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1. Introduction

Most of the power-producing and power-

consuming units consist of a disk attached to a 

shaft. One of the most common examples of such 

units is a Pelton turbine unit used for electricity 

generation in hydropower plants. Pelton turbines 

are high head turbines used for both small and 

large power generation. These rotating turbines 

are subjected to highly hostile working 

conditions. The design and manufacturing 

challenges are concerned with improvement in 

performance, life, and reduction in weight 

without loss of reliability. There are numerous 

possibilities of excitation by external 

disturbances and the behavior of the system 

under those disturbances can be predicted to 

some extent by the appropriate dynamic 

analysis. 

The dynamic response of such a shaft-disk 

system depends upon many components and 

operating parameters. Different researchers 

investigated different aspects of a rotodynamic 

system by modelling the system as an assembly 

of a rigid disk attached to an Euler-Bernoulli 

shaft. Sabuncu et al. [1] investigated the critical 

speed of a rotor consisting of a single disc on a 

solid shaft by treating the shaft as a rotating 

beam element using a transfer matrix-finite 

element model. Rajalingham et al. [2] 

investigated the influence of external damping 

on rotor response to an imbalance of gravity 

excitations and showed that sufficient amount of 
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damping can suppress the reported instability 

caused by anisotropic bending stiffness 

characteristics. Lee et al. [3] analyzed the effect 

of the direction of application and magnitude of 

loads on the stability and natural frequency of 

flexible rotors subjected to non-conservative 

torque and force.  

Khader et al. [4] investigated the stability of the 

rotating cantilever shaft with a rigid disk at its 

free end subjected to periodic follower axial 

force and end moment. Silva et al. [5] studied the 

bending vibration of a machine rotor using the 

Euler-Bernoulli beam theory, as a continuous 

beam, subjected to a specific set of boundary 

conditions. Chattoraj et al. [6] considered a two-

dimensional isotropic and flexible horizontal 

rotor with symmetrical disk including the effects 

of gravity and Coriolis forces. Gundogdu et al. 

[7] presented simulations of a continuous 

cantilever beam and an unbalanced disk system 

by extending a classical Jeffcott rotor approach 

to a model that gives the first three (or more) 

modes of the flexible beam.  

Shahgholi et al. [8] also investigated two-rotor 

systems, one of which was comprised of a 

symmetrical shaft and an asymmetrical disk, and 

the other one was comprised of an asymmetrical 

shaft and an asymmetrical disk. Lin et al. [9] 

used finite element simulation to develop several 

models of a single-rotor system, with different 

numbers of shaft elements, a relative number of 

degrees of freedom using four types of 

modelling for the shaft and disk interface.  Han 

[10] performed complex harmonic analysis for 

rotor based upon Floquet theory and presented 

the modal features of each critical speed 

quantitatively and qualitatively. Huang [11] 

studied the characteristics of the torsional 

vibration of a rotor with unbalance by numerical 

simulation. 

Some researchers studied non-linear phenomena 

in shaft-disk systems. Chang et al. [12] analyzed 

instability and non-linear dynamics of a simply 

supported slender shaft made of viscoelastic 

material and determined the stability. Genta et al. 

[13] extended the usual mathematical models 

based on the finite element method to the study 

of the dynamic behavior of rotors with non-

constant angular speed by considering both the 

nonlinear behavior of the rotor and its 

geometrical or inertial anisotropy. Inoue et al. 

[14] investigated the chaotic vibration due to the 

1 to (−1) type internal resonance at the major 

critical speed and twice the major critical speed. 

Diken et al. [15] considered a Jeffcott rotor and 

derived the non-linear dynamic equations of the 

rotor, and showed that there exists two 

subharmonic transient vibrations caused by the 

non-linearity of the system itself. Shad et al. [16] 

investigated the nonlinear dynamics of rotors by 

developing a mathematical model incorporating 

the higher-order deformations in bending, rotary 

inertia, gyroscopic effect, rotor mass unbalance, 

and dynamic axial force. Phadatare  et al. [17] 

formulated strongly coupled non-linear 

equations of motion, based on strain energy and 

kinetic energy equations for shaft, disk, and 

unbalance mass, with shaft undergoing large 

bending deformations to determine the nonlinear 

frequencies and resultant dynamic behavior of 

the high-speed rotor-bearing system with mass 

unbalance. Similarly, some researchers 

investigated the coupled bending and torsional 

vibration of the shaft disk systems. Al-Bedoor 

[18] developed a model for coupled torsional and 

lateral vibrations of an unbalanced rotor and 

showed through simulation that there exists an 

energetic interaction between the rotor torsional 

and lateral vibration. Xiang et al. [19] studied the 

vibration characteristics on flexural and torsional 

modes of a Jeffcott rotor system with rigid 

support. Alnefaie et al. [20]  considered a 

rotating flexible shaft-disk system to study the 

torsional vibration coupled with the lateral and 

longitudinal vibration, and showed that, while 

the shaft speed changes, the torsional natural 

frequency of the shaft-disk system and 

longitudinal natural frequency of the beam does 

not change but lateral natural frequency of the 

beam changes. 

