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Article info:   Abstract  

This paper presents a practical implementation for a new formula of nonlinear 

PID (NPID) control. The purpose of the controller is to accurately trace a 

preselected position reference of one stage servomechanism system. The 

possibility of developing a transfer function model for experimental setup is 

elusive because of the lack of system data. So, the identified model has been 

developed via gathering experimental input/output data. The performance of the 

enhanced nonlinear PID (NPID) controller had been investigated by comparing 

it with linear PID controller. The harmony search (HS) tuning system had built 

to determine the optimum parameters for each control technique based on an 

effective objective function. The experimental outcomes and the simulation 

results show that the proposed NPID controller has minimum rise time and 

settling time through constant position reference test. Also, the NPID control is 

faster than the linear PID control by 40% in case of variable position reference 

test. 
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1. Introduction   

 
The latest progress of machine tools is to 

develop high speed spindle and feed drives 

which lead to high performance and reduce the 

machining cycle times [1]. Moreover, the 

development of feed drives with an adequate 

dynamic response and good performance 

became essential in many industrial applications 

[2]. The purpose of servo control systems is to 

maintain the stage follows a preselected position 

profile along complicated trajectories at high 

feed speeds [3]. The machine tool with 

traditional feed drives uses the proportional 

position control which leads to high fluctuation 

in the stage and large tracking errors at high 

speeds [4]. The tracking error is eliminated using 

high performance feed drive motors with 

advanced control techniques [5]. However, 

friction on lead screw and guides, cutting force 

disturbance, and changes in the work-piece mass 

in linear drives are obstacles to achieve good 

contouring accuracy at high feeds [6]. The 

requirements for high speed and accurate 

contouring have led to the investigation of 

efficient control algorithms in recent years [7].  

Several of common industrial applications have 

utilized the traditional Proportional-Integral-

Derivative (PID) controllers for processes 

control [8]. The PID controller algorithm is 
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simple and has acceptable performance for most 

of the common systems which make it used for 

several decades. The behavior of PID controller 

is highly sensitive by determining its parameters 

[5]. Until now, there is not a definite ideal 

method to select the proper PID controller 

parameters for a certain system [9]. In the last 

period, the re-searchers avoid this problem using 

the optimization techniques for instance, Genetic 

Algorithm (GA), Ant Colony Optimization 

Particle Swarm Optimization (PSO), and 

Harmony Search (HS) optimization to find the 

optimum parameters of PID controller away 

from the rough methods (Ziegler-Nichols 

method) which cannot guarantee the proper 

selection for those parameters [10]. The 

optimization techniques cannot carry out it 

practically in real time where it takes a long time 

to find the optimum solution. So, most of the re-

search resort to simulating the actual system 

using an accurate mathematical model for 

building the tuning system [11]. 

Most of the real systems are nonlinear systems 

but, the nonlinearity percentage tolerances from 

system to another [12]. It is known that the 

mechanical systems have complex nonlinear 

behavior because of friction and backlash 

problems [13]. For example, the one stage 

servomechanism system. So, the traditional PID 

controller with linear parameters cannot achieve 

high performance for this type of systems [14]. 

Also, the PID controller still has fixed gains 

which are not enough to deal with high 

complicated dynamic systems [15].  

