

continuity conditions of the shear stresses at the interfaces between layers. 

Another advantage of the proposed theory in comparison with the conventional 

approaches is the ability to simulate changes in the core thickness. This is 

especially important in cases where the core is relatively thick or soft.  
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Introduction 

 

One of the most important features of the shape 

memory alloys (SMAs) is their remarkable 

deformation along with full retrieval 

capabilities. On the other hand, changes in the 

properties of such materials are due to their 

surrounding conditions, such as temperature and 

applied stresses. The combination of these 

properties has led to unique features in the shape-

memory materials. For example, the formation 

of hysteresis loops under various loads, 

especially oscillating is one of the most 

important properties of SMAs.  
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Different studies have been done to simulate the 

behavior of SMAs, and different models have 

been presented with different perspectives [1]. 

Although early researches on shape memory 

alloy reinforced composites (SMARCs) and 

shape memory alloy hybrid composites 

(SMAHCs) have been established by Roger and 

Robert [2], extensive developments have been 

done in these fields during the last decade. Some 

researchers [3] studied the use of these materials 

in constructional structures and buildings. 

Brinson and Lamring [4] presented a finite 

element code for studying the one-dimensional 

behavior of SMAs. Epps and Chandra [5] 

conducted analytical and laboratory research on 

composite beams with shape-memory wires. 

They used pre-tensioned SMA wires from the 

beginning. They tested the vibrations of the 

beam, despite the recovery stresses in the SMA 

wire. Lee et al. [6, 7] performed a numerical 

simulation of the thermal buckling behavior of 

composite shells with SMA wires using 

ABAQUS software. To simulate the 

thermomechanical behavior of the SMA wires, 

they wrote a fundamental equation for SMAs as 

a subroutine in ABAQUS. In general, it can be 

said that in many studies, several acceptable 

simplification approximations have been carried 

out to simulate the behavior of SMA wires. Lee 

et al. [8] studied the buckling and post-buckling 

behavior of SMA composites. They found that 

with the activation of SMA wires, the amount of 

buckling force of the composite sheet increases. 

Park et al. [9] investigated the vibrational 

behavior of composite sheets with the embedded 

SMA wires that are buckled with heat. They used 

nonlinear finite element equations based on the 

first-order shear theory. Ghomshei et al. [10] 

also studied the nonlinear finite element model 

for elastodynamic responses in composite beams 

with an SMA belt. To estimate the behavior of 

the beam, a higher-order theory was used. They 

used Brinson's one-dimensional fundamental 

model with sinusoidal kinetic phase 

transformation relations for simulation the SMA 

thermomechanical behavior. The numerical 

results indicated reducing effective vibration of 

the beam due to the activation of the 

pseudoelastic effect of SMA. Lu et al. [11] 

provided an analytical model for reinforced 

beams with SMA. The fundamental relations of 

the SMA layers were achieved using the 

micromechanical models.  

Many papers have been published on the 

analysis of composite and sandwich plates, and 

various approaches have been proposed to model 

the behavior of these structures during the past 

decades. The main reason for the development of 

the two-dimensional plate theories is the serious 

difficulties exist in the 3D analysis of the plates, 

especially, the multi-layer ones. Different 

methods have been presented for reduction of the 

three-dimensional models of the multilayered 

composite plates to two-dimensional models 

through prescribing the transverse variations of 

the displacement components. Type of the 

transverse variations of the in-plane variables 

may be adopted according to one of the three 

general approaches of the [12] (i) equivalent 

single-layer theories, (ii) separate layers theory 

(layerwise theory), and (iii) theories based on the 

principle of superimposition (zigzag and global-

local theories). One of the best methods for 

analyzing composite and sandwich plates is the 

use of global-local theories. The most efficient 

of these theories is the theory of superimposition 

principle because while maintaining the 

accuracy of the results due to a low number of 

variable parameters, it has a good performance 

in terms of run time. The basic idea of the 

theories based on superimposition rinciple is that 

a uniform displacement field is considered for all 

layers of multilayer or sandwich sheet (similar to 

the equivalent single-layer theory). Then, for 

examining different behaviors of the layers due 

to their different properties (zig-zag effect), 

independent displacement functions are 

considered for each layer. One of the studies 

carried out in this area was conducted by 

Cunningham et al. [13]. They investigated free 

vibrations of the sandwich plates through 

experiments and the finite element method. 

Tahani and Nosier [14] developed an elasticity 

formulation for general multi-layers plates under 

tension. Shariyat [15-17] presented a generalized 

higher-order global-local theory for studying 

bending and vibration of sandwich plates under 

thermomechanical loads. In this theory, the 

continuity conditions of the displacement 

components and transverse stresses between 
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layers, as well as the thickness change of the 

plate, were considered. One of the benefits of 

this theory is that the number of unknown 

parameters is independent of the number of 

layers. This theory can be considered as a 

generalized layerwise theory with considerable 

savings in computing time. The validity of the 

theory was confirmed by comparing the results 

of this theory with the results of the three-

dimensional elasticity theory and the existing 

plate theories. Lezgy-Nazargah et al. [18] 

extended the previous work of Shariyat. Mantari 

and Soares [19] proposed modified higher-order 

shear-deformation finite element formulations 

for the bending analysis of multilayered 

sandwich and composite plates. In this modified 

higher-order theory, the number of degrees of 

freedom is limited by the number of independent 

layers. 

