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 Abstract  

The current article has investigated unsteady convective flow for MHD non-

Newtonian Powell-Eyring fluid embedded porous medium over inclined 

permeable stretching sheet. We have pondered the thermophoresis parameter, 

chemical reaction, variable thermal conductivity, Brownian motion, variable 

heat source and variable thermal radiation in temperature and concentration 

profiles. Using similar transformation, the PDEs are converted by couple ODEs 

and solve by R–K–Fehlberg 4th–5th order method. The physical features of non-

dimensional radiation parameter, non-Newtonian fluid parameters, suction 

/injection parameter, mass Grashof number porosity parameter,  temperature 

ratio parameter, thermal Grashof number, Biot number of temperature and Biot 

number of concentration have been analyzed by plotting the graphs of graphical 

representations of momentum, heat, and mass profiles. 
1

2RefC  ,  
1

2RexNu


and

1
2RexSh



 have been analyzed. The transfer rate of temperature is decreased 

whereas the flow rate offluid grows with an enhancement in (K) and (Gr).The 

transfer rate of the temperature is distinctly boosted whereas the fluid flow rate 

is distinctly declined with an enhancement in (M) , (Kp). 
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Nomenclature 
C Fluid concentration, 

Cref  Constant reference 

concentration 

respectively. 

Tref  Constant reference 

temperature 

b and a Positive constants. 

2

3/22 (1 )

bx
T T Tw ref

at
 


 

Surface temperature 

2

3/22 (1 )

bx
C C Cw ref

at
 


 
Surface concentration 

1

bx
uw

at



 

Velocity of surface 

34

*

T
R

k k

   
Radiation parameter 

( ) /

/ Re

3 2

2 2 2 2

 




 g T T x Gr

Gr

u x

T w x

w x
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(1 )at
S vw

b




Suction /injection 

parameter where 0S  : 

suction and 0S  : 

injection, 
3 2( ) /

2 2 2 2/ Re

g C C x Gcc w xGc
u xw x

 



  
Mass Grashof number 

Sc
DB




Schmidt number, 

(1 )k atnKn
b




Chemical reaction 

parameter 

( )D C CB wNb




 
Brownian motion 

parameter 

2(1 )
0

B at
M

b








Magnetic parameter 

(1 )
1

h atf
Bi

k b

 


Biot number of 

temperature 

T Volumetric coefficient 

of thermal, 

σ  Stefan–Boltzmann 

constant 

μ Fluid viscosity 

 and   Coefficient material 

fluid parameters 







Kinematic viscosity. 

 Dimensionless 

concentration 
1

2RexNu
 Local Nusselt number 

T Fluid temperature, 

DB Molecular diffusivity of 

the species concentration 
*k Absorption coefficient

f Dimensionless stream 

function 

t Time, 

Cp Specific heat, 

g Gravity acceleration, 

k (T) Heat conductivity of the 

fluid depending of 

temperature, 

(1 )
2

h atsBi
D bB

 


Biot number of 

concentration. 

1
K

m
 and

3

1 2

uw

x m




 
 :

Material fluid 

parameters 

a
A

b


Unsteadiness parameter 

Pr
Cp

k




Prandtl number 

2

( )

uwEc
C T Tp w


 

Eckert number, 

( )D T TT wNt
T





 


Thermophoresis 

parameter, 

(1 )at
Kp

bk p

 


Porosity parameter 

 Fluid density 

c Volumetric coefficient of 

mass exponential, 

 Dimensionless 

temperature 

( )T Tw     Variable thermal 

conductivity parameter, 

Tw
w

T
 



Temperature ratio 

parameter, 

( ) [1 ( )]k T k T T    Thermal conductivity is 

depending of 

temperature 
1

2RefC
Skin friction coefficient 

1
2RexSh

 Local Sherwood number 

1. Introduction

Powell-Eyring fluid is explained from the kinetic 

theory of gases rather than from empirical 

relations. Recent investigations have 

implemented on various flow characteristics of 

Powell-Eyring fluid over different geometries. 