The recent research proceeded to design 

nonlinear PID control to overcome the 

nonlinearity and uncertainty of system. The 

nonlinear PID (NPID) controller contains 

nonlinear gains incorporated with the fixed gains 

of PID controller [13]. These nonlinear gains 

enjoy the advantage of high initial gain to attain 

a fast dynamic response, followed by a low gain 

to prevent an oscillatory behavior [14]. The 

present studies pro-pose a nonlinear gain (one 

scalar gain) which will multiply with the output 

of linear PID control [16]. So, this paper presents 

a new formula for NPID control where the 

nonlinear gain is a vector gain which contains 

three values special to the proportional, integral 

and derivative gain.  Also, Most of the current 

studies don’t present obvious method to obtain 

the NPID control parameters [15]. Moreover, the 

previous research is limited to simulations 

without practical implementation. This study 

presents a practical methodology to design a new 

form of nonlinear PID control. It is known that 

MATLAB Simulink is a powerful tool to 

simulate and design most of the control systems 

but it is not suitable and reliable with the real-

time implementation of control systems [17]. So, 

this study uses MATLAB Simulink only for 

purposes of control design and the obtained 

results from simulation will be executed 

practically by LABVIEW software using NI 

6009 DAQ card. Several parameters of the 

experimental setup aren’t known so, this 

research resorted to using the system 

identification techniques (linear and nonlinear 

least squares methods) to develop an identified 

model which will be used in control design. The 

optimum parameters of the proposed controller 

had been obtained offline using harmony search 

optimization technique based on a certain cost 

function. 

The paper is arranged as follows: Section 2 

illustrates the system modeling and 

identification. The enhanced nonlinear PID 

controller is involved in Section 3. Section 4 

shows the experimental results. Lately, Section 5 

presents the conclusion. 

 

2. System modeling and identification 

 
2.1. System modeling 

 

This section presents the differential equations 

which describes the dynamic behavior of one 

stage servomechanism system. The structure of 

one stage servomechanism system is shown in 

Fig.1. The stage is loaded on linear guides and 

screw shaft. The rotor of DC motor is coupled 

directly with screw shaft. The DC motor rotates 

the screw shaft while the nut converts rotary 

motion to translational motion and drives the 

stage. The speed and position of the stage are 

determined by a rotary encoder coupled with 

screw shaft. 
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Fig. 1. The structure of lead screw drive system [18]. 

 

The DC motor model can describe from Eq(1) to 

Eq(3) where ὺ is the armature voltage, Ὑ  is the 

armature resistance, Ὅ is armature current, ὒ is 

the inductance of motor windings, ὑ  is the back 

emf constant, is the rotor speed, Ὕ   is the 

motor torque, ὑ is the torque constant, ὐ is the 

total equivalent moment of inertia as seen by the 

motor, ὄ is the viscous damping coefficient and 

Ὕ is the total static torque reflected in the lead 

screw shaft. 

ὺ ὙὍ ὒ
ὨὭὥ
Ὠὸ

ὑ(1)                                                         

Ὕ ὑ Ὥ                                                      (2) 

Ὕ ὐ ὄ Ὕ                                     (3)                                    
 

There are three sources for the total static torque 

reflected in the lead screw shaft ( Ὕ ) as in Eq 

(4) where Ὕ  is the static torque contributed by 

the friction in the guideways, Ὕ   is the torque 

lost in bearings due to friction, Ὕ is the torque 

required to overcome the feed forces. 
 

Ὕ Ὕ Ὕ Ὕ                                       (4) 
 

In the case of a gear between the motor shaft and 

the lead screw shaft the Ὕ will be determined as 

follows where ὶ is the gear reduction. 

Ὕ                                                            (5) 

 

Eq (6) illustrates the static torque due to 

guideways friction where  Ὤ is pitch of lead 

screw, ‘  is the friction coefficient in guides, 

ά  is the table mass,  ά  is the maximum mass 

for the workpiece and Ὂ is the maximum vertical 

force. 

Ὕ  ‘  ά ά Ὣ Ὂ               (6)                        
 

Eq (7) demonstrates the lost static torque due to 

bearing friction where ‘ is the friction 

coefficient of bearings, Ὠ  is the leadscrew 

diameter, Ὂ is the maximum feeding force and 

Ὂ is preload force in the thrust bearings. 

Ὕ  ‘ Ὂ Ὂ                                     (7)                        

The required torque to overcome feed forces can 

be calculated as the follows.  

Ὕ Ὂ                                                                 (8) 
 

The total equivalent moment of inertia as seen by 

the motor (ὐ  depends on ὐ  the moment of 

inertia of table and workpiece reflected on the 

lead screw shaft, ὐ is the lead screw inertia and  

ὐ motor shaft inertia. 

                                                                          

ὐ ὐ                                                            (9) 

The moment of inertia of table and workpiece 

can be determined based on mass table 

 ά  and maximum mass of workpiece  ά   

as shown in Eq (10).  

 ὐ ά ά                               (10)                         

The lead screw moment inertia is determined 

using lead screw mass as Eq (11). 

