Dynamic response of a shaft of a Pelton turbine due to impact of water jet

Mahesh Chandra Luintel* and Tri Ratna Bajracharya*

*Department of Mechanical Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University 44700, Nepal

Abstract

Performance and reliability of any rotating machine can be studied by proper dynamic analysis of the machine. In this regard, this paper presents the method to study the dynamic response of the shaft of a Pelton turbine due to the impact of water jet. Equations of motion for the bending vibration of Pelton turbine assembly, in two transverse directions, is developed by using Lagrange equation of motion with the help of assumed modes method. The Pelton wheel is assumed as a rigid disk attached on an Euler-Bernoulli shaft. The impact provided by the water jet is represented in the form of Fourier series. Critical speeds of the system are determined by performing free vibration analysis and presented in the form of Campbell diagram. The response plots due to impact of water are generated by performing forced response analysis. Both free and forced analyses are carried out by considering first three modes of vibration.

Nomenclature

\(\Omega \) Spin speed of shaft, rad/s
\(\rho \) Density of material of shaft, kg/m\(^3\)
\(\rho_d \) Density of material of disk, kg/m\(^3\)
\(\omega \) Angular velocity, rad/s
\(A \) Cross sectional area of the shaft, m\(^2\)
\(C_i \) Modal damping
\(E \) Modulus of Elasticity, Pa

\(F(t) \) Force exerted on the disk
\(h \) Thickness of the disk, m
\(i, j, k \) Unit vectors along x, y and z axes respectively
\(I_d \) Second moment of area of disk section, m\(^4\)
\(I_s \) Second moment of area of shaft section, m\(^4\)
\(J_{pd} \) Polar second moment of area of disk section, m\(^4\)
\(J_{ps} \) Polar second moment of area of shaft section, m\(^4\)
\(K_i \) Modal stiffness
\(L \) Length of the shaft, m
\(M_d \) Mass of disk, kg
\(M_i \) Modal mass
\(r_x \) Position vector of any point of shaft
\(T \) Kinetic energy
\(U_s \) Strain energy of the shaft
\(v \) Displacement along y axis
\(V(t) \) Dynamic amplitude of transverse vibration in horizontal direction
\(v_x \) Velocity vector of any point of the shaft
\(w \) Displacement along z axis
\(W(t) \) Dynamic amplitude of transverse vibration in vertical direction
\(W_{ext} \) External work
\(x \) Direction along longitudinal axis of the shaft

*Corresponding author
Email address: mcluintel@ioe.edu.np
rotors subjected to non-conservative torque and force.

Khader [4] has investigated the stability of the rotating cantilever shaft with a rigid disk at its free end subjected to periodic follower axial force and end moment. Silva et al. [5] have studied the bending vibration of a machine rotor by using the Euler-Bernoulli beam theory, as a continuous beam, subjected to a specific set of boundary conditions. Chattoraj et al. [6] have considered a two dimensional isotropic and flexible horizontal rotor with a symmetrical disk including the effects of gravity and coriolis forces. Gundogdu et al. [7] have presented simulations of a continuous cantilever beam and an unbalanced disk system by extending classical Jeffcott rotor approach to a model that gives the first three (or more) modes of the flexible beam.

Shahgholi et al. [8] have also investigated the two rotor systems, one of which has been comprised of a symmetrical shaft and an asymmetrical disk, and the other one has been comprised of an asymmetrical shaft and an asymmetrical disk. Lin et al. [9] has used finite element simulation to develop several models of single-rotor system, with different numbers of shaft elements, relative number of degrees of freedom and, by using, four types of modelling for the shaft and disk interface. Han [10] has performed complex harmonic analysis for rotor based upon Floquet theory and has presented the modal features of each critical speed both by quantitatively and qualitatively.

Huang [11] has studied the characteristics of torsional vibration of a rotor with unbalance by numerical simulation.