Several researchers (Krishna et al. [1], Javed et. 

al [2], Hayat et. al [3-7], Gaffar et. al [8] Alsaedi 

et. al [9-10] examined the steady and unsteady 

flow for 2D and 3D Powell-Eyring fluid over 

different shapes and conditions of stretching 

sheet such as inclined, permeable convective and 

exponentially surfaces. Jain [11] investigated 

viscous fluid flow with porous medium through 

a channel and stretching sheet. Zhu et. al [12] 

investigated the MHD stagnation-point flow past 

a power-law stretching sheet with the effects of 

slip condition. Jain et al. [13] examined the flow 

for various fluids on a permeable surface. 

Turkyilmazoglu et al. [14] and Turkyilmazoglu 

[15-16] explored different solutions of MHD 

viscoelastic fluid and Jeffery fluid on a 

stretching surface. Rashidi et. al [17] proposed 

the 2nd-grade fluid flow over a permeable sheet 

solved by multi-step differential transform 

method. Mukhopadhyay [18] examined thermal 

radiative flow over a porous surface. Jalil et. al 

[19] examined the flow of power-law fluid over

an extending surface. Hayat et. al [20] examined
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radiative flow for Jeffrey fluid over a stretching 

surface. 

Heat transfer phenomena in boundary layer fluid 

has significant applications in thermal industry, 

expulsion of plastic sheets, polymer, revolving 

of fibers, refrigeration of elastic sheets, etc. 

Chaudhary et. al [21] explained the free 

convection unsteady flow with Newtonian 

heating boundary condition. Hayat et. al [22-30] 

studied 2-D and 3-D MHD flow of various fluids 

such as Carreau fluid, Casson fluid, thixotropic 

nanofluid, Carreau nanofluid and Jeffrey fluid 

toward an extending surface with following 

boundary state such as convectively heated, 

melting heat, Newtonian heating, Joule heating 

and thermophoresis convective boundary 

condition. Makinde [31] examined the Navier 

slip with unsteady MHD flow with Newtonian 

heating boundary condition. Zheng [32-33] 

proposed the MHD radiative convective flow in 

the presence of porous medium with power-law 

temperature gradient. Jain et al. [34-38] 

examined with or without entropy generation for 

MHD non-Newtonian and MHD Newtonian 

fluids over channel, moving permeable cylinder, 

stretching sheet, and exponentially shrinking 

sheet. Parmar [39-40] studied the two different 

non-Newtonian MHD fluid such as Casson fluid 

and Williamson fluid past a different two 

geometries such as moving permeable wedge 

and porous stretching sheet. Jain et al. [41-42] 

investigated 2D and 3D fluid flow with various 

boundary conditions and surfaces. Chauhan et al. 

[43-44] investigated the couette flow for 

compressible Newtonian fluid over different 

surfaces.  

In this article, we have examined the following 

parameter effects such as, non-dimensional non-

Newtonian fluid parameters, radiation 

parameter, thermal Grashof number, and suction 

/injection parameter. 

2. Mathematical modelling

We consider the unsteady and incompressible 

MHD Powell-Eyring fluid flow over an inclined 

permeable stretching surface. The sheet inclined 

an angle α with the vertical direction. Taking the 

sheet along x axis direction and normal in y axis 

direction is shown in Fig. 1. 

Powell-Eyring fluid Cauchy stress tensor is 

given by 

11 1
sinhi i

ij

j j

u u

x x
 




  

   
   

      (1) 

Fig. 1. Geometric scheme of the problem. 

The equations of the governing equations of the 

model Krishna et.al (2016) are expressed as: 

0
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 

2

2

2

2

B

T
n

C C C C
u v D
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D T
k C C
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


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       (5)                                                                                

The unsteady Powell-Eyring fluid flow 

convective boundary conditions are taken as 

follows: 

 

 

, , ,

0

w w f f w

B s w

T
u u v v k h T T

y

C
D h C C at y

y


     




   



0, ,u T T C C at y     (6) 

The Rosseland approximation and internal heat 

generationis are given as 
4

*

4

3

rq T

y y yk
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r s

ku
q A T T f B T T
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The similarity transformations are given as: 
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
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n
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(7)                                            

Equations (3, 4, 5 and 6) thus reduce to the 

following non-dimensional form 
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Boundary conditions are given as: 

1

2
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Characteristics of flow are the skin friction 

coefficient 
1

2RefC ,  local Nusselt number 

1
2RexNu



 and local Sherwood number 
1

2RexSh


respectively defined as: 
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where Re w
x

xu


 : the local Reynolds 

number. 