                                                                       

ὐ  ά                                                             (11) 

 

Eq (1) will be reorganized to obtain Eq (12) 

                                                                              

Ὥ                                                              (12) 

 

Also, Eq (3) will be reformed to result Eq (13) 

 

                                                               (13) 
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Eqs (12), (13) are used to build the DC motor 

model incorporated with servomechanism 

system as shown in Fig. 2. 

 
 

Fig. 2. Block diagram of dc motor model 

incorporated with servomechanism system. 

  

ί Ὃ ίὺ ί  Ὃ ί Ὕί              (14)                                         

   

To find the transfer function between and ὺ   

assumes Ὕ π as demonstrated in Fig. 3 will 

result the following transfer function. 

 

 
 

Fig. 3. Block diagram of dc motor model 

incorporated with servomechanism system without 

load. 

                                                                      

                                       (15) 

 

 

To obtain the transfer function between and Ὕ   

assumes ὺ π  as shown in Fig. 4 will result 

the following transfer function. 

 

 
 

Fig. 4. Block diagram of dc motor model 

incorporated with servomechanism system at ὺ

π. 

 

 
            (16)                       

 

The actual position table can be calculated using 

Eq (17). 

                                                                 

ὢ ί  ί                                                (17)                                                                                                                                

 

2.2.  System identification and experimental 

setup 

 

The lack in model data parameters are problem 

to obtain a mathematical model for a certain 

system [19]. So, the purpose of system 

identification fabricates an approximate model 

system using experimental input / output data. 

The method to develop a model involves three 

basic steps. The first step is the input and output 

data will be collected from the experiment. The 

second step, many of candidate models will be 

developed. The third step is selecting an 

appropriate model from the set of candidate 

models. 
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The general linear transfer function of such a 

system may be written as follows: 

 

 

Where  Ὧȟὦȟȣȟὦ are the estimated parameters 

of the approximate transfer function. It is known 

that the nonlinear system cannot be represented 

exactly by linear models. The accuracy of the 

model can be increased by increasing the order 

of the linear system. However, often there is a 

limitation that increasing order cannot improve 

the model accuracy sufficiently. Therefore, it is 

necessary to explicitly add the nonlinearities into 

the system.   

In this paper, we try using the nonlinear ARX 

model structure to model such systems where 

AR refers to autoregressive part and X to the 

extra input. A nonlinear ARX model can be 

understood as an extension of a linear model as 

shown in Fig. 5.  

 
 

Fig. 5. The structure of a nonlinear ARX model. 
Assume nonlinear function has two unknown 

parameters ὦ ὥὲὨ ὦ.    
                                           

ὪØ ὦ ρ Ὡ Ὡ                          (19) 

The relationship between the nonlinear equation 

and the data can be described as the following 

form.    
 

                                                      

ώ ὪὼȠὦȟὦȟȣȣȢȟὦ Ὡ                    (20)           

Where ώ is a measured output value, 

ὪὼȠὦȟὦȟȣȣȢȟὦ  is a function of the 

independent variable ὼ and the 

parameters ὦȟὦȟȣȣȢȟὦ , and Ὡ is a random 

error. 

This model can be rewritten in a short form by 

ignoring the parameters,  

                                                      

 ώ Ὢὼ Ὡ                                           (21)              

The nonlinear equation can be analyzed in a 

Taylor series around the parameter values, 

                             

Ὢὼ Ὢὼ  Ўὦ  Ўὦ  

(22)                                

Where j stands for the initial values and j + 1 is 

the prediction. 
 

Ўὦ ὦȟ ὦȟ and Ўὦ ὦȟ ὦȟ      
 

                                                                      (23)                                    

 

Assume the initial values of ὦȟ and ὦȟ and 

substitute (22) in (21) will result:     

                                           

ώ Ὢώ  Ўὦ  Ўὦ Ὡ     

                                         (24) 

or in matrix form 

Ὄ ὗ  Ўὄ  Ὁ                               (25)                                       

Where ὗ   is the matrix of partial derivatives 

of the function evaluated at the initial values j. 