Another area dealt by many researchers is the 

dynamic response of the rotodynamic system 

due to a different kind of interactions on the disk 

of the system. Kojima et al. [21] investigated the 

torsional vibrations of a rotating shaft system 

having a disk and a magnet coupling in which the 

driver of the magnet coupling is excited by 

sinusoidal motion and the disk is subjected to the 

constant load torque.  
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Few research works have been carried out to 

study the effect of looseness on the behavior of 

the shaft-disk system. Muszynska et al. [22] 

presented the results of numerical simulation of 

the dynamic behavior of a one-lateral-mode 

rotor, which is unbalanced and radially side-

loaded, with either a loose pedestal (looseness in 

a stationary joint) or with occasional rotor-to-

stator rubbing in which the nonlinearities are 

associated with the rotor intermittent contacts 

with the stationary element. Behzad et al. [23] 

used the energy method to calculate rotor 

response with a loose rotating disk on it and  

showed that the clearance between the loose disk 

and shaft, shaft speed, mass and mass moment of 

inertia of disk have a major effect on a rotor 

response and beating phenomena. 

Many researchers have extensively studied the 

effect of rub impact on the dynamic behavior of 

the shaft-disk system. Azeez et al. [24] worked 

to obtain the transient response of an overhung 

rotor undergoing vibro-impacts due to a 

defective bearing with reference to an overhung 

rotor clamped on one end, with a flywheel on the 

other and impacts occurring in between, due to a 

bearing with clearance. Shen et al. [25] 

investigated the vibration characteristics of a 

rub-impact rotor-bearing system excited by mass 

unbalance including mass eccentricity and initial 

permanent deflection. Jian et al. [26] studied the 

nonlinear dynamic analysis of the rotor-bearing 

system supported by oil-film short bearings, with 

nonlinear suspension, by considering the rub–

impact between rotor and stator for precise 

analysis of rotor-bearing systems. Khanlo et al. 

[27] studied the chaotic vibration analysis of a 

rotating flexible continuous shaft-disk system 

with a rub impact. Khanlo et al. [28] also 

investigated the lateral-torsional coupling effects 

on the nonlinear dynamic behavior of a rotating 

flexible shaft–disk system. Jiao et al. [29] 

developed a dynamic model to study the 

characteristics of the unbalanced rotor system 

with external excitations including the 

influences of the gyroscopic effect, gravity and 

static/dynamic unbalance. Ma et al. [30] 

investigated the nonlinear dynamic 

characteristics of a single span rotor system with 

two discs under fixed-point and local arc rub-

impact conditions. Tai et al. [31] investigated the 

stability and steady-state response of the rotor 

system using a lumped mass model of a single 

rub-impact rotor system considering the 

gyroscopic effect. 

Wahab et al. [32] studied the parametric 

instability behaviou for a simple shaft and disk 

system subjected to axial load under pinned-

pinned boundary condition and  found that the 

additional disk mass decreases the instability 

region during thestatic condition and the location 

of the disk also has a significant effect on the 

instability region of the shaft. Chen et al. [33] 

developed a model based on the finite element 

method and Lagrange’s equation to study the 

dynamic behavior of a flexible rotor system 

subjected to time-variable base motions and 

found that the base rotations would cause 

nonlinearities. 

Most of the earlier papers have focused the 

dynamic response of a flexible shaft due to 

intervention from the surroundings such as rub 

impact or effects of bearing properties. This 

paper focuses mainly on the dynamic response 

of the shaft-disk system to the impact of general 

tangential forces on the disk which can be used 

to study the behavior of a Pelton turbine 

subjected to the impact of the water jet. 
 

2. Problem formulation 

2.1. System kinematics and energy expressions 

for the system 
 

Fig. 1 shows a rigid disk attached to a flexible 

shaft. The axes x, y, and z are chosen such that x 

is along the longitudinal direction of the shaft, y 

is along the transverse direction of the shaft on 

the horizontal plane, and z is along the transverse 

direction of the shaft on the vertical plane. 

Similarly, transverse displacements of any point 

of the shaft along horizontal and vertical 

directions are v(x,t) and w(x,t), respectively. For 

the horizontal shaft, Pelton turbine water jet acts 

along the y-direction. 
 

 
Fig. 1. Shaft-disk assembly. 
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The velocity of any point on the neutral axis of 

the shaft with reference to an inertial frame is 

given by [27]: 

𝒗𝒔  = (�̇� − Ω𝑤)𝒋 + (�̇� + Ω𝑣)𝒌     (1) 

The angular velocity vector of the shaft element 

is given by [27]: 

𝝎𝒆 = (Ω + 𝑣′�̇�′)𝒊 + (−Ω𝑣′ − �̇�′)𝒋 +
(−Ω𝑤′ + �̇�′)𝒌                             (2)

Then kinetic energy of the shaft is given by: 

𝑇 =
1

2
𝜌𝐴 ∫[(�̇� − Ω𝑤)2 + (�̇� + Ω𝑣)2]𝑑𝑥

𝐿

0

+
1

2
𝜌𝐽𝑝𝑠 ∫[(Ω + 𝑣′�̇�′)2]