In this paper, dynamic responses of sandwich 

plates under transverse loads is investigated. In 

order to induce structural damping and reduce 

the vibration amplitude, the sandwich plate face 

sheets are reinforced by SMA wires. In practice, 

majority of the shape memory materials have 

asymmetric behaviors in tension and 

compression; so that, identical martensite 

volume fractions are obtained at higher 

compression stresses in comparison to the tensile 

stresses, or as an example, the compressive 

recovery strain is less than that of the tensile one. 

As this behavior is more realistic and more 

compatible with practical examples, it can affect 

the global damping of sandwich plates 

reinforced by SMA wires. In the present 

research, the transverse flexibility of the core is 

also considered. A modified Brinson model, in 

addition to a proposed phase transformation 

algorithm, is used to simulate the behavior of 

SMA wires. Therefore, by providing this 

algorithm, it becomes possible to check the local 

loading and unloading event in different points 

of embedded SMA wires. In the following and 

before estimating the effects of different 

parameters on the sandwich plate behavior, 

verification of the written code for dynamic 

analysis, as well as the proposed algorithm for 

assessing SMA behavior, have been done with 

the available results of other references. 

2. Development of the higher-order global-

local governing equations of the sandwich

plate with composite face sheets and

embedded SMA wires

In order to study the behavior of shape memory 

wires in this paper, Brinson’s constitutive model 

is slightly modified and used. The modification 

is implemented in both the constitutive law and 

the proposed phase transformation checking 

algorithm. According to this model, the stress-

strain relationship in terms of the martensite 

volume fraction ( ) is as follows: 

   (1) 
   

   

0 0 0

0 0

- -

-
S S

E E     

   

 

 

In Eq. (1), E is the elasticity modulus of the 

shape memory alloy mixture and   is the phase 

transformation function. The subscript “0” 

represents the initial condition of the material. 

Young’s modulus is dependent on the volume 

fractions of the martensite and austenite volume 

fractions, as follow: 

   (2)  1m AE E E   

EM and EA are Young’s moduli of the 

martensite and austenite phases, respectively. 

Brinson’s model has two main problems: 

(i) Eq. (1) is valid for the compressive stresses

as well, only if the last two terms are multiplied

by sgn( ) ; an activity that is performed in the

present research.

(ii) Concept of the 0 quantity must be

redefined for the minor oscillations of the 

volume fraction of the martensite phase. In the 

present research, this quantity is updated in 

each global and local hysteresis loop.  

Substantial relationships have been proposed to 

determine the volume fraction of martensite and 

SMA phase, and the relationships have been 

modified to allow the simulation of SMA 

behavior under compression loading. It should 

be mentioned that SMA wires are embedded in 

the middle plane of upper and lower of 

composite face sheets. 
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Fig. 1. Geometry and coordinate system of the 

sandwich plate with embedded SMA wires. 

Length, width, and the total thickness of the 

studied sandwich plate are denoted by a, b, and 

H, respectively. The origin of the coordinate 

system is located on the middle plane and in the 

corner of the sandwich plate, and z-coordinate is 

supposed to be upward positive, as shown in Fig. 

1. Thicknesses of the upper, core and lower

layers are considered to be h1, h2 and h3,

respectively. The upper and lower face sheets of

the sandwich plate are reinforced by embedded

SMA wires.

The displacement field of the kth-layer of the

sandwich plate is considered to have both local

and global variations:

(3) 

 

( , , ) ( , , )

( , , )

( , , ) ( , , )

( , , )

1,2,3

 

 







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


k

G

k

L

k

G

k

L

u x y z u x y z

u x y z

v x y z v x y z

v x y z

k

in which Gu  and Gv  represent the global 

components of the displacement field of the 

sandwich plate and Lu and Lv show the local 

components of the displacement field. By 

applying the continuity condition of 

displacement components between different 

layers, the Eq. (3) is converted to: 

1 3

0

(1) (2)

1 1
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0

(1) (2)
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1 2
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 

 

One of the distinguished hints of the present 

article is considering transverse variations of the 

lateral deflection in the core (Fig. 2).  

Fig. 2. Through thickness displacement. 

