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The paper discusses the effect of compressor characteristic on surge phenomena 

in axial flow compressors. Specifically, the effect of nonlinearities on the 

compressor dynamics is analyzed. For this purpose, generalized multiple time 

scales method is used to parameterize equations in amplitude and frequency 

explicitly. The pure surge case of the famous Moore-Greitzer model is used as 

the basis of the study. The compressor characteristic used in the Moore-Greitzer 

model is generalized to evaluate the effect of the parameters involved. 

Subsequently, bifurcation theory is used to study the effect of nonlinear 

dynamics on surge behavior. It has been found that the system exhibits 

supercritical Hopf bifurcation under specific conditions in which surge 

manifests as limit cycle oscillations. Key parameters have been identified in the 

analytical solution which govern the nonlinear dynamic behavior and are 

responsible for the existence of limit cycle oscillations. Numerical simulations 

of the Moore-Greitzer model are carried out and found to be in good agreement 

with the analytical solution  
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1. Introduction

Compressors and pumping systems are a critical 

organ of any turbine based propulsion system. 

The dynamics of the compression systems is 

prone to two types of unsteady aerodynamic 

instabilities, stall and surge [1]. The occurrence 

of these instabilities generates safety critical 

scenarios. Moreover, the prediction of such 

instabilities during the preliminary design stage 

is an active area of research. Surge is basically a 

large-amplitude, one-dimensional and 

axisymmetric flow instability, whereby the 

whole engine exhibits fluctuations of mass flow 

rate. Surge is a chronological process, and its 

first episode is usually the stall (which can be 

either progressive or abrupt in nature) as 

described in [2]. These fluctuations induce 

undesirable vibrating stresses on compressor 
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blades and can result in reduced off-design 

performance and structural damage [3]. 

The seminal work pertaining to the analytical 

prediction of surge phenomena can be attributed 

to Greitzer [4]. In this study, the transport 

equations were applied to the control volume 

containing compressor and a set of differential 

equations were developed that model the 

transient behavior of compressor instability. 

Subsequently, Moore and Greitzer [5, 6] 

presented an improved model involving a 

smooth cubic compressor characteristic that 

demonstrated separate modeling of stall and 

surge. The mathematical model constituted a set 

of three nonlinear partial differential equations. 

The cubic characteristic used in the original 

model was obtained via regression analysis of 

experimental results for a three-stage low speed 

axial compressor. These partial differential 

equations were then converted to ordinary 

differential equations via a Galerkin procedure. 

This subsequent set of three coupled nonlinear 

ordinary differential equations is recognized as 

Moore-Greitzer model. 

The readers are encouraged to go through the 

reviews by Greitzer [7, 8], Longley [9], Gu et al. 

[10] and Paduano et al. [11]. McCaughan [12] 

applied nonlinear dynamic analysis tools on the 

Moore-Greitzer model to understand surge 

phenomena. This idea was further pursued with 

the application of control theory by Abed et al. 

[13] and Liaw and Abed [14], Willems et al. 

[15], Shehata et al. [16], Fontaine et al. [17], 

Sheng et al. [18] and Ziabari et al.[19]. The 

analysis carried out by Hos et al. [20] gave 

special attention to global bifurcations. Recent 

work by Malathi and Kushari [21] examines the 

effect of change in geometric parameters on 

axial compression systems using the Moore-

Greitzer model. 

It is worth mentioning that the existing Moore-

Greitzer model involves a specific trend of 

compressor characteristic coefficient that is 

developed from a three-stage compression 

system. These characteristic curve coefficients 

are derived based on regression modeling. 

Although the qualitative trend remains the same, 

a minor perturbation in quantitative behavior can 

lead to different system dynamics. In this work, 

a generalized case of compressor characteristic 

curve in Moore-Greitzer model is considered.  

The nonlinear analytical technique identified to 

solve the problem is known as multiple time 

scales (MTS) method based on the work of 

Ramnath [22, 23]. The MTS method belongs to 

the family of perturbation methods. It is an 

asymptotic approach to approximate the physical 

problems that involve perturbations about 

nominal states specifically in limiting cases. In 

the present work, the method of MTS has been 

applied on the pure surge case of Moore-Greitzer 

model [5]. Subsequently, an approximate closed 

form analytical solution for the pure surge case 

is generated. Finally, bifurcation analysis is done 

to get a qualitative insight into the solution. Such 

solutions have an advantage over usual 

numerical solutions in that the important 

parameters and their effects on limit-cycle 

characteristics, such as amplitude and frequency, 

can be easily seen in explicit functional 

relationships. The results are validated with the 

numerical simulations in the end. 