𝐿

0

𝑑𝑥

+
1

2
𝜌𝐼𝑠 ∫[(−Ω𝑣′ − �̇�′)2

𝐿

0

+ (−Ω𝑤′ + �̇�′)2] 𝑑𝑥           (3)

Avoiding higher-order terms, the kinetic energy 

of the shaft given by Eq. (3) can be expressed as: 

𝑇𝑠

=
1

2
𝜌𝐴 ∫ �̇�2𝑑𝑥

𝐿

0

+
1

2
𝜌𝐴 ∫ �̇�2𝑑𝑥

𝐿

0

+
1

2
𝜌𝐴Ω2 ∫ 𝑣2𝑑𝑥

𝐿

0

+
1

2
𝜌𝐴Ω2 ∫ 𝑤2𝑑𝑥

𝐿

0

+ 𝜌𝐴Ω ∫ �̇�𝑣𝑑𝑥

𝐿

0

− 𝜌𝐴Ω ∫ �̇�𝑤𝑑𝑥

𝐿

0

+
1

2
𝜌𝐽𝑝𝑠Ω2𝐿

+ 𝜌𝐽𝑝𝑠Ω ∫ �̇�′𝑣′

𝐿

0

𝑑𝑥 +
1

2
𝜌𝐼𝑠 ∫ 𝑣′̇ 2

𝑑𝑥

𝐿

0

+
1

2
𝜌𝐼𝑠 ∫ 𝑤′̇ 2

𝑑𝑥

𝐿

0

+
1

2
𝜌𝐼𝑠Ω2 ∫ 𝑣′2

𝑑𝑥

𝐿

0

+
1

2
𝜌𝐼𝑠Ω2 ∫ 𝑤′2𝑑𝑥

𝐿

0

+ 𝜌𝐼𝑠Ω ∫ �̇�′𝑣′

𝐿

0

𝑑𝑥

− 𝜌𝐼𝑠Ω ∫ �̇�′𝑤′

𝐿

0

𝑑𝑥 (4)

Similarly, the kinetic energy of the disk can be 

expressed as: 

𝑇𝑑 =
1

2
𝑀𝑑(�̇�2)|

𝑥=
𝐿

2

+
1

2
𝑀𝑑(�̇�2)|

𝑥=
𝐿

2

+

1

2
𝑀𝑑Ω2(𝑣2)|

𝑥=
𝐿

2

+
1

2
𝑀𝑑Ω2(𝑤2)|

𝑥=
𝐿

2

+

𝑀𝑑Ω(�̇�𝑣)|
𝑥=

𝐿

2

− 𝑀𝑑Ω(�̇�𝑤)|
𝑥=

𝐿

2

+

1

2
𝜌𝑑ℎ𝐽𝑝𝑑Ω2 + 𝜌𝑑ℎ𝐽𝑝𝑑Ω(�̇�′𝑣′)|

𝑥=
𝐿

2

+

1

2
𝜌𝑑ℎ𝐼𝑑 (𝑣′̇ 2

)|
𝑥=

𝐿

2

+
1

2
𝜌𝑑ℎ𝐼𝑑 (𝑤′̇ 2

)|
𝑥=

𝐿

2

+

1

2
𝜌𝑑ℎ𝐼𝑑Ω2(𝑣′2

)|
𝑥=

𝐿

2

+

1

2
𝜌𝑑ℎ𝐼𝑑Ω2(𝑤′2

)|
𝑥=

𝐿

2

+

𝜌𝑑ℎ𝐼𝑑Ω(�̇�′𝑣′)|
𝑥=

𝐿

2

−

𝜌𝑑ℎ𝐼𝑑Ω(�̇�′𝑤′)|
𝑥=

𝐿

2

(5)

The strain energy of the shaft due to the bending 

is then given by: 

𝑈𝑠 =
1

2
𝐸𝐼𝑠 ∫[(𝑣′′)2 + (𝑤′′)2]𝑑𝑥

𝐿

0

(6)

Work done by the impact of the jet is given by: 

𝑊𝑒𝑥𝑡 = 𝐹(𝑡)(𝑣)|
𝑥=

𝐿
2

(7)

2.2. Equation of motion for the system 

For the assumed mode method, displacement 

variables can be assumed as: 

𝑣 = {𝜙(𝑥)}𝑇{𝑉(𝑡)} = {𝜙}𝑇{𝑉} (8)

𝑤 = {𝜙(𝑥)}𝑇{𝑊(𝑡)} = {𝜙}𝑇{𝑊} (9)

Substituting 𝑣 and 𝑤 into Eqs. (4 to 7) and using 

Lagrange equation: 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�
) −

𝜕𝑇

𝜕𝑞
+

𝜕𝑈

𝜕𝑞
−

𝜕𝑊𝑒𝑥𝑡

𝜕𝑞
= 0 (10)