                                           

   ὗ

ὪȾὦ ὪȾὦ
ὪȾὦ ὪȾὦ
ȣȢȢ ȣȣȢȢ
ὪȾὦ ὪȾὦ

                   (26)                                               

Where n = the number of data points 

The vector {H} consists of the differences 

between the speed measurements and the 

function values. 

ύί

ὺ ί

Ὧ 

ὦȢὛ ὦ ȢὛ Ễ ὦ
 (18) 
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Ὄ

ώ Ὢὼ

ώ Ὢὼ
ȣȣȣȢ
ώ Ὢὼ

                                    (27)                                        

The vector Ўὄ consists of the changes in the 

parameter values, 

                              

  Ўὄ

Ўὦ
Ўὦ
ȣȣȢ
Ўὦ

                                         (28)                                     

Subjecting linear least-squares theory to 

equation (25) 
 

  ὗ  Ὄ ὗ ὗ  Ўὄ                   (29)                                      

Ўὄ ὗ ὗ  ὗ  Ὄ              (30)                                     

For {∆B}, which can be applied to determine 

upgraded values for the parameters, as in 

 

ὦȟ ὦȟ Ўὦ 

ὦȟ ὦȟ Ўὦ                                       (31)                       

Where ὦȟ  and ὦȟ  are the new values of ὦ 

and ὦ. 

 

This steps repeated until the estimated 

parameters have a satisfied error between the 

actual output and model output. The main 

components of one stage table servomechanism 

experimental setup as illustrated in Fig. 6 as the 

following. 

1- One Stage Table: It consists of a DC motor 

driving a lead screw on which a sliding block 

is installed. The DC motor has nominal speed 

1800 rev/min, and armature voltage 90 V. 

2- Optical Encoder: An encoder is an electrical 

mechanical device that can monitor motion or 

position. The Optical Encoder is provides 

position feedback signals (100 pulses per 

revolution). 

3- Limit Switches: Two magnetic limit switches 

detect when the sliding block reaches the start 

or end position. 

4- Motor Driver:  The DC Motor Drive controls 

the DC Motor Electro-Mechanical Module, 

Model 3293.  

5- A data acquisition card (DAQ) NI USB-

6009: it has the following specifications:  

• 8 analog inputs (12-bit, 10 kS/s). 

• 2 analog outputs (12-bit, 150 S/s). 

• 12 digital I/O. 

• USB connection, no extra power supply 

needed. 

6- Push Buttons, Toggle Switches, and 

Lights:  they use to operate the DC motor 

driver manually. 

7- Computer: used to perform the control 

algorithms and receive and send the signals 

from the NI DAQ Card. 

 

 

 

Fig. 6. One stage table servomechanism actual  

setup. 
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3. Enhanced Nonlinear PID Control 

 
It is well known that the transfer function of the 

linear PID controller is  ὑί ὑ ὑί. 

Where ὑ , ὑ and ὑ  are fixed gains. These 

gains can be defined as follows. ὑ   is the 

proportional gain which attempt to reduce the 

error responses. ὑ  is the integral gain and its 

role dampen the steady state error. Ὧ is the 

differential gain which decrease the overshoot of 

system also, it ensures the system stability 

[20],[21].  

In spite of linear fixed parameters PID 

controllers are often suitable for controlling a 

simple physical process, the demands for high 

performance control with different operating 

point conditions or environmental parameters 

are often beyond the abilities of simple PID 

controllers [22],[23]. The performance of linear 

PID controllers can be enhanced using several 

techniques which will be developed to deal with 

sudden disturbances and complex systems for 

example, the PID self-tuning methods, neural 

networks and fuzzy logic strategies, and other 

methods [24],[25]. 

Among these techniques, nonlinear PID (NPID) 

control is presented as one of the most 

appropriate and effective methods for industrial 

applications. The nonlinear PID (NPID) control 

is carried out in two broad categories of 

applications. The first category is particular to 

nonlinear systems, where NPID control is used 

to absorb the nonlinearity. The second category 

deals with linear systems, where NPID control is 

used to obtain enhanced performance not 

realizable by a linear PID control, such as 

reduced overshoot, diminished rise time for step 

or rapid command input, obtained better tracking 

accuracy and used to compensate the 

nonlinearity and disturbances in system 

[26],[27].  The NPID controllers have the 

advantage of high initial gain to achieve a fast 

dynamic response, followed by a low gain to 

avoid unstable behavior. In this study, the 

traditional linear PID controller can be enhanced 

by combining a sector-bounded nonlinear gain 

into a linear fixed gain PID control architecture. 