 

2. Problem formulation 

 

The complete Moore-Greitzer model along with 

its derivation and assumptions worked out 

earlier [5, 24] is not being reproduced here for 

brevity. The surge phenomenon is governed by a 

nonlinear second order ordinary differential 

equation as shown in Eq. (1): 

 
𝑑2𝛷

𝑑𝜉2 +
1

𝑙𝐶
(

1

4𝐵2𝑘𝑇
−

𝑑𝜓𝐶

𝑑𝛷
)

𝑑𝛷

𝑑𝜉
+

1

4𝑙𝐶
2𝐵2 [(𝛷 − 𝛷) −

𝛹−𝛹

𝑘𝑇
] = 0                                                               (1)    

 

where 𝛷 ≡  𝛷(𝜉) is the dimensionless flow 

coefficient (averaged over angle); 𝜉 is 

dimensionless time variable (for wheel to rotate 

one radian);  𝑙𝐶 is (dimensionless) total length of 

compressor and ducts; 𝑩 is measure of the ratio 

of pressure forces to inertial forces for a given 

rate of mass flow change (Greitzer’s Parameter);  

𝑘𝑇 is the linear throttle coefficient; 𝜓𝐶 is the 

axisymmetric pressure-rise coefficient;  𝛷 is the 

flow coefficient averaged over both angle and 

time; 𝛹 ≡  𝛹(𝜉) is the total-to-static pressure-

rise coefficient, and 𝛹  is the time-averaged 
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value of 𝛹. The throttle slopes are generally 

steep in nature. Moreover, the throttle mass 

excursion and length are significantly smaller 

than the compressor lengths. Therefore, a 

common assumption found in literature is to treat 

the throttle slope,𝑘𝑇 → ∞. Further, in Eq. (2) 𝛷 
is a constant and the term 

1

4𝑙𝐶
2𝐵2 𝛷 is a non-

homogeneous term. It does not affect the 

properties of the solution qualitatively. It merely 

shifts the solution on the flow coefficient 

(𝛷)axis by an amount equal to 
𝛷

4𝑙𝐶
2𝐵2. After 

shifting the mean values, �̄� 𝑎𝑛𝑑 �̄� to origin of 

the axes, Eq. (1) can be represented as: 

 

  
𝑑2𝛷

𝑑𝜉2
+

𝛷

4𝑙𝐶
2𝐵2

=
1

𝑙𝐶

𝑑𝜓𝐶

𝑑𝛷

𝑑𝛷

𝑑𝜉
                       (2)                     

       

The right-hand side of the Eq. (2) represents the 

system damping; where 
𝑑𝜓𝐶

𝑑𝛷
  is the slope of the 

compressor characteristic. The compressor 

characteristic is a plot between two flow 

properties, pressure coefficient and flow 

coefficient while the fluid passes through the 

compressor at different compressor speeds. This 

plot is usually obtained experimentally, and 

contains significant information regarding the 

compressor’s design. The compressor 

characteristic, in the Moore-Greitzer, has been 

approximated as a cubic polynomial, as follows: 

 

𝜓𝐶 ≡ 𝜓𝐶(𝛷) = 𝜓𝐶 𝑂
+ 𝐻 [1 + 𝛼 (

𝛷

𝑊
− 1) +

𝛽 (
𝛷

𝑊
− 1)

3
]                                                         (3)

  

The meanings of various parameters in Eq. (3) 

can be understood from Fig. 1.  

In Moore Greitzer model, the values 𝛼 and 𝛽  are 

determined from the experimental data for a 

three-stage compression system. Specifically, 

𝛼 =
3

2
 and 𝛽 = −

1

2
 are approximated through 

regression analysis. It should be noted that the 

parameters 𝛼 and 𝛽 vary for each compressor 

and are prone to uncertainty.  

Therefore, in this work, these two parameters are 

treated in a more generalized way and a closed 

form expression is derived based on these 

generalizations. The variation of the 

characteristic curve subject to parametric 

variation of 𝛼  or  𝛽  is shown in Fig. 2(a and b). 