The equations of motion for transverse 

vibrations are gotten as: 
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𝜌𝐴 ∫[{𝜙}{𝜙}𝑇{�̈�}]𝑑𝑥

𝐿

0

+ 𝜌𝐼𝑠 ∫[{𝜙′}{𝜙′}𝑇{�̈�}]𝑑𝑥

𝐿

0

+ 𝑀𝑑[{𝜙}𝑑{𝜙}𝑑
𝑇

{�̈�}]

+ 𝜌𝑑ℎ𝐼𝑑[{𝜙′}𝑑{𝜙′}𝑑
𝑇

{�̈�}]

− 2𝜌𝐴Ω ∫[{𝜙}{𝜙}𝑇{�̇�}]𝑑𝑥

𝐿

0

− 2𝜌𝐼𝑠Ω ∫[{𝜙′}{𝜙′}𝑇{�̇�}]

𝐿

0

𝑑𝑥

− 2𝑀𝑑Ω[{𝜙}𝑑{𝜙}𝑑
𝑇

{�̇�}]

− 2𝜌𝑑ℎ𝐼𝑑Ω[{𝜙′}𝑑{𝜙′}𝑑
𝑇

{�̇�}]

− 𝜌𝐽𝑝𝑠Ω ∫[{𝜙′}{𝜙′}𝑇{�̇�}]

𝐿

0

𝑑𝑥

− 𝜌𝑑ℎ𝐽𝑝𝑑Ω[{𝜙′}𝑑{𝜙′}𝑑
𝑇

{�̇�}]

− 𝜌𝐴Ω2 ∫[{𝜙}{𝜙}𝑇{𝑉}]𝑑𝑥

𝐿

0

− 𝜌𝐼𝑠Ω2 ∫[{𝜙′}{𝜙′}𝑇{𝑉}]𝑑𝑥

𝐿

0

− 𝑀𝑑Ω2[{𝜙}𝑑{𝜙}𝑑
𝑇{𝑉}]

− 𝜌𝑑ℎ𝐼𝑑Ω2[{𝜙′}𝑑{𝜙′}𝑑
𝑇{𝑉}]

+ 𝐸𝐼𝑠 ∫[{𝜙′′}{𝜙′′}𝑇{𝑉}]𝑑𝑥

𝐿

0

− 𝐹(𝑡){𝜙}𝑑

= {0} (11)

𝜌𝐴 ∫[{𝜙}{𝜙}𝑇{�̈�}]𝑑𝑥

𝐿

0

+ 𝜌𝐼𝑠 ∫[{𝜙′}{𝜙′}𝑇{�̈�}]𝑑𝑥

𝐿

0

+ 𝑀𝑑[{𝜙}𝑑{𝜙}𝑑
𝑇

{�̈�}]

+ 𝜌𝑑ℎ𝐼𝑑[{𝜙′}𝑑{𝜙′}𝑑
𝑇

{�̈�}]

+ 2𝜌𝐴Ω ∫[{𝜙}{𝜙}𝑇{�̇�}]𝑑𝑥

𝐿

0

+ 𝜌𝐽𝑝𝑠Ω ∫[{𝜙′}{𝜙′}𝑇{�̇�}]

𝐿

0

𝑑𝑥 

+2𝜌𝐼𝑠Ω ∫[{𝜙′}{𝜙′}𝑇{�̇�}]

𝐿

0

𝑑𝑥

+ 2𝑀𝑑Ω[{𝜙}𝑑{𝜙}𝑑
𝑇

{�̇�}]

+ 𝜌𝑑ℎ𝐽𝑝𝑑Ω[{𝜙′}𝑑{𝜙′}𝑑
𝑇

{�̇�}]

+ 2𝜌𝑑ℎ𝐼𝑑Ω[{𝜙′}𝑑{𝜙′}𝑑
𝑇

{�̇�}]

− 𝜌𝐴Ω2 ∫[{𝜙}{𝜙}𝑇{𝑊}]𝑑𝑥

𝐿

0

− 𝜌𝐼𝑠Ω2 ∫[{𝜙′}{𝜙′}𝑇{𝑊}]𝑑𝑥

𝐿

0

− 𝑀𝑑Ω2[{𝜙}𝑑{𝜙}𝑑
𝑇{𝑊}]

− 𝜌𝑑ℎ𝐼𝑑Ω2[{𝜙′}𝑑{𝜙′}𝑑
𝑇{𝑊}]

+ 𝐸𝐼𝑠 ∫[{𝜙′′}{𝜙′′}𝑇{𝑊}]𝑑𝑥

𝐿

0

= {0}      (12)

3. Response of the system

3.1. Discretization of equation of motion

For the assumed mode method, it can be 

assumed: 

𝜙𝑖 = 𝑠𝑖𝑛 (
𝑖𝜋𝑥

𝐿
) (13)

which is the eigenfunctions of a simply 

supported non-rotating beam. 