Distribution of the transverse displacement ( )W

of the core is considered as a quadratic function:  

where uw ,  Lw  and w  are displacements of 

the top, bottom and the middle layers of the core, 

respectively, and 1L , 2L and 3L are quadratic 

Lagrange interpolation functions. Therefore, the 

13 independent displacement parameters of the 

three-layer sandwich plate are as follows:  
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(1) (1) (2) (2)

0 0

(3) (3)

, , , , , , , , ,

, , , , ,

x y x y x y x y

x y u m l

u v

w w w

       

 

The governing equations are extracted using 

Hamilton’s principle. This principle is 

introduced in Eq. (5), in which U is the internal 

energy (strain), V is the work of the external 

forces, and K is kinetic energy:  

 (6) 0U W     

 (7) 
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In calculating the stiffness of each layer, the 

properties of the composite layer with SMA 

wires are calculated by the following 

relationships [20]: 

  (9) ssc

c

ll kEkEE )()(  

(10) )))(/1(1/()(  s

c

ts

c

tt EEkEE 

(11) ))(/()()( c

ltsscs

c

ltlt GkGkGGG  

(12) ssc

c

ltlt kk  

In the above relations, the s and c subscripts 

represent SMA and composite, respectively. 

Based on Eqs. (1 and 9-12) the strain-stress 

relation for a layer with SMA wires is: 

 (13) 
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in which, sk and sE are martensite volume

fraction and Young’s modulus of the SMA, 

respectively. It is worth mentioning that these 

parameters are variable for different layers, 

different points of the layers, and they can vary 

over time. These conditions have made the 

solution more complicated. In this equation; the 

stiffness of kth-layer form composite shell with 

embedded SMA wires is 𝐶𝑖𝑗
𝑘 . Eq. (14) can be

rewritten in the presence of SMA wires in the 

following form: 

 (14) s 
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where: 
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If the solution domain is discretized by 

rectangular elements, through the shape 

functions matrix :    
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Eqs. (6-8) may be rewritten as: 
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Finally, by inserting the above relations in the 

Hamilton principle (Eq. (6)), the SMA effect 

appears, the following equation is obtained: 

It is possible to transfer all terms with SMA 

origin of the equation to one side of the equation 

and include them in a unitary force vector. On 
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the other hand, since the above equation holds 

for any arbitrary ( )e , the following governing 

equation of motion can be reached:  

where K is the matrix of stiffness, M is the mass 

matrix, and F is the force matrix. It should be 

noted that in Eq. (24), the stiffness and force 

matrices are functions of the martensite volume 

fraction. The martensite volume fraction, in turn, 

changes instantaneously and locally in different 

points and layers of the face sheet and is itself a 

function of displacements of the Gaussian 

points. To solve Eq. (23), the finite element 

method based on nonlinear rectangular elements 

has been used. 

3. Solving the nonlinear dynamic finite

element equations

For the time discretization of the nonlinear 

dynamic Eq. (24), Newmark’s method is used as 

follows [21]: 

(24) 
2

1  1 2  m m m mt t         

(25) 1  m m mt     

where t ,   and   are the time increment, 

displacement vector and time derivative of the 

displacement vector, respectively. Also, the 

subscript m shows the time step number and

1 2 and 8 5 . The acceleration of m 

can be written as a linear combination of 

acceleration of steps m and m+1: 

  (26) 1(1 )m m m       

Using Eqs. (23 and 24), Eq. (22) can be 

expressed as follow: 

  (27) 
1 1 1

ˆ ˆ
m m mK F    

where 

  (28) 
1 1 3

ˆ
m mK K a M  

  (29) 
1 1 3 4 5

ˆ ( )m m m m mF F M a a a        

and the coefficients 3a , 4a , and 5a are defined

as: 

   (30) 

2
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5
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1 1

 

 

 

a t

a t

a







The initial acceleration value is usually 

unknown. As an estimate, the initial acceleration 

can be calculated using the above relation and 

the initial values of 0 and 0F ( 0F is usually 

considered as zero) are calculated as follows: 

 (31) 1

0 0 0( )M F K  

At the end of each time step, the acceleration and 

velocity values are calculated using the 

following relations: 

(32) 1 3 1 4 5( )m m m m ma a a        

(33) 1 2 1 1m m m ma a        
 

where 1a t  and 2 (1 )a t   . 

Also, for solving nonlinear equations, an 

iterative method is suggested with the following 

steps:  

1. Defining the initial values for 
0 0,  and 

0

k

(that are usually considered as zero), 

2. Calculating initial acceleration value
0 ,

3. Determining new time step 1 1m m mt t t   

and calculating the new martensite volume 

fractions,  

4. Calculating the material properties of each

layer and material properties of the whole

sandwich and then obtaining the stiffness

matrix based on the calculated martensite

volume fraction in the new time step; this is

the major source of the nonlinearity of the

problem. In other words, the formation of

stiffness matrix in the mth time step is based

on the existing results for displacement and

martensite volume fraction in (m-1)th time

step. It should be mentioned that in this issue,

every point of the plate is investigated

( )] [ ( )] F    (23)
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completely independently. In other words, 

the behavior of various points of SMA wires 

is different in various parts of the sandwich 

plate, such that part of the plate and 

consequently the SMA wire can be in the 

position of loading, whereas another point of 

the plate and SMA wires can be in the 

position of unloading. This is important 

because the suggested algorithm for 

estimating shape memory alloy behavior in 

both loading and unloading positions is 

entirely different which increases the 

complicatedness of the issue. Another 

complexity of this issue is that in some cases, 

after changing the direction of the applied 

load on shape memory alloy, many of 

parameters have to be updated including 

martensite initial volume fraction, etc. While 

in some cases, this update should not be done. 