Some researchers have studied non-linear phenomena in shaft-disk systems. Chang et al. [12] have analyzed instability and non-linear dynamics of a simply supported slender shaft made of a viscoelastic material and have determined stability. Genta et al. [13] have extended the usual mathematical models based on the finite element method to the study of the dynamic behaviour of rotors with non-constant angular speed by considering both the nonlinear behaviour of the rotor and its geometrical or inertial anisotropy. Inoue et al. [14] have investigated the chaotic vibration due to the 1 to 3

1. Introduction

Most of the power producing and power consuming units consist of a disk attached to a shaft. One of the most common examples of this is a Pelton turbine unit used for electricity generation in hydropower plants. Pelton turbines are high head turbines used for both small and large power generation. These rotating turbines are subjected to highly hostile working conditions. The design and manufacturing challenge is concerned with improvement in performance, life and reduction in weight without loss of reliability. There are numerous possibilities of excitation by external disturbances and the behaviour of the system under those disturbance can be predicted to some extent by the appropriate dynamic analysis.

The dynamic response of such shaft-disk system depends upon many components and operating parameters. Different researchers have investigated different aspects of a rotodynamic system by modelling the system as an assembly of a rigid disk attached to an Euler-Bernoulli shaft. Sabuncu et al. [1] have investigated the critical speed of a rotor consisting of a single disc on a solid shaft by treating the shaft as a rotating beam element using transfer matrix-finite element model. Rajalingham et al. [2] have investigated the influence of external damping on rotor response to imbalance of gravity excitations and have shown that sufficient amount of damping can suppress the reported instability caused by anisotropic bending stiffness characteristics. Lee et al. [3] have analyzed the effect of the direction of application and magnitude of loads on the stability and natural frequency of flexible

Few research works have been carried out to study the effect of looseness on the behavior of the shaft-disk system. Muszynska et al. [22] have presented the results of numerical simulation of the dynamic behavior of a one-lateral-mode rotor, which is unbalanced and radially side-loaded, with either a loose pedestal (looseness in a stationary joint), or with occasional rotor-to-stator rubbing in which the nonlinearities are associated with the rotor intermittent contacts with the stationary element. Behzad et al. [23] have used energy method to calculate rotor response with loose rotating disk on it and shown that the clearance between loose disk and shaft, shaft speed, mass and mass moment of inertia of disk have a major effect on a rotor response and beating phenomena.

Many researchers have extensively studied the effect of rub impact on dynamic behavior of the shaft-disk system. Azeez et al. [24] have worked to obtain the transient response of an overhung rotor undergoing vibro-impacts due to a defective bearing with reference to an overhung rotor clamped on one end, with a flywheel on the other and impacts occurring in between, due to a bearing with clearance. Shen et al. [25] have investigated the vibration characteristics of a rub-impact rotor-bearing system excited by mass unbalance including mass eccentricity and initial permanent deflection. Jian et al. [26] have studied the nonlinear dynamic analysis of the rotor–bearing system supported by oil-film short bearings, with nonlinear suspension, by considering the rub–impact between rotor and stator for precise analysis of rotor-bearing systems. Khanlo et al. [27] have studied the chaotic vibration analysis of a rotating flexible continuous shaft-disk system with rub impact. Khanlo et al. [28] have also investigated the lateral–torsional coupling effects on the nonlinear dynamic behavior of a rotating flexible shaft–disk system. Jiao et al. [29] have developed a dynamic model to study the characteristics of unbalanced rotor system with external excitations including the influences of gyroscopic effect, gravity and static/dynamic unbalance. Ma et al. [30] have investigated the nonlinear dynamic characteristics of a single span rotor system.
with two discs under fixed-point and local arc rub-impact conditions. Tai et al. [31] have investigated the stability and steady-state response of the rotor system using a lumped mass model of a single rub-impact rotor system considering the gyroscopic effect.

Wahab et al. [32] have studied the parametric instability behaviour for a simple shaft and disk system subjected to axial load under pinned-pinned boundary condition and have found that the additional disk mass decreases the instability region during static condition and the location of the disk also has significant effect on the instability region of the shaft. Chen et al. [33] have developed a model based on finite element method and Lagrange’s equation to study the dynamic behavior of flexible rotor system subjected to time-variable base motions and have found that the base rotations would cause nonlinearities.

Most of the earlier papers have focused the dynamic response of a flexible shaft due to intervention from the surroundings such as rub impact or effects of bearing properties. This paper focus mainly on the dynamic response of the shaft-disk system to impact of general tangential forces on the disk which can used to study the behavior of a Pelton turbine subjected to impact of water jet.