Substituting {𝜙} = {𝜙1 𝜙2      ….     𝜙𝑛}𝑇 into 
Eqs. (11) and (12), a system of linear ordinary 

differential equations for each assumed mode 

can be obtained as: 

𝑀𝑖�̈�𝑖(𝑡) − 𝐶𝑖�̇� 
𝑖(𝑡) + 𝐾𝑖𝑉𝑖(𝑡) = 𝐹𝑖(𝑡) (14)

𝑀𝑖�̈� 
𝑖(𝑡) + 𝐶𝑖�̇�𝑖(𝑡) + 𝐾𝑖𝑊𝑖(𝑡) = 0                

(15)
where 

𝑀𝑖

=
1

2
𝜌𝐴𝐿 +

𝜋2𝑖2

2𝐿
𝜌𝐼𝑠 + 𝑀𝑑  𝑠𝑖𝑛2 (

𝑖𝜋

2
)

+
𝜋2𝑖2

𝐿2
𝜌𝑑ℎ𝐼𝑑  𝑐𝑜𝑠2 (

𝑖𝜋

2
) (16)
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𝐶𝑖

= 𝜌𝐴𝐿Ω +
𝜋2𝑖2

𝐿
𝜌𝐼𝑠Ω +

𝜋2𝑖2

2𝐿
𝜌𝐽𝑝𝑠Ω

+ 2𝑀𝑑Ω 𝑠𝑖𝑛2 (
𝑖𝜋

2
)

+
2𝜋2𝑖2

𝐿2
𝜌𝑑ℎ𝐼𝑑Ω 𝑐𝑜𝑠2 (

𝑖𝜋

2
)

+
𝜋2𝑖2

𝐿2
𝜌𝑑ℎ𝐽𝑝𝑑Ω 𝑐𝑜𝑠2 (

𝑖𝜋

2
) (17)

𝐾𝑖

=
2𝜋3𝑖3

4𝐿3
𝐸𝐼𝑠 −

1

2
𝜌𝐴𝐿Ω2 −

1

2𝐿
𝜌𝐼𝑠Ω2

− 𝑀𝑑Ω2 𝑠𝑖𝑛2 (
𝑖𝜋

2
)

−
𝜋2𝑖2

𝐿2
𝜌𝑑ℎ𝐼𝑑Ω2 𝑐𝑜𝑠2 (

𝑖𝜋

2
)  (18) 

and 

𝐹𝑖 = 𝐹(𝑡) 𝑠𝑖𝑛 (
𝑖𝜋

2
)  (19)

3.2. Solution for free response of the system 

For free vibration analysis, substituting 𝐹(𝑡) =
0,  Eqs. (14) and (15) reduce to: 

𝑀𝑖�̈�𝑖(𝑡) − 𝐶𝑖�̇�𝑖(𝑡) + 𝐾𝑖𝑉𝑖(𝑡) = 0 (20)

𝑀𝑖�̈�𝑖(𝑡) + 𝐶𝑖�̇�𝑖(𝑡) + 𝐾𝑖𝑊𝑖(𝑡) = 0 (21)

Substituting: 

𝑉𝑖(𝑡) = �̅�𝑖 𝑒
𝜆𝑖𝑡 (22)

and 

𝑊𝑖(𝑡) = �̅�𝑖  𝑒𝜆𝑖𝑡 (23)

into Eqs. (20) and (21), the characteristics 

equation of the system is obtained as: 

𝑀𝑖𝜆𝑖
4 + (𝐶𝑖

2 + 2𝐾𝑖𝑀𝑖)𝜆𝑖
2 + 𝑘𝑖

2 = 0 (24)

Eq. (24) is quadratic on 𝜆𝑖
2
 and its roots are

given as: 

(𝜆𝑖)1
2

= −
1

2
[{(

𝐶𝑖

𝑀𝑖
)

2

+ 2
𝐾𝑖

𝑀𝑖
}

− √(
𝐶𝑖

𝑀𝑖
)

4

+ 4 (
𝐶𝑖

𝑀𝑖
)

2 𝐾𝑖

𝑀𝑖
]  (25) 

and 

(𝜆𝑖)2
2

= −
1

2
[{(

𝐶𝑖

𝑀𝑖
)

2

+ 2
𝐾𝑖

𝑀𝑖
}

+ √(
𝐶𝑖

𝑀𝑖
)

4

+ 4 (
𝐶𝑖

𝑀𝑖
)

2 𝐾𝑖

𝑀𝑖
]  (26) 

Then, the natural frequencies corresponding to 

backward and forward whirls are respectively 

given by: 

(𝜆𝑖)1

= √
1

2
[{(

𝐶𝑖

𝑀𝑖

)
2

+ 2
𝐾𝑖

𝑀𝑖

} − √(
𝐶𝑖

𝑀𝑖

)
4

+ 4 (
𝐶𝑖

𝑀𝑖

)
2 𝐾𝑖

𝑀𝑖

] 

 (27) 
and 

(𝜆𝑖)2

= √
1

2
[{(

𝐶𝑖

𝑀𝑖

)
2

+ 2
𝐾𝑖

𝑀𝑖

} + √(
𝐶𝑖

𝑀𝑖

)
4

+ 4 (
𝐶𝑖

𝑀𝑖

)
2 𝐾𝑖

𝑀𝑖

] 

 (28) 

3.3. Determination of force due to water jet 

During the one complete rotation of the Pelton 

wheel, the jet does not strike the buckets for 

certain intervals as there is a gap between two 

buckets. Hence, the force exerted by the water jet 

on the disk can be approximated by the series of 

pulses, as shown in Fig. 2, where t2 – t1 (= t4 – t3 

= t6 – t5 = ..) is the duration of each pulse which 

is proportional to the bucket thickness to the 

circumference of the equivalent runner wheel, 

and T is the period of one revolution of the 

runner wheel. 
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Fig. 2. Pulses of force due to the water jet on Pelton 

turbine. 