It can be observed that under small variations, 

the generic shape of the characteristic curve is 

preserved. However, the onset, amplitude and 

frequency of the surge can dramatically change 

as will be seen ahead. Moreover, 𝛽 has more 

pronounced effect on the shape of compressor 

characteristic as compared to 𝛼. Differentiating 

compressor characteristic with flow coefficient, 

we get: 

 
𝑑𝜓𝐶

𝑑𝛷
= (

3𝛽𝐻

𝑊3 ) 𝛷2 + (
−6𝛽𝐻

𝑊2 ) 𝛷 +
𝐻

𝑊
(𝛼 +

3𝛽)                                                                          (4)        
 

Under specific values of  and   (originally 

proposed), the last term in Eq. (4) goes to zero. 

Substituting Cd

d




  from Eq. (4) in Eq. (2) for 

the generalized case: 
 

 
𝑑2𝛷

𝑑𝜉2 +
1

4𝑙𝐶
2𝐵2 𝛷 =

1

𝑙𝐶
{(

3𝛽𝐻

𝑊3 ) 𝛷2 + (
−6𝛽𝐻

𝑊2 ) 𝛷 +

𝐻

𝑊
(𝛼 + 3𝛽)}

𝑑𝛷

𝑑𝜉
                                                  (5)   

 

Eq. (5) can also be represented in following 
simplified form 
 
 �̈� + 𝜔2𝛷 = 𝐾1𝛷2�̇� + 𝐾2𝛷�̇� + 𝐾3�̇�                    (6)
    

where 𝜔 =
1

2𝑙𝐶𝐵
, 𝐾1 =

3𝛽𝐻

𝑙𝐶𝑊3,𝐾2 =
−6𝛽𝐻

𝑙𝐶𝑊2 , and 

𝐾3 =
𝐻

𝑙𝐶𝑊
(𝛼 + 3𝛽). It can be noted that 𝐾3 = 0 

if 3

2
 =  and 1

2
 = − . Eq. (6) forms the 

generalized governing dynamics for further 

surge analysis.  

 

 
Fig. 1. Axisymmetric cubic characteristics for 

Moore-Greitzer model. 
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Fig. 2. Effect of varying (a) α and (b) β on

compressor characteristic curve. 

3. Results and discussion

The dynamic analysis of surge is done using 
MTS method. The MTS method is an asymptotic 
approach to generate approximate analytical 
closed form solutions specifically for limiting 
cases. The readers are referred to the details of 
this technique in [22]. The technique has been 
used extensively by Go [25-28] for studying the 
wing rock problem and Maqsood & Go [29] for 
aircraft longitudinal dynamics using 
aerodynamic vectoring and Ahmed et al. [30] for 
pressure oscillations in solid rocket motors.  
Here, the MTS analysis is applied to the axial 
compression system. The parameterization of 
the dynamic equation (see Eq. (6)) in terms of 

small perturbation parameter is done to carry 

out the MTS analysis. 

�̈� + 𝜔2𝛷 = 𝜀(𝐾1𝛷2�̇� + 𝐾2𝛷�̇� +

𝐾3�̇�)  (7)  

where 0 < 𝜀 << 1.The MTS method is now 
invoked. Two-time scales are selected in this 
analysis and, therefore, the non-dimensional 

time 𝜉 is expanded in this form:

 𝜉 → {𝜏𝑜, 𝜏1};   𝜏𝑜 = 𝜉;   𝜏1 = 𝜀𝜉       (8) 

The dependent variable is now expanded in the 
following manner:  

𝛷(𝜉) = 𝛷𝑜(𝜏𝑜, 𝜏1) + 𝜀𝛷1(𝜏𝑜, 𝜏1) + 𝑂(𝜀2)   (9)

Substituting the first and second order 
derivatives in the dynamics of flow coefficient, 
the expanded version becomes: 

(
𝜕2

𝜕𝜏𝑜
2

+ 𝜀
𝜕2

𝜕𝜏𝑜𝜕𝜏1
+ 𝜀

𝜕2

𝜕𝜏1𝜕𝜏𝑜
) (𝛷𝑜 + 𝜀𝛷1) 

+𝜔2(𝛷𝑜 + 𝜀𝛷1))

 = 𝜀𝐾1(𝛷𝑜
2 + 𝜀2𝛷1

2 + 2𝜀𝛷𝑜𝛷1) (
𝜕

𝜕𝜏𝑜
+

𝜀
𝜕

𝜕𝜏1
) (𝛷𝑜 + 𝜀𝛷1) + 𝜀𝐾2(𝛷𝑜 + 𝜀𝛷1) (

𝜕

𝜕𝜏𝑜
+

𝜀
𝜕

𝜕𝜏1
) (𝛷𝑜 + 𝜀𝛷1)  + 𝜀𝐾3 (

𝜕

𝜕𝜏𝑜
+ 𝜀

𝜕

𝜕𝜏1
) (𝛷𝑜 +

𝜀𝛷1)  (10) 

Equating order by order analysis of  on both 

sides in Eq. (10) will reveal several equations. 