2. Problem Formulation

2.1 System Kinematics and Energy Expressions for the System

Consider a rigid disk attached to a flexible shaft as shown in Fig. 1. The axes x, y and z are chosen such that x is along longitudinal direction of the shaft, y is along transverse direction of shaft on the horizontal plane and z is along the transverse direction of the shaft on the vertical plane. Similarly, transverse displacements of any point of the shaft along horizontal and vertical directions are respectively $v(x,t)$ and $w(x,t)$. For the horizontal shaft, Pelton turbine water jet acts along the y direction.

The velocity of any point on neutral axis of the shaft with reference to inertial frame is given by [27]

$$v_s = (\dot{v} - \Omega \omega)j + (\dot{w} + \Omega v)k \quad (1)$$

The angular velocity vector of the shaft element is given by [27]

$$\omega_e = (\Omega + \nu')i + (-\Omega \nu' - \dot{\nu}')j + (-\Omega w' + \dot{\nu}')k \quad (2)$$

Then kinetic energy of the shaft is given by

$$T = \frac{1}{2} \rho A \int_0^L [(\dot{v} - \Omega \omega)^2 + (\dot{w} + \Omega v)^2] dx$$

$$+ \frac{1}{2} \rho I_{PS} \int_0^L [(\Omega + \nu')^2] dx$$

$$+ \frac{1}{2} \rho I_s \int_0^L [(-\Omega \nu' - \dot{\nu}')^2$$

$$+ (-\Omega w' + \dot{\nu}')^2] dx \quad (4)$$

Avoiding higher order terms, kinetic energy of the shaft given by Eq. (3) can be expressed as ...
\[T_s = \frac{1}{2} \rho A \int_0^L \dot{v}^2 \, dx + \frac{1}{2} \rho A \int_0^L \dot{w}^2 \, dx + \frac{1}{2} \rho A \Omega^2 \int_0^L \dot{v}^2 \, dx + \frac{1}{2} \rho A \Omega^2 \int_0^L \dot{w}^2 \, dx + \rho A \Omega \int_0^L \dot{w} v \, dx - \rho A \Omega \int_0^L \dot{v} w \, dx + \frac{1}{2} \rho \Omega^2 \int_0^L \dot{w} v' \, dx \]

Similarly, kinetic energy of the disk can be expressed as

\[T_d = \frac{1}{2} M_d (\dot{v}^2)|_{x=\frac{L}{2}} + \frac{1}{2} M_d (\dot{w}^2)|_{x=\frac{L}{2}} + \frac{1}{2} M_d \Omega^2 (v^2)|_{x=\frac{L}{2}} + M_d \Omega (\dot{w} v)|_{x=\frac{L}{2}} + \frac{1}{2} \rho_d h \int_0^L \dot{w} \, dx + \frac{1}{2} \rho_d h \int_0^L \dot{v} \, dx + \rho_d h \Omega (\dot{w} v')|_{x=\frac{L}{2}} - \rho_d h \Omega (\dot{v} w')|_{x=\frac{L}{2}} \]

The strain energy of the shaft due to bending is then given by

\[U_s = \frac{1}{2} E I_s \int_0^L [(v')^2 + (w')^2] \, dx \quad (6) \]

Work done by the impact of jet is given by

\[W_{ext} = F(t) (v)|_{x=\frac{L}{2}} \quad (7) \]

2.2 Equation of Motion for the System

For assumed mode method, displacement variables can be assumed as

\[v = \{ \phi(x) \}^T \{ V(t) \} = \{ \phi \}^T \{ V \} \quad (8) \]

\[w = \{ \phi(x) \}^T \{ W(t) \} = \{ \phi \}^T \{ W \} \quad (9) \]

Substituting \(v \) and \(w \) into Eqs. (4) to (7) and using Lagrange equation

\[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}} \right) - \frac{\partial T}{\partial q} + \frac{\partial U}{\partial \dot{q}} - \frac{\partial W_{ext}}{\partial q} = 0 \quad (10) \]