The force due to the water jet can be defined for 

a period  mathematically as: 

𝐹(𝑡) = {
𝐹𝑗 𝑡1 ≤ 𝑡 ≤ 𝑡2

0 𝑡2 < 𝑡 < 𝑡3
(29)

Parameters required for calculation of the jet 

force Fj are taken from [34]. 

Since the force exerted by the water jet is 

periodic but non-harmonic, it is converted into 

harmonic terms using Fourier series expansion 

as: 

𝐹(𝑡) = 𝑎0 + ∑ [𝑎𝑛𝑐𝑜𝑠 (
2𝑛𝜋

𝜏
𝑡)

∞

𝑛=1

+ 𝑏𝑛𝑠𝑖𝑛 (
2𝑛𝜋

𝜏
𝑡)]  (30) 

where 

𝑎0 =
1

𝜏
∫ 𝐹(𝑡)𝑑𝑡

𝜏

0

  (31) 

𝑎𝑛 =
2

𝜏
∫ 𝐹(𝑡) 𝑐𝑜𝑠 (

2𝑛𝜋

𝜏
𝑡) 𝑑𝑡

𝜏

0

  (32) 

and 

𝑏𝑛 =
2

𝜏
∫ 𝐹(𝑡) 𝑠𝑖𝑛 (

2𝑛𝜋

𝜏
𝑡) 𝑑𝑡

𝜏

0

  (33) 

3.4. Solution for forced response of the system 

Using Eqs. (14) and (15) and Eq. (30), the forced 

vibration equation for ith mode (where i is odd) 

of the system can be rewritten as: 

𝑀𝑖�̈�𝑖(𝑡) − 𝐶𝑖�̇�𝑖(𝑡) + 𝐾𝑖𝑉𝑖(𝑡)
= 𝑎0

+ ∑ [𝑎𝑛𝑐𝑜𝑠 (
2𝑛𝜋

𝜏
𝑡)

∞

𝑛=1

+ 𝑏𝑛𝑠𝑖𝑛 (
2𝑛𝜋

𝜏
𝑡)]   (34)

𝑀𝑖�̈�𝑖(𝑡) + 𝐶𝑖�̇�𝑖(𝑡) + 𝐾𝑖𝑊𝑖(𝑡) = 0 (35)

Assuming steady-state response of ith mode of 

the system due to nth harmonics of force due to 

the water jet as: 

[𝑉𝑖𝑟(𝑡)]𝑛 = �̅�0𝑖 + (�̅�𝑐𝑖)𝑛 𝑐𝑜𝑠 (
2𝑛𝜋

𝜏
𝑡)

+ (�̅�𝑠𝑖)𝑛 𝑠𝑖𝑛 (
2𝑛𝜋

𝜏
𝑡)    (36)

and 

[𝑊𝑖𝑟(𝑡)]𝑛 = �̅�0𝑖 + (�̅�𝑐𝑖)𝑛 𝑐𝑜𝑠 (
2𝑛𝜋

𝜏
𝑡)

+ (�̅�𝑠𝑖)𝑛 𝑠𝑖𝑛 (
2𝑛𝜋

𝜏
𝑡)  (37)

Substituting Eqs. (36) and (37), into Eqs. (34 and 

35), the expression for (�̅�0𝑖)𝑛, (�̅�𝑐𝑖)𝑛, (�̅�𝑠𝑖)𝑛,

(�̅�0𝑖)𝑛, (�̅�𝑐𝑖)𝑛 and (�̅�𝑠𝑖)𝑛 are obtained which

are required for the steady-state response of ith 

mode of the system due to the nth harmonics of 

force as: 

�̅�0𝑖 =
𝑎0

𝐾𝑖
 (38) 

(�̅�𝑐𝑖)𝑛

=
𝑎𝑛(𝐾𝑖𝜏2 − 4𝑀𝑖𝜋

2𝑛2)𝜏2

16𝑀𝑖
2𝜋4𝑛4 − 4(𝐶𝑖

2 + 2𝐾𝑖𝑀𝑖)𝜋2𝑛2𝜏2 + 𝐾𝑖
2𝜏4

 (39) 
(�̅�𝑠𝑖)𝑛

=
𝑏𝑛(𝐾𝑖𝜏2 − 4𝑀𝑖𝜋

2𝑛2)𝜏2

16𝑀𝑖
2𝜋4𝑛4 − 4(𝐶𝑖

2 + 2𝐾𝑖𝑀𝑖)𝜋2𝑛2𝜏2 + 𝐾𝑖
2𝜏4

 (40) 