The matter whether in what cases initial 

parameters have to be updated and in what 

cases they do not change was fully explained 

in Ref [21-23]. An algorithm is provided to 

accurately investigate the behavior of shape 

memory alloy which is regarded as the basis 

of the written code to study the behavior of 

this material while considering all mentioned 

issues. Based on this algorithm, in every time 

increment, it should first be determined that 

the imposed force is tension or compression 

in the intended gauss point and that whether 

SMA wires are in the loading or unloading 

and then it should be investigated that which 

level of phase transformation is occurring. It 

is possible that, due to dynamic loading and 

also considering the continuity of the 

mentioned SMA wires, in some of time 

increment in some parts of the plate local 

loading-unloading takes place or in cases in 

which a part of the plate is under compression 

load, the other part of it is under tension load 

which leads to the higher complicatedness of 

sandwich plate with composite face sheet 

embedded SMA wires. 

5. Solving Eq. (22) to obtain
1

k

m ,

6. Examining convergence of the results at any

time step with the following criteria:


where k represents the number of iteration of the 

(m+1)th time step and  is a very small number. 

In the case of convergence, different components 

of the stress and strain of the plate and SMA 

wires and martensite volume fraction of SMA 

wires are calculated for different points of the 

plate and a time step is added to the problem 

solution until achieving to the final time of the 

solution. It should be noted that a proposed 

dynamic phase transformation algorithm is used 

to calculate the martensite volume fraction. By 

using the proposed algorithm, the status of SMA 

wires (loading and unloading and other 

parameters) at each time step is determined in 

each gauss point independently; and then, it is 

assessed by the algorithm to determine the 

situation of the phase transformation. It should 

be noted that because of the thickness of the 

sandwich plate and type of applied load; it is 

likely that a lot of loading/unloading in different 

points of the plate occurs at the same time or 

among different time steps. 

4. Results and discussion

4.1. Verification and mesh independency

Initially, before investigating the behavior of the 

sandwich plate and the effects of various 

parameters on its behavior, the correctness of the 

proposed algorithm and the written code are 

examined. In order to prove the correctness; at 

first, the behavior of SMA is studied under 

various cyclic loadings and then, the results are 

compared with experimental results in the 

literature. Cyclic loading is chosen because, in 

reality, points of the plate are under fluctuating 

loads. The proposed algorithm for simulating the 

SMA behavior should have the ability to 

consider several loading and unloading during 

all stages of the phase transformation in different 

locations.  

Variation of stress under constant temperature is 

one of the most important load cases in SMA. 

The response of the SMA to the mentioned 

cyclic load is shown in Fig. 3 and compare with 

the experimental result. As can be seen, the 

excellent matching of the obtained result from 

the written code and the results of the 

experimental tests [24] are obvious. Second, the 

mesh independency of the obtained results 
( 1) ( ) ( 1)

1 1 1

k k k

m m m

 

       (34)
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should be checked. For this reason, plates are 

meshed using various numbers of the 2D 

quadratic nonlinear element with 8 nodes such as 

5 × 5, 10 × 10, 20 × 20, 30 × 30 and 40 × 40, and 

their results are examined. The obtained results 

are analyzed for the thick plates with a/h ratio of 

4. Various results such as non-dimensional

transverse stresses and dimensionless transverse

displacement are investigated. Fig. 4 also shows

the convergence of the results for dimensionless

transverse shear stresses. As can be seen, the

results of most transverse shear stresses with the

element size of 40 ×40 converge. In the case of

a square plate, the number of elements in the

length and width of the plate is equal.

Verification of the converged results is presented

in Table 1. Ref. [25-27] are used for this

verification.

Finally, the obtained results showed that the

mesh size 40 × 40 led to the provision of

converged results, and the further increase in

sandwich plate elements did not have a

significant effect on the results. Also, comparing

the obtained results with those existing in Ref.

[28] made it clear that the theory has an

acceptable accuracy. The obtained results are

compared with the three-dimensional result of

the elasticity existing in Ref. [29]. The

investigations showed that for a thick sandwich

plate, the results calculated by the proposed

theory are acceptable and have very good

accuracy. More verification of the converged

results is presented in Table 1. The obtained

results are compared with the three-dimensional

result of the elasticity existing in Refs. [26-28].

Fig. 3. Obtained result by proposed algorithm and 

implemented code and experimental result [24] of 

SMA under a cyclic load. 