we get equations of motion for transverse vibrations as
\[
\begin{align*}
\rho A \int_0^L \left[(\phi)(\phi)^T[\ddot{V}]\right]dx &+ \rho I_s \int_0^L \left[[(\phi')^T[\ddot{V}]]\right]dx \\
+ M_d \left[[\phi]d[\phi]_d^T[V]\right] &+ \rho_a h l_a \left[[\phi']_a[\phi']_a^T[\ddot{V}]\right] \\
- 2\rho A \Omega \int_0^L \left[[\phi][\phi]^T[\dot{W}]\right]dx &+ 2\rho I_s \int_0^L \left[[\phi'][\phi']^T[\dot{W}]\right]dx \\
- 2M_a \Omega \left[[\phi]d[\phi]_d^T[\dot{W}]\right] &- 2\rho_a h l_a \Omega \left[[\phi']_a[\phi']_a^T[\dot{W}]\right] \\
- \rho J_{ps} \Omega \int_0^L \left[[\phi'][\phi']^T[\dot{W}]\right]dx &- \rho_a h l_{pa} \Omega \left[[\phi']_a[\phi']_a^T[\dot{W}]\right] \\
- \rho A \Omega^2 \int_0^L \left[[\phi][\phi]^T[V]\right]dx &- \rho I_s \Omega^2 \int_0^L \left[[\phi'][\phi']^T[V]\right]dx \\
- M_a \Omega^2 \left[[\phi]d[\phi]_d^T[V]\right] &- \rho_a h l_a \Omega^2 \left[[\phi']_a[\phi']_a^T[V]\right] \\
+ E I_s \left[[\phi''][\phi'']^T[V]\right]dx - F(t)\{\phi\}_d &+ E I_s \int_0^L \left[[\phi''][\phi'']^T[\dot{W}]\right]dx = \{0\} \quad (11)
\end{align*}

3. Response of the System

3.1 Discretization of Equation of Motion

For the assumed mode method, we can assume

\[\phi_i = sin\left(\frac{i\pi x}{L}\right)\quad (13)\]

which are the eigenfunctions of a simply supported non-rotating beam.

Substituting \(\{\phi\} = [\phi_1 \quad \phi_2 \quad ... \quad \phi_n]^T\) into Eqs. (11) and (12), we get a system of linear
ordinary differential equations for each assumed mode as

\[M_i \ddot{V}_i(t) - C_i \dot{W}_i(t) + K_i V_i(t) = F_i(t) \] (14)

\[M_i \ddot{W}_i(t) + C_i \dot{V}_i(t) + K_i W_i(t) = 0 \] (15)

where

\[M_i = \frac{1}{2} \rho A L + \frac{\pi^2 i^2}{2L} \rho I_s + M_d \sin^2 \left(\frac{i \pi}{2} \right) \]
\[+ \frac{\pi^2 i^2}{L^2} \rho_d I_d \cos^2 \left(\frac{i \pi}{2} \right) \] (16)

\[C_i = \rho A L \Omega \right) + \frac{\pi^2 i^2}{L^2} \rho_d I_d \cos^2 \left(\frac{i \pi}{2} \right) \]
\[+ \frac{\pi^2 i^2}{L^2} \rho_d I_d \Omega \cos^2 \left(\frac{i \pi}{2} \right) \] (17)

\[K_i = \frac{2 \pi^3 i^3}{4L^3} E I_s - \frac{1}{2} \rho A L \Omega^2 \]
\[- M_d \Omega^2 \sin^2 \left(\frac{i \pi}{2} \right) \]
\[- \frac{\pi^2 i^2}{L^2} \rho_d I_d \Omega \cos^2 \left(\frac{i \pi}{2} \right) \] (18)

\[F_i = F(t) \sin \left(\frac{i \pi}{2} \right) \] (19)

3.2 Solution for Free Response of the System

For free vibration analysis, substituting \(F(t) = 0 \), Eqs. (14) and (15) reduce to

\[M_i \ddot{V}_i(t) - C_i \dot{W}_i(t) + K_i V_i(t) = 0 \] (20)

\[M_i \ddot{W}_i(t) + C_i \dot{V}_i(t) + K_i W_i(t) = 0 \] (21)

Substituting

\[V_i(t) = \ddot{V}_i(t) = \dot{W}_i(t) = \dot{W}_i(t) = e^{\lambda_i t} \] (22)

and \(W_i(t) = \ddot{W}_i(t) = e^{\lambda_i t} \) (23)

into Eqs. (20) and (21), we get the characteristics equation of the system as

\[M_i \lambda_i^4 + \left(C_i^2 + 2K_i M_i \right) \lambda_i^2 + k_i^2 = 0 \] (24)