 

3. Results and discussion

 

Figs. 2-4 show the variation of 'f ,   and   

profiles with (M) for the fixed values of another 

parameter. The 'f decreases with the 
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enhancement of (M) in Fig. 2. Heat and mass 

flux of the fluid grow with the enhancement of 

(M) in Figs. 3 and 4.  

Figs. 5-7 are given for the 'f ,   and   

profiles against 𝜂 in order to show the influences 

of (Kp). Obviously, the absence of the permeable 

medium causes higher restriction to the fluid 

momentum which in turn slows its velocity. The 

velocity of the fluid suppresses with the 

enhancement of (Kp) parameter in Fig. 5 and as 

it can be seen the energy flux boosters as (Kp) 

enhances in Figs. 6 and7.  

Figs. 8-10 show the variation of 'f ,   and   

profiles with (K) for fixed values of another 

parameter. Fluid momentum boosts with the 

enhancement of (K) in Fig. 8. Heat and 

concentration field of the fluid suppresses with 

the enhancement of (K) in Figs 9 and 10. 

Fig. 11 shows the variation of   profiles with 

(Ec) value for fixed values of another parameter. 

The heat distribution of the fluid rises with the 

enhancement of (Ec)  in Fig. 11. 

Figs. 12-13 show the variation of   and   

profiles with (Pr) value for fixed values of 

another parameter. Heat of the fluid decreases 

with the enhancement of (Pr) in Fig. 12 and the 

reverse outcome shows concentration 

distribution in Fig. 13. 

From Fig. 14 the mass profile is plotted for 

several values of the (Nb). Concentration of fluid 

declines as (Nb) enhances. Since (Nb) is the ratio 

of Brownian to thermophoretic diffusivities, 

mass flux declines as thermophoretic 

diffusivities enhances. 

Figs. 15-16 show the variation of   and   

profiles with (Nt) value for fixed values of 

another parameter. The momentum and heat 

distribution of the fluid rise with the 

enhancement of (Nt) in Figs. 15-16. 

Figs. 17- 20 show the (A*) , (B*), (R)  and (on 

  profiles. With the enhancement in the 

following parameters such as (A*) , (B*), (R)  

and (, the temperature distribution boosts 

throughout the regime as shown in Figs. 17- 20. 

 

 
Fig. 2. Outcome of M on velocity profile.  

 
Fig. 3. Outcome of M on temperature profile.  

 
Fig. 4. Outcome of M on Mass profile.  
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Fig. 5. Outcome of Kp on velocity profile. 

  

 
Fig. 6. Outcome of Kp on temperature profile.  

 

 
Fig. 7. Outcome of Kp on mass profile.  

 
Fig. 8. Outcome of K on velocity profile.  

 

 
Fig. 9. Outcome of K on temperature profile.  

 

 
Fig. 10. Outcome of K on mass profile.  
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Fig. 11. Outcome of Ec on temperature profile. 

Fig. 12. Outcome of Pr on temperature profile. 

Fig. 13. Outcome of Pr on mass profile. 

Fig. 14. Outcome of Nb on mass profile. 

Fig. 15. Outcome of Nt on temperature profile. 

Fig. 16. Outcome of Nt on mass profile. 
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Fig. 17. Outcome of A*on temperature profile.  

 

 
Fig. 18. Outcome of B* on temperature profile. 

  

 
Fig. 19. Outcome of R on temperature profile.  

 
Fig. 20. Outcome of  on temperature profile. 

  

 

Fig. 21. Outcome of w on temperature profile.  

 

 

Fig. 22. Outcome of w on mass profile.  
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Fig. 23. Outcome of Sc on mass profile. 

Fig. 24. Outcome of Knon mass profile. 

Fig. 25. Outcome of Bi 1 on temperature profile. 

Fig. 26. Outcome of Bi 2 on temperature profile. 

Fig. 27. Outcome of Bi 2 on mass profile. 

Fig. 28. Outcome of A on temperature profile. 
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Fig. 29. Outcome of A on mass profile. 

Fig. 30. Outcome of Gr on velocity profile. 