Table 1. The results of dimensionless interlaminate 

shear stresses of sandwich plate with soft core for 

different mesh sizes. 
Cho 

[27] 

Sheikh[26] Pagano[25] a/h 

0.238* 0.2023 0.256 
xzS

(L/2,0,0) 

4 

0.229* 0.1831 0.2172 
yzS

(0,L/2,0) 

0.498* — 0.4926 
zzS

(L/2,L/2,0) 

Present Stud0y  (Mesh density( a/h 

40×40 30×30 16×16 

0.2515* 0.2557* 0.2706* 
xzS

(L/2,0,0) 

4 

0.2180* 0.2185* 0.2258* 
yzS

(0,L/2,0) 

0.5152 0.5373 0.553 
zzS

(L/2,L/2,0) 

Fig. 4. Mesh independency of the dimensionless 

transverse shear stress for thick sandwich plate 

(a/h=4). 

Also, in order to ensure the function of the 

written code, the dynamic analysis of the three-

layer composite plate is compared with the 

results presented by Khadeir and Reddy [29]. 

They studied dynamic responses of a symmetric 

cross-ply laminated composite using a high-

order shear-deformation theory. The properties 

of the layers considered in this analysis are:  

E1 = 172.369GPa, G12 = G13 = 3.448 GPa,  

v12 =0.25, E2 = 6.895 GPa, G23 =1.379 GPa, 

 ρ= 1603.03 kg/m3 

Present theory 



JCARME  A. Ghaznavi, et al.   Vol. 9, No. 2 

192 

A sinusoidal load is imposed in a short time (as 

a pulse) on the top of the composite plate. Fig. 5 

shows the transverse displacement of the middle 

point of the plate after applying the dynamic 

load. In this figure, the result obtained from the 

presented formulation and the result of the 

mentioned reference are shown simultaneously. 

As can be seen, the obtained results are 

consistent with that provided in Ref. [29]. 

Fig. 5. A comparison between time histories of the 

lateral deflection of the central point of the plate 

predicted by present approach and Ref. [29] for a 

three-layer composite plate under an impulse load. 

4.2. Influence of the SMA behavior of the 

dynamic response of thick sandwich plate with 

embedded SMA wires 

In this section, the effects of the SMA wires 

behavior on the performance of the sandwich 

plate are studied. Results are obtained for a 

square simply-supported sandwich plate whit 

0.1h face sheets thickness and 0.8 h core 

thickness and for thick (a/h=4) sandwich plates 

with very soft (Ef/Ec=105) cores. The sandwich 

plate is subjected to a uniform step impulse 

pressure that is applied to the top surface of the 

sandwich plate. Due to applying loads in a very 

short time, the plate fluctuates around a non-zero 

displacement. The SMA wires are embedded in 

the middle layer of the upper and lower 

composite face sheets of the sandwich plate with 

a volume fraction of 50%. The mechanical 

properties of the SMA used in the nonlinear 

analysis are given in Table 2. While symmetric 

behavior is considered, the compression 

properties are considered completely equal to the 

tensile properties of Table 2. Since the main 

purpose of this paper is to investigate the effect 

of the SMA wires and its behavior on the 

damping of the sandwich plate, the amount of 

applied load is chosen so that SMA wires enter 

the phase transformation range and can be able 

to absorb some part of the energy of the 

sandwich structure. The following 

dimensionless displacement parameter is 

defined to extract the results:  

3

2

4

0

100 skinE h
W w

a q


Fig. 6 shows time histories of the dimensionless 

transverse displacement (W) of the central point 

of the upper and lower face sheets of the thick 

sandwich plate with a soft core. Fig. 6(a) shows 

the dynamic response of the sandwich with the 

embedded SMA wires that act completely the 

same in the compression and tension. And, the 

behavior of embedded SMA wires is asymmetric 

in Fig. 6(b). Due to the thickness of the sandwich 

and stiffness of the core, the difference between 

displacement amplitude of the top and bottom 

layers is a lot. In other words, when the upper 

layer displaces in a significant amount because 

of the applied load, the lower layer is not 

significantly influenced by the applied load to 

the upper layer. 

Table 1. Mechanical properties of the SMA [30]. 
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Thus, the difference in the range of oscillation in 

both layers is very significant. Furthermore, it is 

shown in Fig. 6 that when the behavior of the 

SMA wires is symmetrical, the sandwich plate in 

the upper layer experiences more dimensionless 
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transverse displacements in comparison to the 

case with the asymmetric behavior of the SMA 

wires. The symmetric behavior of the SMA 

wires means that the phase transformation in the 

compression stress occurs at the same level as 

the tension one. So it leads to starting the phase 

transformation at the lower level of stress in 

comparing to the unsymmetrical case.  

 (a) 

 (b) 

Fig. 6. Time histories of the dimensionless transverse 

displacements of the central points of the top and 

bottom layer of the thick sandwich plate with a very 

soft core; (a) unsymmetrical behavior of embedded 

SMA and (b) symmetrical behavior of embedded 

SMA. 

Considering this fact that during the phase 

transformation, Young’s modulus of the SMA 

wires decreases; it is completely reasonable that 

symmetric behavior of the SMA leads to 

pronounced reductions in the plate stiffness in 

lower stress level, and as a result, to an increased 

amplitude of the transverse vibration. Of course, 

since the bottom layer is not affected by the 

applied load impressively, embedded SMA 

wires of the bottom layer has not experienced 

phase transformation; for this reason, there is 

practically no difference between the two 

responses. 