Eq. (24) is quadratic on \(\lambda_i^2 \) and its roots are given as

\[(\lambda_i^2)_1^2 = \frac{- \frac{1}{2} \left(\frac{C_i}{M_i} \right)^2 + \frac{2}{M_i} K_i}{\sqrt{\left(\frac{C_i}{M_i} \right)^4 + 4 \left(\frac{C_i}{M_i} \right)^2 K_i}} \] (25)

\[(\lambda_i^2)_2^2 = \frac{- \frac{1}{2} \left(\frac{C_i}{M_i} \right)^2 + \frac{2}{M_i} K_i}{\sqrt{\left(\frac{C_i}{M_i} \right)^4 + 4 \left(\frac{C_i}{M_i} \right)^2 K_i}} \] (26)

Then, the natural frequencies corresponding to backward whirl and forward whirl are respectively given by

\[(\lambda_i)_1 = \frac{1}{2} \sqrt{\left(\frac{C_i}{M_i} \right)^2 + \frac{2}{M_i} K_i} \] (27)

\[(\lambda_i)_2 = \frac{1}{2} \sqrt{\left(\frac{C_i}{M_i} \right)^2 + \frac{2}{M_i} K_i} \] (28)

3.3 Determination of Force due to Water Jet

During the one complete rotation of the Pelton wheel, the jet does not strike the buckets for
certain interval as there is gap between two buckets. Hence force exerted by the water jet on
the disk can be approximated by the series of pulses as shown in Fig. 2, where \(t_2 - t_1 \) (\(t_2 - t_3 = t_6 - t_5 = ...) \) is the duration of each pulse which is proportional to the bucket thickness to the
circumference of the equivalent runner wheel and \(T \) is the period of one revolution of the
runner wheel.

![Fig. 2. Pulses of force due to water jet on Pelton turbine.](image)

The force due to water jet can be defined for a
period \(\tau \) mathematically as

\[
F(t) = \begin{cases}
F_j & t_1 \leq t \leq t_2 \\
0 & t_2 < t < t_3
\end{cases}
\]

(29)

Parameters required for calculation of jet force
\(F_j \) are taken from [34].

Since the force exerted by the water jet is
periodic but non-harmonic, it is converted into
harmonic terms by using Fourier series expansion as

\[
F(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos \left(\frac{2n\pi}{\tau} t \right) + b_n \sin \left(\frac{2n\pi}{\tau} t \right)
\]

(30)

where

\[
a_0 = \frac{1}{\tau} \int_{0}^{\tau} F(t) dt
\]

(31)

\[
a_n = \frac{2}{\tau} \int_{0}^{\tau} F(t) \cos \left(\frac{2n\pi}{\tau} t \right) dt
\]

(32)

\[
b_n = \frac{2}{\tau} \int_{0}^{\tau} F(t) \sin \left(\frac{2n\pi}{\tau} t \right) dt
\]

(33)

3.4 Solution for Forced Response of the System

Using Eqs. (14) and (15) with Eq. (30), the
forced vibration equation for \(i^{th} \) mode (where \(i \) is odd) of the system can be rewritten as

\[
M_i \ddot{V}_i(t) - C_i \dot{V}_i(t) + K_i V_i(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos \left(\frac{2n\pi}{\tau} t \right) + b_n \sin \left(\frac{2n\pi}{\tau} t \right)
\]

(34)

\[
M_i \ddot{V}_i(t) + C_i \dot{V}_i(t) + K_i V_i(t) = 0
\]

(35)

Assuming steady state response of \(i^{th} \) mode of
the system due to \(n^{th} \) harmonics of force due to
water jet as

\[
[V_{ir}(t)]_n = \bar{V}_{0i} + (\bar{V}_{ci})_n \cos \left(\frac{2n\pi}{\tau} t \right) + (\bar{V}_{si})_n \sin \left(\frac{2n\pi}{\tau} t \right)
\]

(36)

and

\[
[W_{ir}(t)]_n = \bar{W}_{0i} + (\bar{W}_{ci})_n \cos \left(\frac{2n\pi}{\tau} t \right) + (\bar{W}_{si})_n \sin \left(\frac{2n\pi}{\tau} t \right)
\]

(37)