The zeroth order and first order approximations 

are only considered in the analysis. The zeroth 

order approximation can be written as: 

𝜀0:      
𝜕2𝛷𝑜

𝜕𝜏𝑜
2 + 𝜔2𝛷𝑜 = 0  (11) 

Correspondingly, the solution of Eq. (11) can be 

written as 

𝛷𝑜(𝜏𝑜, 𝜏1) = 𝐴(𝜏1) 𝑠𝑖𝑛 𝜂 
𝜂 ≡ 𝜂(𝜏𝑜, 𝜏1) = 𝜔𝜏𝑜 + 𝑃(𝜏1)  (12)

where A is the amplitude, 𝜂 is the phase angle

and P is the phase correction of the solution. It 

can be seen that the amplitude and phase of the 

solution vary with the slow time scale 
1 . Once 

these variations are known, the zeroth order 

approximation to the flow coefficient dynamics 

can be considered complete. Now the first order 

approximation from Eq. (10) is expressed as: 

𝜀1: 
𝜕2𝛷1

𝜕𝜏𝑜
2 + 𝜔2𝛷1 = 𝐾1𝛷𝑜

2 𝜕𝛷𝑜

𝜕𝜏𝑜
+ 𝐾2𝛷𝑜

𝜕𝛷𝑜

𝜕𝜏𝑜
+

𝐾3
𝜕𝛷𝑜

𝜕𝜏𝑜
− 2

𝜕2𝛷𝑜

𝜕𝜏𝑜𝜕𝜏1
 (13)  

(a) 

(b)
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The variation of the amplitude and phase with 

the slower time scale can be found by 

substituting the solution (Eq. (12)) to the ( )O

group of Eq. (10) that is represented as: 

𝜕2𝛷1

𝜕𝜏𝑜
2

+ 𝜔2𝛷1

= 𝐾1(𝐴2 𝑠𝑖𝑛2 𝜂)(𝜔𝐴 𝑐𝑜𝑠 𝜂)
+ 𝐾2(𝐴 𝑠𝑖𝑛 𝜂)(𝜔𝐴 𝑐𝑜𝑠 𝜂) + 𝐾3(𝜔𝐴 𝑐𝑜𝑠 𝜂)

− 2𝜔
𝑑𝐴

𝑑𝜏1
𝑐𝑜𝑠 +2𝜔𝐴

𝑑𝑃

𝑑𝜏1
𝑠𝑖𝑛 𝜂  (14) 

Using trigonometric identities, Eq. (14) can be 

alternatively written as: 

𝜕2𝛷1

𝜕𝜏𝑜
2 + 𝜔2𝛷1 = (

𝐾1𝜔𝐴3

4
+ 𝐾3𝜔𝐴 −

2𝜔
𝑑𝐴

𝑑𝜏1
) 𝑐𝑜𝑠 𝜂 + 2𝜔𝐴

𝑑𝑃

𝑑𝜏1
𝑠𝑖𝑛 𝜂 −

𝐾1𝜔𝐴3

4
𝑐𝑜𝑠 3 𝜂 +

𝐾2𝜔𝐴2

2
𝑠𝑖𝑛 2 𝜂  (15) 

If the coefficients of first harmonic terms on the 

right-hand side of Eq. (15) are non-zero, secular 

terms will appear and collapse the uniformity of 

the solution. The secular terms, 𝜏𝑜 𝑐𝑜𝑠 𝜂 and

𝜏𝑜 𝑠𝑖𝑛 𝜂, will be unbounded as time approaches

infinity. Therefore, the terms on the right hand 

side involving cos𝜂 and sin𝜂  must be put equal 

to zero in order to maintain the uniformity of the 

solution. This obtains: 

𝑑𝐴

𝑑𝜏1
= 𝜁𝐴3 + 𝜎𝐴 ⇒

𝑑𝑃

𝑑𝜏1
= 0                           (16)               

where 𝜁 =
𝐾1

8
and  𝜎 =

𝐾3

2
. It can be noted that 

the phase angle variable is not a function of 1
; implying there is a constant magnitude of phase 

correction in the phase equation. The equilibria 

for the amplitude equation exist at 𝐴 = 0 and 

𝐴 = √
−𝜎

𝜁
. These equilibria predict the stability 

properties of the solution. The equilibria consist 

of the 𝜎 axis and the parabola  𝜎 = −𝜁𝐴2. These

equilibria are plotted in Fig. 3 for the values of  
0  . 