Fig. 7 shows the changes in the martensite 

volume fraction of the embedded SMA wires 

located in the middle of the upper and lower 

composite face sheets over time. As can be seen, 

if the SMA wires behavior in tension and 

compression is nonsymmetric, martensite 

volume fraction converges to 100% after a few 

cycles and during the rest of the analysis, SMA 

wires vibrate in the complete martensite phase. 

However, in the other case (symmetrical 

behavior of the SMA), the martensite volume 

fraction needs more cycles for convergence and 

eventually reaches to a number other than a 

convergent one.  

(a) 

(b) 

Fig. 7. Time history of martensite volume fraction of 

central point of the embedded SMA wires in top and 

bottom layers; (a) unsymmetrical behavior of SMA 

and (b) symmetrical behavior of SMA. 

In this case, the embedded SMA wires remain in 

the phase transformation stage, in other words, 

the SMA wires remain active in damping of the 

stored energy of the sandwich structure, in 
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contrast to the first sample (unsymmetrical 

behavior) wherein the SMA wires lose their 

damping ability after a few cycles. 

Fig. 8 shows the hysteresis loop formed at the 

embedded SAM wire in the midpoint of the 

upper composite face sheet. In this figure, the 

dynamic response of the SMA wires with both 

assumption (symmetrical and unsymmetrical 

behavior of shape memory alloy) is investigated. 

Since the applied load is a step, the sandwich 

panel remains under continuous pressure after 

loading process and as a consequence the SAM 

wires embedded in the top face sheet vibrate 

under compression and with the negative stress 

and strain.  

Fig. 8. Hysteresis loop for embedded SMA wires in 

the top layer of thick sandwich with the soft core. 

This is important because as mentioned earlier, 

the difference between symmetrical and 

unsymmetrical assumption is only observed in 

compression, not in tension. Since the embedded 

SMA wires in the top layer are in the 

compression throughout the analysis, the noted 

difference in the energy assumption may readily 

be noted. The recovery strain in a sample in 

which the SMA behavior is non-symmetrical is 

less than that with symmetrical behavior. This 

difference between the amounts of the recovery 

strains could be the major reason for the phase 

shifts of responses of the SMA wires at the final 

time instant of solution. In the anisotropic SMA 

(realistic), the behavior of SMA in compression 

is deferent from the tension. In other words, in 

the anisotropic SMA, MS s-, MF s-, AS s- and AF 

s- are larger than MS s+, MF s+, AS s+ and AF

s+, but in the symmetric manner of SMA, these

critical points are the same. So because of this 

difference between starting and finishing point 

of phase transformation, in an unsymmetrical 

manner, the  SMA wire becomes completely 

martesite but in the symmetrical case phase 

transformation in the reverse direction start and 

SMA wires are not complete in the martensite 

phase, and become a combination of martensite 

and austenite. 

As can be seen in Figs. 7 and 8, for the case 

associated with unsymmetrical phase 

transformation, the SMA wires become pure 

martensite at the end of solution, but for the other 

case, the SMA wires contain both the martensite 

and austenite phases, although the resulting 

mixture is very close to the martensite phase and 

converges to a martensite volume fraction of 0.9. 

Also, the difference between the beginning 

stresses of phase transformation is noticeable in 

the two responses. In addition, local loading and 

unloading are also observed during the phase 

transformation (martensite to austenite or vice 

versa) in the hysteresis loop which can be due to 

various reasons, including the uniformity of 

frequency with the natural frequency of the 

sandwich plate, especially in higher modes. 3D 

plots of martensite volume fractions of the SMA 

wires at the midpoint of the upper layer of the 

thick sandwich plate with the soft core are shown 

in Fig. 9, for the first peaks of Fig. 6. 

Fig. 9. 3D Plots for in-plane distributions of the 

martensite volume fraction at the midpoint of the 

upper layer of a thick plate with a flexible core at 

t=6ms. 

Unsymmetric behavior 

of SMA 

symmetric behavior of 

SMA 
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5. Conclusions

In this paper, a higher-order global-local theory 

with a proposed algorithm for nonlinear dynamic 

analysis is presented for sandwich plates with 

embedded SMA wires. In the proposed 

algorithm, the Brinson model has been modified 

to simulate the nonsymmetric and symmetric 

behavior of SMA wires. This is important 

because, although in reality most of the SMAs 

have a non-symmetrical behavior between 

tension and compression, in most studies about 

composites or sandwich with embedded SMA 

wires during the last decades, SMA behavior in 

terms of tension and compression is considered 

the same due to the simplicity. But this 

assumption can lead to the formation of different 

hysteresis loops in wires, and as a result, it also 

affects the overall damping of the sandwich 

plate. Another advantage of the present study is 

the investigation of the phase transformation and 

martensite volume fraction of each point 

independently over the plate and continuously 

over time by using the proposed iterative 

algorithm. In this case, different points of the 

wires can have separate behaviors, for example, 

a point of the SMA wires can be at the local 

unloading status which the other point can be on 

loading and phase transformation stage. 