Substituting Eqs. (36) and (37), into Eqs. (34)
and (35), we get the expression for \((\bar{V}_{0i})_n, \)
\((\bar{V}_{ci})_n, (\bar{V}_{si})_n, (\bar{W}_{0i})_n, (\bar{W}_{ci})_n \), and \((\bar{W}_{si})_n \)
required for the steady state response of \(i^{th} \)
mode of the system due to \(n^{th} \) harmonics of
force as

\[
\bar{V}_{0i} = \frac{a_0}{K_i}
\]

(38)

\[
(\bar{V}_{ci})_n = \frac{a_n (K_i \tau^2 - 4M_i \pi^2 n^2 \tau^2)}{16M_i \pi^2 n^2 - 4(C_i \tau^2 + 2K_i M_i) \pi^2 n^2 \tau^2 + K_i \tau^4}
\]

(39)
Then the steady state response of \(i^{th} \) mode of the system due to all harmonics of force can be determined as

\[
V_{ir}(t) = \bar{V}_{oi} + \sum_{n=1}^{\infty} \left[(\bar{V}_{ci})_n \cos \left(\frac{2n\pi}{\tau} t \right) + (\bar{V}_{si})_n \sin \left(\frac{2n\pi}{\tau} t \right) \right]
\]

and

\[
W_{ir}(t) = \sum_{n=1}^{\infty} \left[(\bar{W}_{ci})_n \cos \left(\frac{2n\pi}{\tau} t \right) + (\bar{W}_{si})_n \sin \left(\frac{2n\pi}{\tau} t \right) \right]
\]

Then general forced response of the system due to all modes \((i = 1, 2, 3, \ldots, m)\) is given by

\[
\nu_i(x, t) = \sum_{i=1}^{m} \left[\nu_{0i} + \sum_{n=1}^{\infty} \left[(\bar{V}_{ci})_n \cos \left(\frac{2n\pi}{\tau} t \right) + (\bar{V}_{si})_n \sin \left(\frac{2n\pi}{\tau} t \right) \right] \sin \left(\frac{\pi x}{L} \right) \right]
\]

To have interpretation of the analytical expressions obtained for free and forced responses of the system, the values of system parameters are taken as listed in Table 1.

Table 1. Parameters of the system

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density of shaft material, (\rho)</td>
<td>7860 kg/m³</td>
</tr>
<tr>
<td>Cross-sectional area of the shaft, (A)</td>
<td>(0.8042 \times 10^{-3}) m²</td>
</tr>
<tr>
<td>Length of the shaft, (L)</td>
<td>0.52 m</td>
</tr>
<tr>
<td>Modulus of Elasticity of shaft material, (E)</td>
<td>202 \times 10⁹ GPa</td>
</tr>
<tr>
<td>Area moment of inertia of the shaft section, (I_i)</td>
<td>5.1472 \times 10⁻⁸ m⁴</td>
</tr>
<tr>
<td>Polar moment of area of the shaft section, (J_{ps})</td>
<td>1.0294 \times 10⁻⁷ m⁵</td>
</tr>
<tr>
<td>Density of Runner material, (\rho_d)</td>
<td>8550 kg/m³</td>
</tr>
<tr>
<td>Mass of Runner wheel, (M_d)</td>
<td>10.564 kg</td>
</tr>
<tr>
<td>Thickness of Runner, (h)</td>
<td>35 mm</td>
</tr>
<tr>
<td>Area moment of inertia of the disk, (I_d)</td>
<td>0.5527 \times 10⁻⁴ m⁴</td>
</tr>
<tr>
<td>Polar moment of area of the shaft section, (J_{pd})</td>
<td>0.11053 \times 10⁻³ m⁵</td>
</tr>
</tbody>
</table>

4.1 Critical Speeds (Natural Frequencies) and Campbell Diagram

Using Eqs. (16), (17) and (18), equivalent mass \((M_i)\), equivalent damping coefficient \((C_i)\) and stiffness \((K_i)\) for the first three modes are determined and shown in Table 2.

Table 2. Equivalent parameters for the first three modes

<table>
<thead>
<tr>
<th>Equivalent Parameters</th>
<th>First Mode</th>
<th>Second Mode</th>
<th>Third Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass ((M_j))</td>
<td>12.2085 kg</td>
<td>4.0798 kg</td>
<td>12.2393 kg</td>
</tr>
<tr>
<td>Damping (D_i)</td>
<td>24.4247</td>
<td>13.0384 (\Omega)</td>
<td>24.5478 (\Omega)</td>
</tr>
</tbody>
</table>
Then, the natural frequencies corresponding to backward whirl and forward whirl can be found by using Eqs. (27) and (28). This can be presented in the form of Campbell diagram as shown in Fig. 3.