Fig. 31. Outcome of Gr on temperature profile. 

Fig. 32. Outcome of Gr on mass profile. 

Fig. 33. Outcome of S on temperature profile. 

Fig. 34. Outcome of S on temperature profile. 
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Table 1. Skin friction coefficient, local Nusselt number and local Sherwood number for the different value of 

physically parameter. 

 
A M Kp K Gr S Pr R   w  

Sc Kn 
-

1
2Ref xC  

1
2Nu Rex


 

1
2Sh Rex


 

0.0            3.4881 0.4987 0.0954 

0.1            3.4989 0.5774 0.0955 

0.2            3.5090 0.6428 0.0956 

 0           3.3964 0.7243 0.0954 

 2           3.5933 0.4509 0.0956 

 5           3.8344 0.1543 0.0959 

  0.1          3.4989 0.5774 0.0955 

  0.2          2.8490 0.6173 0.0957 

  0.3          2.5439 0.6345 0.0958 

   0.5         3.5802 0.5933 0.0956 

   1.0         4.0041 0.6132 0.0957 

   1.5         4.5230 0.6277 0.0958 

    0.0        3.5530 0.5617 0.0955 

    0.5        3.4989 0.5774 0.0955 

    1.0        3.4445 0.5903 0.0955 

     -.2       3.2558 0.3934 0.0935 

     0.0       3.3248 0.4331 0.0942 

     0.2       3.3943 0.4833 0.0948 

      2      3.4989 0.5774 0.0955 

      3      3.5060 0.7731 0.0953 

      4      3.5114 0.9269 0.0952 

       0.0     3.5209 0.7680 0.0948 

       0.5     3.4989 0.5774 0.0955 

       1.0     3.4914 0.5252 0.0957 

        0.5    3.4979 0.5522 0.0955 

        1.0    3.4969 0.5241 0.0956 

        1.5    3.4960 0.4992 0.0956 

         1.0   3.5140 1.0625 0.0950 

         1.5   3.5072 0.8296 0.0953 

         2   3.4989 0.5774 0.0955 

          1.0  3.4945 0.5730 0.0926 

          1.5  3.4973 0.5755 0.0945 

          2.0  3.4989 0.5774 0.0955 

           1.0 3.5002 0.5787 0.0964 

           1.5 3.5006 0.5793 0.0967 

           2.0 3.5008 0.5798 0.0969 
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Fig. 35. Outcome of S on mass profile. 

Table 2. Comparison of ''(0)f  for different values M in the absence of the parameters S =R =Kp =Gc =Gr 

=Pr =Nb =Nt =A* =B* =Ec =M =0, w =1, 1 2,Bi Bi  . 

M Andersso

n et al. 

[45] 

Mukhopad

hyay et. al 

[46] 

Palani et al 

[47] 

Prasad et 

al. [48] 

Present study 

0.0 1.000000 1.000173 1.00000 1.000174 1.000000059 

0.5 1.224900 1.224753 1.224745 1.224753 1.224744871 

1 1.414000 1.414450 1.414214 1.414449 1.414213562 

1.5 1.581000 1.581140 1.581139 1.581139 1.581138830 

2 1.732000 1.732203 1.732051 1.732203 1.732050808 

Table 3. Comparison of
1

2Ref xC  for different values  and K in the absence of the parameters S =R =Kp =Gc =Gr 

=Pr =Nb =Nt =A* =B* =Ec =M =0, w =1 1 2,Bi Bi  . 

1
2Ref xC

1
2Ref xC

  Javed et. 

al [2] 

Hayat 

et. al [3] 

Present 

studdy 
  Javed et 

al [2] 

Hayat 

et. al [3] 