�̅�0𝑖 = 0 (41)

(�̅�𝑐𝑖)𝑛

= −
2𝑏𝑛𝐶𝑖𝜋𝑛𝜏3

16𝑀𝑖
2𝜋4𝑛4 − 4(𝐶𝑖

2 + 2𝐾𝑖𝑀𝑖)𝜋2𝑛2𝜏2 + 𝐾𝑖
2𝜏4

(42)
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and 

(�̅�𝑠𝑖)𝑛

=
2𝑎𝑛𝐶𝑖𝜋𝑛𝜏3

16𝑀𝑖
2𝜋4𝑛4 − 4(𝐶𝑖

2 + 2𝐾𝑖𝑀𝑖)𝜋2𝑛2𝜏2 + 𝐾𝑖
2𝜏4

 (43) 

Then the steady-state response of ith mode of the 

system due to all harmonics of force can be 

determined as: 

𝑉𝑖𝑟(𝑡) = �̅�0𝑖 + ∑ [(�̅�𝑐𝑖)𝑛 𝑐𝑜𝑠 (
2𝑛𝜋

𝜏
𝑡)

∞

𝑛=1

+ (�̅�𝑠𝑖)𝑛 𝑠𝑖𝑛 (
2𝑛𝜋

𝜏
𝑡)]    (44) 

and 

𝑊𝑖𝑟(𝑡)

= ∑ [(�̅�𝑐𝑖)𝑛 𝑐𝑜𝑠 (
2𝑛𝜋

𝜏
𝑡)

∞

𝑛=1

+ (�̅�𝑠𝑖)𝑛 𝑠𝑖𝑛 (
2𝑛𝜋

𝜏
𝑡)]  (45) 

Then the general forced response of the system 

due to all modes (i = 1, 2, 3,……m) is given by: 

𝑣𝑟(𝑥 𝑡)

= ∑ [{�̅�0𝑖

𝑚

𝑖=1

+ ∑ [(�̅�𝑐𝑖)𝑛 𝑐𝑜𝑠 (
2𝑛𝜋

𝜏
𝑡)

∞

𝑛=1

+ (�̅�𝑠𝑖)𝑛 𝑠𝑖𝑛 (
2𝑛𝜋

𝜏
𝑡)]} 𝑠𝑖𝑛 (

𝑖𝜋𝑥

𝐿
)]  (46) 

Table 1. Parameters of the system. 
Parameters Value 

Density of shaft material,  7860 kg/m3 

Cross-sectional area of the 

shaft, A 
0.8042 × 10-3 m2 

Length of the shaft, L 0.52 m 

Modulus of elasticity of shaft 

material, E 
202 × 109  GPa 

Area moment of inertia of the 

shaft section, Is 
5.1472 × 10-8 m4 

Polar moment of area of the 

shaft section, Jps 
1.0294× 10-7 m4 

Density of runner material, d 8550 kg/m3 

Mass of runner wheel, Md 10.564 kg 

Thickness of runner, h 35 mm 

Area moment of inertia of the 

disk, Id 
0.5527 × 10-4 m4 

Polar moment of area of the 

shaft section, Jpd 
0.11053 × 10-3 m4 

and 

𝑤𝑟(𝑥 𝑡)

= ∑ [{∑ [(�̅�𝑐𝑖)𝑛 𝑐𝑜𝑠 (
2𝑛𝜋

𝜏
𝑡)

∞

𝑛=1

𝑚

𝑖=1

+ (�̅�𝑠𝑖)𝑛 𝑠𝑖𝑛 (
2𝑛𝜋

𝜏
𝑡)]} 𝑠𝑖𝑛 (

𝑖𝜋𝑥

𝐿
)] (47) 

4. Numerical results and discussion

To have an interpretation of the analytical 

expressions obtained for free and forced 

responses of the system, the values of system 

parameters are taken as listed in Table 1. 

4.1 Critical speeds (natural frequencies) and 

Campbell diagram 

Using Eqs. (16-18), equivalent mass (Mi), 

equivalent damping coefficient (Ci) and stiffness 

(Ki) for the first three modes are determined and 

shown in Table 2. Then, the natural frequencies 

corresponding to the backward and forward 

whirls can be found using Eqs. (27 and 28). This 

can be presented in the form of a Campbell 

diagram, as shown in Fig. 3. Natural frequencies 

of each mode corresponding to zero spin speed 

are the natural frequencies of the first three 

modes of the simply supported beam. As the spin 

speed increases, critical speed for the backward 

whirl of each mode decreases, whereas, the 

critical speed for a forward whirl for each mode 

increases. At lower speeds, bending stiffness 

will have a higher value than the stiffness due to 

the centrifugal effect (centrifugal stiffening). 

During backward whirl, centrifugal stiffening 

will act opposite to elastic restoring force and, 

therefore, critical speed for backward whirl 

decreases with the increase in spin speed, as 

shown in Fig. 3.  