Natural frequencies of each mode corresponding to zero spin speed are the natural frequencies of first three modes of the simply supported beam. As the spin speed increases, critical speed for backward whirl of each mode decreases, whereas, the critical speed for forward whirl for each mode increases. At lower speeds, bending stiffness will have higher value than the stiffness due to centrifugal effect (centrifugal stiffening). During backward whirl, centrifugal stiffening will act opposite to elastic restoring force and, therefore, critical speed for backward whirl decreases with the increase in spin speed as shown in Fig. 3. During forward whirl, centrifugal stiffening will act in the same direction to elastic restoring force and, therefore, critical speed for forward whirl increases with the increase in spin speed as shown in Fig. 3.

4.2 Fourier Series Representation of Force due to Water Jet

The values of variables F_j, t_2 and τ for the jet force shown in Fig. 2 are found by [34] as 193 N, 0.00148 s and 0.0025 s respectively. Then coefficients a_0, a_n and b_n for the Fourier series are determined from Eqs. (31), (32) and (33) as

$$a_0 = 228.512 \sin(1.57079k)$$

$$a_n = \frac{30.7169\sin(1.57079k)}{n} \sin(3.71965n)$$

$$b_n = \frac{30.7169\sin(1.57079k)}{n} \left[1 - \cos(3.71965n)\right]$$

Coefficients a_0, a_n and b_n for the first five harmonics are considered by using Eqs. (49) and (50) to determine the forced response of the system. Considering up to fifth harmonics, the approximated force exerted by the water jet on the runner wheel for one-sixteenth revolution of the runner will be as shown in Fig. 4.

Addition of higher order harmonics increases ripples at the peak but does not affect the peak amplitude value significantly. Hence, harmonics up to the order of five are considered for further analysis.

4.3 Forced Response of the System
Then by using Eqs. (46) and (47), the steady state response for the transverse vibration of the system considering up to third mode are determined and presented in the graphical form.

Substituting \(x = L/4 \), into the expressions obtained from Eqs. (46) and (47), we can get the steady state response for the transverse vibration of the shaft at its quarter length, and it can be presented in the form response plots as shown in Fig. 5 and Fig. 6.

Similarly, substituting \(x = L/2 \), into the expressions obtained from Eqs. (46) and (47), we can get the steady state response for the transverse vibration of the disk, and it can presented in the form response plots as shown in Fig. 7 and Fig. 8.

Form Figs. 5 to 8 it is found that the vibration amplitudes in \(y \) direction is significantly higher than that in the \(z \) direction. Higher vibration amplitude in \(y \) direction is due to the impact of jet. The vibration response in \(z \) direction is almost sinusoidal throughout the length of the shaft. The vibration response in \(y \) direction is almost sinusoidal in the region far from the disk and it has a distorted form in the region near the midspan of the shaft or disk location.

5. Conclusions

In this paper, dynamic behaviour of the Pelton turbine is studied by modelling it as a rigid disk attached on an Euler-Bernoulli shaft. The governing equation of the system for bending vibrations in two transverse directions are
found to be coupled system of differential equations. Performing free vibration analysis, the critical speeds of the system for an operating speed of \(\Omega = 1500 \) rpm for the first three modes are found to be 4001 rpm, 3364 rpm and 47944 rpm for the backward whirl and 7003 rpm, 38437 rpm and 50953 rpm for the forward whirl respectively.

For the forced vibration analysis, the force provided by the water jet is approximated as Fourier series up to the fifth harmonic components. Then, steady state response for bending vibration of the system is determined by applying superposition principle. The peak amplitude of bending vibration at the midspan of the shaft (disk location) in the direction of jet for an operating speed of \(\Omega = 1500 \) rpm is found to be 73 \(\mu \)m. Similarly, the peak amplitude of bending vibration at the midspan of the shaft (disk location) in the vertical direction for an operating speed of \(\Omega = 1500 \) rpm is found to be 0.1 \(\mu \)m.

Acknowledgement

We would like to acknowledge the partial support provided by the National Academy for Science and Technology, Nepal for this study.

References