The results showe that applying the assumption 

of symmetric SMA behavior reduces the 

stiffness of the sandwich plate and increases its 

transverse displacement. Also, due to the 

difference in the hysteresis loops formed in the 

SMA wires, the damping of the structure reduces 

when non-symmetric behavior of the wires is 

assumed in comparison to the symmetric 

behavior. However, it should be noted that this 

damping is more realistic and accurate. Finally, 

the results show that the higher-order global-

local theory is an appropriate approach for 

investigating thick sandwich plate with 

embedded SMA wires. Using the presented 

theory will lead to desired results with the proper 

accuracy, along with the achievement of the 

appropriate solving time. On the other hand, in 

this paper, the transverse displacement of the 

core and its thickness changes are also simulated 

to be of great importance for the analysis of thick 

sandwich, especially with soft cores. The results 

show separate and independent behavior and 

different damping ratio of the upper and lower 

face sheets in a thick sandwich plate with a soft 

core. The mentioned difference proves the 

necessity of considering the deformation of the 

core in transverse direction.  

References 

[1] C. M. Wayman, and T. W. Duerig. "An

introduction to martensite and shape

memory" Butterworth - Heinemann,

Engineering Aspects of Shape Memory

Alloys(UK), Vol. 22, No. 1, pp. 3-

20, (1990).

[2] Liang, Chen, and Craig A. Rogers. "One-

dimensional thermomechanical constitutive

relations for shape memory

materials." Journal of intelligent material

systems and structures, Vol. 8, No. 4, pp.

285-302, (1997).

[3] Wilde, Krzysztof, Paolo Gardoni, and Yozo

Fujino. "Base isolation system with shape

memory alloy device for elevated highway

bridges." Engineering structures, Vol. 22,

No. 3, pp. 222-229, (2000).

[4] Gordaninejad, Faramarz, and Weida Wu.

"A two-dimensional shape memory

alloy/elastomer actuator." International

journal of solids and structures, Vol. 38,

No. 19, pp. 3393-3409,  (2001).

[5] Epps, Jeanette, and Ramesh Chandra.

"Shape memory alloy actuation for active

tuning of composite beams." Smart

Materials and Structures, Vol. 6, No. 3, p.

251, (1997).

[6] Lee, Hyo Jik, Jung Ju Lee, and Jeung Soo

Huh. "A simulation study on the thermal

buckling behavior of laminated composite

shells with embedded shape memory alloy

(SMA) wires." Composite structures, Vol.

47, No. 1, pp. 463-469, (1999).

[7] Lee, Hyo Jik, and Jung Ju Lee. "A

numerical analysis of the buckling and

postbuckling behavior of laminated

composite shells with embedded shape

memory alloy wire actuators." Smart

Materials and Structures, Vol. 9, No. 6, p.

780, (2000).



JCARME                                                      A. Ghaznavi, et al.                                               Vol. 9, No. 2  

 

196 

 

[8] Rogers, Craig, and Daniel Barker, 

"Experimental studies of active strain 

energy tuning of adaptive composites." 31st 

Structures, Structural Dynamics and 

Materials Conference. (1990). 

[9] Park, Jae-Sang, Ji-Hwan Kim, and Seong-

Hwan Moon. "Vibration of thermally post-

buckled composite plates embedded with 

shape memory alloy fibers." Composite 

Structures, Vol. 63, No. 2, pp. 179-188, 

(2004). 

[10] Ghomshei, M. M., et al. "Nonlinear 

transient response of a thick composite 

beam with shape memory alloy 

layers." Composites Part B: Engineering, 

Vol. 36, No.1, pp. 9-24, (2005). 

[11] Brocca, M., L. C. Brinson, and Z. P. Bažant. 

"Three-dimensional constitutive model for 

shape memory alloys based on microplane 

model." Journal of the Mechanics and 

Physics of Solids, Vol. 50, No. 5, pp. 1051-

1077, (2002). 

[12] Shariyat, M., S. M. R. Khalili, and I. Rajabi. 

"A global–local theory with stress recovery 

and a new post-processing technique for 

stress analysis of asymmetric orthotropic 

sandwich plates with single/dual 

cores." Computer Methods in Applied 

Mechanics and Engineering, Vol. 286, pp. 

192-215, (2015). 

[13] Cunningham, P. R., R. G. White, and G. S. 

Aglietti. "The effects of various design 

parameters on the free vibration of doubly 

curved composite sandwich 

panels." Journal of Sound and Vibration, 

Vol. 230, No. 3, pp.  617-648, (2000). 

[14] Masoud  Tahani,  and Asghar Nosier. "Free 

edge stress analysis of general cross-ply 

composite laminates under extension and 

thermal loading."Composite Structures, 

Vol. 60,  No. 1, pp. 91-103, (2003). 