The proposed enhanced nonlinear PID (NPID) 

controller consists of two parts. The first part is 

a sector bounded nonlinear gain ὑ Ὡ while, the 

second part is a linear fixed-gain PID controller 

( ὑ , ὑ and ὑ ). The nonlinear gain ὑ Ὡ is a 

sector-bounded function of the error e(t). the 

previous researches have been considered the 

nonlinear gain ὑ Ὡ as a one scalar value. 

The new in this research, the one scalar value of 

ὑ Ὡ will be replaced with a row vector can be 

expressed as: 

 ὑ Ὡ ὑ Ὡ    ὑ Ὡ    ὑ Ὡ   as shown 

in Fig. 7 which will lead to improving the 

performance of nonlinear PID controller where 

the values of nonlinear gains will be adjusted 

according to the error and the type of fixed 

parameters ( ὑ , ὑ and ὑ ). 

The proposed form of NPID control can be 

described as follows. 
 

 όὸ ὑ ὑ ὩȢὩὸ

ὑ᷿ὑ ὩȢὩὸ Ὠὸ ὑ ὑ ὩȢ    

                                                                      (30)                                                                                                           

 

Where ὑ Ὡȟὑ Ὡ ὥὲὨ ὑ Ὡ are 

nonlinear gains. The nonlinear gains represent 

any general nonlinear function of the error which 

is bounded in the sector 0 < ὑ Ὡ< ὑ Ὡmax. 

There is a wide range of choices available for the 

nonlinear gain ὑ Ὡ. One simple form of the 

nonlinear gain function can be described as. 

ὑ Ὡ ὧὬύὩ
 

  

                                                                     (31) 

Where Ὥ ρȟςȟσȢ 

Ὡ
Ὡ                                    ȿὩȿ Ὡ  

Ὡ ίὫὲὩ              ȿὩȿ Ὡ
    (32)                                      

 

The nonlinear gain ὑ Ὡ is lower bounded by 

ὑ Ὡmin = 1 when e = 0, and upper-bounded 
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by ὑ Ὡmax = ch(ύ Ὡ ). Therefore, 

Ὡ  stand for the range of deviation, and ύ 

describes the rate of variation of ὑ Ὡ.  

 

 

Fig. 7. The enhanced nonlinear PID controller 

structure. 
 

The one stage servomechanism system needs two 

cascaded controllers, the first controller is the 

speed controller while, the second controller is 

the position controller. Usually in position 

controller the integral part will be eliminated to 

be the output of position controller reference to 

speed controller.  

 

 

The critical point in the PID and NPID 

controllers are selecting the proper parameters to 

be appropriate for the controlled plant. There are 

different approaches to find the parameters of 

PID controller for instance, try and error and 

Ziegler-Nichols method but, most of these 

approaches are rough roads. In this paper, the 

harmony search optimization technique will be 

used to obtain the optimal values of both PID and 

NPID controller parameters according to the 

objective function as shown in Eq (33) [28]. 
 

Ὢ                       (33)                                         

 

Where Ὡ  is the steady state error, ὓ  is the 

overshoot of system response, ὸ is the settling 

time and ὸ is the rise time. Also, this objective 

function is able to compromise the designer 

requirements using the weighting parameter 

value (β). The parameter is set larger than 0.7 to 

reduce over shoot and steady state error. If this 

parameter is adjusting smaller than 0.7 the rise 

time and settling time will be reduced. Harmony 

search (HS) was suggested by Zong Woo Geem 

in 2001 [29]. It is well known that HS is a 

phenomenon-mimicking algorithm inspired by 

the improvisation process of musicians [30]. The 

initial population of Harmony Memory (HM) is 

chosen randomly. HM consists of Harmony 

Memory Solution (HMS) vectors. The HM is 

filled with HMS vectors as follows: 