Present 

studdy 

0.0 0.0 −1.0954 −1.0954 -1.095445 0.0 0.0 −1.1832 −1.1832 -1.1832166

0.1 0.2 −1.0940 −1.0940 -1.094507 0.1 0.4 −1.1808 −1.1809 -1.1881039

0.2 0.2 −1.0924 −1.0925 -1.090528 0.2 0.4 −1.1784 −1.1784 -1.1784883

0.3 0.2 −1.0909 −1.0909 -1.090507 0.3 0.4 −1.1776 −1.1760 -1.1759658

0.4 0.2 −1.0894 −1.0894 -1.089445 0.4 0.4 −1.1735 −1.1735 -1.1741323

0.5 0.2 −1.0878 −1.0878 -1.087339 0.5 0.4 −1.1710 −1.1710 -1.1715835

0.6 0.2 −1.0862 −1.0863 -1.086188 0.6 0.4 −1.1684 −1.1684 -1.1984078

0.7 0.2 −1.0847 −1.0847 -1.083988 0.7 0.4 −1.1658 −1.1658 -1.1658123

0.8 0.2 −1.0830 −1.0830 -1.083745 0.8 0.4 −1.1631 −1.1631 -1.1632866

0.9 0.2 −1.0814 −1.0814 -1.081454 0.9 0.4 −1.1603 −1.1603 -1.1603252

1.0 0.2 −1.0798 −1.0798 -1.079115 1.0 0.4 −1.1576 −1.1576 -1.1577162
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Figs. 21-22 show the variation of   and 

profiles with (w) value for fixed values of 

another parameter. Heat of the fluid enhances 

with the enhancement of (w) in Fig. 21 and 

reverse outcome shows concentration 

distribution in Fig. 22. 

Fluidconcentration suppresses with the 

enhancement of (Sc) in Fig. 23. Physically, 

increasing the values of (Sc) extends to a 

decline in the mass flux of the fluid. This is 

caused by the thinning of the mass flux of the 

fluid with the species diffusion; and the (Sc) 

parameter is contrariwise proportional to the 

diffusion coefficient. 

From Fig. 24 the mass profile is plotted for the 

different values of the (Kn) when the other 

parameters are fixed. Concentration flux of 

fluid decreases as (Kn) enhances. 

Fig. 25 shows the variation of   profiles with 

( 1Bi ) value for fixed values of another 

parameter. The temperature distribution of the 

fluid rises with the enhancement of ( 1Bi )in Fig. 

25. 

Figs. 26-27 show the variation of   and   

profiles with ( 2Bi ) value for fixed values of 

another parameter. The temperature and 

concentration distribution of the fluid rise with 

the enhancement of ( 2Bi ) in Figs. 26-27. 

Figs. 28-29 show the variation of   and   

profiles with (A) for fixed values of another 

parameter. Heat and concentration flux of the 

fluid grow with the enhancement of (A) in Figs. 

28- 29.

Figs. 30-32 show the variation of 'f ,   and 

 profiles with (Gr) for fixed values of

another parameter. The momentum of the fluid 

rises with the enhancement of (Gr) in Fig. 30. 

In Figs. 31 and 32, the heat and concentration 

distribution of the fluid decrease with the 

enhancement of (Gr).  

Figs. 33-35 show the variation of 'f ,   and 

 profiles with (S) value for fixed values of

another parameter. The velocity, heat and 

concentration distribution of the fluid decrease 

with the enhancement of (S) in Figs. 33- 35. 

Table 1 shows the outcome of various physical 

parameters on 
1

2RefC , 
1

2RexNu


and 

1
2RexSh



. Table 2 and Table 3 show the

comparison of the present results under some 

special conditions with the existed results of 

Javed et.al [2], Hayat et. al [3], Prasad et al. 

[48], Andersson et al. [45], Mukhopadhyay et.

al [46], and Palani et al [47], Prasad et al. [48].

4. Conclusions

In this  study, the influence of various pertinent 

parameters for Powell-Eyring fluid flow over a 

permeable inclined stretching has been 

examined numerically. Non–linear DEs 

extricates by R–K–Fehlberg 4th– 5th order with 

shooting scheme. The results acquired for 

velocity, heat and mass profile for various 

parameters are illustrated graphically. From the 

present study present it is observed that: 

 The heat transfer rate is decreased whereas the

fluid flow rate is distinctly boosted with an

enhancement in (K) and (Gr); whereas reverse

outcomes are shown forheat and momentum

profile enhancement in (M) and (Kp).

 The
1

2RefC is decreased whereas the 

1
2RexNu



and
1

2RexSh


are distinctly boosted 

with an enhancement in (K). 

 The skin friction coefficient is declined

whereas the Sherwood number is distinctly

boosted with an enhancement in (A) and (M).
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