Table 2. Equivalent parameters for the first three 

modes. 
Equivalent 

parameters 
First mode Second mode Third mode 

Mass (Mi) 12.2085 kg 4.0798 kg 12.2393 kg 

Damping 

coefficient (Ci) 
24.4247  

N.s/m

13.0384  

N.s/m

24.5478  

N.s/m

Stiffness (Ki) 

(3.6223 ×
 106 – 

12.2085 2) 

N.m

(5.7957 ×
 107 – 4.0798 

2) N.m 

(2.9341 ×
 108 – 

12.2393 2) 

N.m
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Fig. 3. Campbell diagrams for the first three modes. 

During forward whirl, centrifugal stiffening will 

act in the same direction to elastic restoring force 

and, therefore, critical speed for forwarding 

whirl increases with the increase in spin speed, 

as shown in Fig. 3. 

4.2. Fourier series representation of force due to 

the water jet 

The values of variables Fj, t2, and  for the jet 

force shown in Fig. 2 are found by [34] as 193 

N, 0.00148 s, and 0.0025 s respectively. Then 

coefficients a0, an, and bn for the Fourier series 

are determined from Eqs. (31-33), respectively 

as: 

𝑎0 = 228.512 𝑠𝑖𝑛(1.57079𝑘) (48)

𝑎𝑛

=
30.7169𝑠𝑖𝑛(1.57079𝑘)

𝑛
𝑠𝑖𝑛(3.71965𝑛) 

(49)

𝑏𝑛 =
30.7169𝑠𝑖𝑛(1.57079𝑘)

𝑛
[1

− 𝑐𝑜𝑠(3.71965𝑛)]       (50)

Coefficients a0, an, and bn for the first five 

harmonics are considered using Eqs. (49) and 

(50) to determine the forced response of the

system. Considering up to fifth harmonics, the

approximated force exerted by the water jet on

the runner wheel for the one-sixteenth revolution

of the runner is as shown in Fig. 4. The addition

of higher-order harmonics increases ripples at 

the peak but does not affect the peak amplitude 

value significantly. Hence, harmonics up to the 

order of five are considered for further analysis. 

4.3. Forced response of the system 

Then using Eqs. (46 and 47), the steady-state 

response for the transverse vibration of the 

system considering up to the third mode is 

determined and presented in the graphical form. 

Substituting 𝑥 = 𝐿/4, into the expressions 

obtained from  Eqs. (46) and (47), the steady-

state response for the transverse vibration of the 

shaft at its quarter length is obtained, and it can 

be presented in the form of response plots. as 

shown in Figs. 5 and 6.  

Similarly, substituting 𝑥 = 𝐿/2, into the 

expressions obtained from Eqs. (46) and (47), 

the steady-state response for the transverse 

vibration of the disk is obtained, and it can be 

presented in the form of response plots, as shown 

in Fig. 7 and Fig. 8.  

From Figs. 5-8 it is found that the vibration 

amplitudes in the y-direction are significantly 

higher than that in the z-direction. A higher 

vibration amplitude in the y-direction is due to 

the impact of the jet. The vibration response in 

the z-direction is almost sinusoidal throughout 

the length of the shaft. The vibration response in 

the y-direction is almost sinusoidal in the region 

far from the disk, and it has a distorted form in 

the region near the midspan of the shaft or disk 

location. 

Fig. 4. Fourier series representation (up to first five 

harmonics n = 5) of the force exerted by the water jet. 
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Fig. 5. Transverse displacement of shaft at x = L/4 in 

horizontal direction for  = 1500 rpm. 

Fig. 6. Transverse displacement of shaft at x = L/4 in 

vertical direction for  = 1500 rpm. 

Fig. 7. Transverse displacement of disk in horizontal 

direction for  = 1500 rpm. 

Fig. 8. Transverse displacement of disk in vertical direction 

for  = 1500 rpm. 

5. Conclusions

In this paper, the dynamic behavior of the Pelton 

turbine is studied by modelling it as a rigid disk 

attached on an Euler-Bernoulli shaft. The 

governing equation of the system for bending 

vibrations in two transverse directions is found 

to be a coupled system of differential equations. 

Performing free vibration analysis, the critical 

speeds of the system for an operating speed of  

= 1500 rpm for the first three modes are found to 

be 4001 rpm, 33644 rpm and 47944 rpm for the 

backward whirl and 7003 rpm, 38437 rpm and 

50953 rpm for the forward whirl, respectively. 

For the forced vibration analysis, the force 

provided by the water jet is approximated as the 

Fourier series up to the fifth harmonic 

components. Then, a steady-state response for 

bending vibration of the system is determined by 

applying the superposition principle. The peak 

amplitude of bending vibration at the midspan of 

the shaft (disk location) in the direction of the jet 

for an operating speed of  = 1500 rpm is found 

to be 73 m. Similarly, the peak amplitude of 

bending vibration at the midspan of the shaft 

(disk location) in the vertical direction for an 

operating speed of  = 1500 rpm is found to be 

0.1 m. 
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