 

Ὄὓ

ụ
Ụ
Ụ
Ụ
Ụ
ợ
ὑ ȟ ὑ ȟ ὑ ȟ ύ ȟ ύ  ȟ ύ ȟ ὑ ȟ ὑ ȟ ύ ȟ ύ ȟ
ὑ ȟ ὑ ὑ ȟ ύ ȟ ύ  ȟ ύ ȟ ὑ ȟ ὑ ȟ ύ ȟ ύ ȟ
Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ
Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ
Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ

ὑ ȟὑ ȟὑ ȟύ  ȟύ  ȟύ ȟὑ ȟὑ ȟύ ȟύ ȟ Ứ
ủ
ủ
ủ
ủ
Ủ

           (34) 

                                            

Fig. 8 illustrates the block diagram for the overall 

harmony search tuning system using the 

enhanced nonlinear PID controller.  

Table 1 demonstrates the values of the obtained 

parameters using the harmony search tuning 

system.  

 

 



 

 

 

Fig. 8. Closed loop system with harmony search tuning system. 

 

 

Table 1. The obtained parameters of each control technique. 

 

Controller type 
   Position controller    

      (without integral part) 
Speed controller 

NPID controller 

ὑ  ύ  ὑ  ύ  ὑ  ύ  ὑ ύ  ὑ  ύ  

10.45 0.67 0.0045 0.93 50.56 0.96 0.0067 0.034 5.054 0.0456 

PID controller 

ὑ  ὑ  ὑ  ὑ ὑ  

26.1677 1.7924 47.4250 23.0674 0.7043 

4. Experimental and simulation results 

 

4.1. Identified model validation  

 

This section demonstrates the practical steps to 

develop identified model for one stage 

servomechanism system prototype. Also, Fig. 9 

shows the components connection between each 

part through the experiment. The candidates 

identified models will be investigated by 

comparing the output of each identified model 

with actual experimental data. In the beginning, 

we collect the experimental input / output data. 

The NI DAQ Card generates random signal 

ranges from -5V to +5V with sample rate 50 

milliseconds as illustrated in Fig. 10 where this 

signal will be as input to the DC motor drive. 

The speed of DC motor will fluctuate with 

change the generated signal. The positive ranges 

of voltage signal will make the DC motor speed 

fluctuate in the forward direction while the DC 

motor speed has fluctuated in reverse direction 

through the negative ranges of voltage. This 

continuous change in input signal will make the 

speed of one stage table fluctuates proportionally 

as illustrated in Fig. 11.  
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 Fig. 12 demonstrates the actual position of one 

stage table through the experiment. It can be 

noted that the table position increases in positive 

ranges of the input signal to DC motor driver 

while the position decreases in negative ranges 

of the input signal. The data will be collected and 

stored in excel sheet file and then this data will 

be used to fabricate identified model for one 

stage servomechanism system. 

Fig. 9. Block diagram of experimental setup servomechanism system.

 

Fig. 10. The random input signal to dc motor driver. 

 

 

 

    Fig. 11. The linear speed of servomechanism table. 
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 Fig. 12. The position of servomechanism table. 

Fig. 13 demonstrates a comparison between the 

actual stage speeds of servomechanism system 

with the output of two candidates identified 

models. The first identified model presents a 

second order system while the second identified 

model includes a nonlinear ARX model. It is 

obvious that the nonlinear ARX identified can 

simulate the behavior of actual experimental 

setup compared to the second order identified 

model.  

 
Fig. 13. The linear speed of one stage table 

servomechanism for actual experimental setup and 

identified models. 

 

Table 2 demonstrates the mean square error of 

each identified model. It can be noted that the 

nonlinear ARX identified model has the 

minimum mean square with respect to the second 

order identified model. 

 

Table 2. The Mean square error of identified models. 

Mean square error System identification method        No.  

0.1973 
Linear identified system  

(Second order) 
1 

0.05912 Nonlinear identified system 2 

 

Finally, it can be summarized that the nonlinear 

ARX identified model can represent the one stage 

table servomechanism significantly. So, this 

model will be used to help us to can design and 

implement the enhanced nonlinear PID 

controller. 