[15] M. Shariyat, A generalized high-order 

global–local plate theory for nonlinear 

bending and buckling analyses of imperfect 

sandwich plates subjected to thermo-

mechanical loads, Composite Structures, 

Vol. 92, No. 1, pp. 130-143, (2010). 

[16] M. Shariyat, "A generalized global–local 

high-order theory for bending and vibration 

analyses of sandwich plates subjected to 

thermo-mechanical loads." International 

Journal of Mechanical Sciences, Vol. 52, 

No . 3, pp. 495-514, (2010). 

[17] M. Shariyat, “Non-linear dynamic thermo-

mechanical buckling analysis of the 

imperfect laminated and sandwich 

cylindrical shells based on a global-local 

theory inherently suitable for non-linear 

analyses”. International Journal of Non-

Linear Mechanics, Vol. 46, No. 1, pp. 253-

271, (2011). 

[18] M. Lezgy-Nazargah, M. Shariyat, SB. 

Beheshti-Aval “A refined high-order 

global-local theory for finite element 

bending and vibration analyses of the 

laminated composite beams”. Acta 

Mechanica, Vol. 217, No. 3, pp. 219-242, 

(2011). 

[19] J. L. Mantari, and C. Guedes Soares. 

"Generalized layerwise HSDT and finite 

element formulation for symmetric 

laminated and sandwich composite 

plates." Composite Structures, Vol. 105, 

pp. 319-331 (2013). 

[20] M. Brocca, L. C. Brinson, and Z. P. Bažant, 

"Three-dimensional constitutive model for 

shape memory alloys based on microplane 

model." Journal of the Mechanics and 

Physics of Solids. Vol. 50, No. 5, pp. 1051-

1077, (2002). 

[21] A. Ghaznavi, M. Shariyat, Non-linear 

layerwise dynamic response analysis of 

sandwich plates with soft auxetic cores and 

embedded SMA wires experiencing cyclic 

loadings, Composite Structures, Vol. 171 

pp. 185-197, (2017). 

[22] M. Shariyat, A. Ghaznavi, “Influence 

analysis of phase transformation anisotropy 

of SMA wires embedded in sandwich plates 

with flexible cores by a third-order zigzag 

theory with dynamic 3D elasticity 

corrections”. Journal of Sandwich 

Structures and Materials, Vol. 0, No. 0, pp. 

1-46, (2018). 

[23] M. Shariyat, A. Ghaznavi, “A one 

dimensional model for superelastic and 

shape memory effect of shape memory 

alloy with different elastic properties 

between austenite and martensite various 

complex loading”, Iranian Journal of 



JCARME                                         Effects of asymmetric behavior . . .                                  Vol. 9, No. 2 

197 

 

Mechanical Engineering, Vol. 16, No. 1, 

78-103, (2014). 

[24] Yu I. Paskal, and L. Monasevich, 

"Hysteresis features of the martensitic 

transformation of titanium 

nickelide." PHYS. METALS & 

METALLOG. Vol. 52, No. 5, pp. 95-99, 

(1983). 

[25] C. H. Thai, Loc V. Tran, Dung T. Tran, T. 

Nguyen-Thoi, H. Nguyen-Xuan. Analysis 

of laminated composite plates using 

higher-order shear deformation plate 

theory and node-based smoothed discrete 

shear gap method. Applied Mathematical 

Modelling, Vol. 36, pp. 5657-5677, 

(2012). 

[26] Pagano, N. J. "Exact solutions for 

rectangular bidirectional composites and  

sandwich plates." J. Composite Materials,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vol. 4, pp. 20-34, (1970). 

[27] Maenghyo Cho, and Oh Jinho. "Higher 

order   zig-zag  theory  for  fully   coupled  

thermo-   electric   –    mechanical     smart 

[28] composite plates." International journal 

of solids and structures, Vol. 41, No. 5, 

pp. 1331-1356, (2004). 

[29] A. H., Sheikh, and A. Chakrabarti. "A new 

plate bending element based on higher-

order shear deformation theory for the 

analysis of composite plates. "Finite 

elements in analysis and design, Vol. 39, 

No. 9, pp. 883-903, (2003). 

[30] A. A., Khdeir, and J. N. Reddy. "Exact 

solutions for the transient response of 

symmetric cross-ply laminates using a 

higher-order plate theory."Composites 

Science and Technology, Vol. 34, No. 3, 

pp. 205-224, (1989). 

 

 

 

 

 

 

 

How to cite this paper: 
 

A. Ghaznavi, M. Shariyat, “Effects of asymmetric behavior of 

shape memory alloy on nonlinear dynamic responses of thick 

sandwich plates with embedded SMA wires”, Journal of 

Computational and Applied Research in Mechanical Engineering, 

Vol. 9, No. 2, pp. 183-197, (2019). 
 

DOI: 10.22061/jcarme.2019.2878.1300 

 

URL:   http://jcarme.sru.ac.ir/?_action=showPDF&article=1034  

http://jcarme.sru.ac.ir/?_action=showPDF&article=874