 

4.2. Performance of proposed controllers 

 

This section demonstrates the dynamic analysis 

of one stage servomechanism system prototype 

using the enhanced nonlinear PID control and 

linear PID control based on harmony search 

tuning system. To ensure the robustness of the 

enhanced nonlinear PID control several tests will 

be performed such as fixed table position 

reference and variable table position reference. 

These tests will be applied on the identified 

model (simulation results) and one stage 

servomechanism system prototype (experimental 

results). The purpose of proposed controllers to 

follow a certain position reference trajectory in a 

short time with good accuracy. 

Fig. 14 shows the performance of one stage 

servomechanism drive system with each control 

technique at a constant preselected position 

reference test where the reference of stage 

position will be adjusted to 7 inches. The 

proposed controllers will be applied to the 

identified model (simulation results) and the 

experiment setup (experimental results). The 

stage begins moving from the zero position to the 

position reference. The behavior of stage from 

zero position to the position reference depends on 

the type of each control technique. It is noted that 

the performance of nonlinear PID controller is 
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better than the PID controller where the NPID 

controller can reach the position reference 

rapidly compared to the PID controller.  Also, the 

simulation results expected the behavior of each 

control technique without using the actual 

experimental setup.  Small differences between 

the simulation and the experimental results 

because of the noise, system uncertainty, and NI 

Card time delay.  Both simulation results and 

experimental results are summarized in Table 3. 

 

 

Table 3. Controller techniques performance.

 
Fig. 14. The response of each control technique at a 

constant reference position applied to the identified 

model and the experimental setup 

 

The speed controller output for each control 

type was shown in Fig. 15 through a constant 

reference position applied on the identified 

model and the experimental setup. It is clear 

that the simulation results and practical 

results are close. Also, there is shuttering at 

steady state in each control technique due to 

the noise and the friction.  

 

 

 

 

 

 

Fig. 16 shows the performance of each 

control technique at different commands of 

reference position test where the position 

reference will be changed through this 

experiment. It can be noted that the nonlinear 

PID controller can follow the position 

reference rapidly compared to the PID 

controller where the proposed NPID control 

is faster than the PID control with percent 

40% approximately which will lead to save 

the machining time cycles and increase the 

productivity.   

Fig. 17 demonstrates the speed controller 

output for each control type applied on the 

identified model and the experimental setup 

at different commands of position reference. 

It is clear that the simulation results and 

practical results are identical approximately. 

Moreover, the shuttering will appear when 

the stage reaches the required position 

reference command because of the noise and 

the friction between the nut and the screw. 

 

 

 

 

Controller type Rise time Settling time Overshoot 

Linear PD – PID controller 
Identified model 2.6625 3.3963 1.1772 

Experimental setup 1.9810 3.6529 0.7861 

Nonlinear PD - PID controller 
Identified model 1.5492 2.4466 0.6991 

Experimental setup 1.2958 2.1295 1.2964 
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Fig. 15. The output of each control technique at a 

constant reference position applied to the identified 

model and the experimental setup. 

 
Fig. 16. The response of each control technique at 

different commands of reference position applied to 

the identified model and the experimental setup. 

 
Fig. 17. The output of each control technique at 

different commands of reference position applied to 

the identified model and the experimental setup. 

5. Conclusion 

 

A LABVIEW implementation for a new 

form of nonlinear PID (NPID) control was 

presented to achieve high-performance 

motion control of one stage servomechanism 

system. Firstly, an identified model was 

implemented via collecting the experimental 

input/output data and entering it to 

MATLAB system identification toolbox. 

Secondly, the harmony search optimization 

was used to obtain the optimum values of 

controller parameters based on a certain cost 

function. Lastly, the simulation results 

would be executed in real time by 

LABVIEW software. Also, the performance 

of an enhanced NPID controller compared to 

the linear PID controller to ensure the 

robustness. Processing experiments 

demonstrate that the enhanced nonlinear PID 

controller is more robust and can 

accommodate rapidly the position error 

compared to the linear PID control. The 

enhanced NPID control has minimum rise 

and settling time which will reduce the 

machining cycles times in industrial 

processes. 
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