It should be noted that 0   is not possible 

because 𝜁 =
(3𝛽𝐻)

(8𝑙𝐶𝑊3)
 and  𝛽 cannot have positive

value. 

Fig. 3 implies that finite amplitude limit cycle 

oscillations (LCOs) appear and disappear in the 

system as  𝜎 is varied across = 0 . This 

phenomenon is termed as Hopf bifurcation. In 

fact, for 𝜁 < 0 it is supercritical Hopf 

bifurcation, since the new branch of equilibria 

exists only for the values of 𝜎  which are larger 

than that at the onset of bifurcation. Furthermore, 

the limit cycle is stable only when 𝜁 < 0.. Thus, 

the amplitude of sustained oscillations is given 

by:  

𝐴 = √
−𝜎

𝜁
     (17) 

By separating the variables and using partial 

fraction expansion, Eq. (17) can be solved to get 

the complete (transient) amplitude of surge 

oscillations as: 

𝐴(𝜏1) = √
𝜎𝐶𝑒2𝜎𝜏1

𝐶2−𝜁𝐶𝑒2𝜎𝜏1
 (18) 

where  C  is a constant that will be determined 

by the initial conditions. The solution of phase 

correction equation can be written as: 

 𝑃(𝜏1) = 𝐶  (19) 

From the closed form analytical solution, it can 

be deduced that 𝜁 and 𝜎 are the key parameters 

that affect the surge dynamics in terms of the 

onset and the appearance of limit cycles. Once 

  is expressed in terms of more intuitive 

quantities, it becomes: 

𝜎 =
𝐻(𝛼+3𝛽)

𝑙𝐶𝑊
(20) 

whereas,    is expressed as: 

𝜁 =
3𝛽𝐻

8𝑙𝐶𝑊3 (21) 

Fig. 3. Equilibria of amplitude equation for  ζ<0. 
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The scope of this study is in the behavioral 

change of compressor characteristic, represented 

by 𝛼 and 𝛽. It should be noted that all other 

parameters in Eqs. (20 and 21) are positive 

therefore the signs of 𝜁and 𝜎 are explicitly

dependent on compressor characteristic curve 

quantities. In order to preserve the qualitative 

shape of the compressor characteristic, the value 

of  should always be negative as elaborated in 

Fig. 1 and 2 as well. The occurrence of limit 

cycle (surge) is subject to positive sign of and 

that occurs only when the condition (𝛼 + 3𝛽) >
0, is satisfied. 

4. Comparison with numerical simulations

In order to approximate the accuracy of 

analytical results obtained in Eqs. (18 and 19), a 

set of two initial conditions is required. For flow 

coefficient 𝛷 initial condition as given in [22] 

are 𝛷(0) = 0.5 and �̇�(0) = 0. The values of 

other parameters also taken from [22] are 𝐻 =
0.18, 𝑊 = 0.25, 𝑙𝐶 = 8, 𝐵 = 1 and for the

numerical simulations, fourth-order Runge-

Kutta method is used to integrate the governing 

equation of surge (Eq. (6)). Subroutine ode45 of 

MATLAB® is used for this purpose. A 

simulation of surge phenomena is shown in Fig. 

4. 

It is evident that the analytical solution is in well 

agreement with the numerical solution. It should 

be noted that there is some discrepancy in the 

transient behavior but an excellent agreement for 

the steady state dynamics demonstrates the 

adequacy of the analytical model derived in this 

paper. 

Fig. 4. (a) Comparison of numerical and analytical 

solutions, (b)Phase portrait under given initial 

conditions 

5. Conclusions

The effect of compressor characteristic on surge 
phenomena in axial flow compressors is 
analyzed in detail. The generalized effect of 
compressor characteristic under cubic 
nonlinearity on the behavior of limit-cycle 
oscillations is considered. Using the multiple 
time scales method, approximate solutions are 
obtained, and from these solutions, stability 
criterion for each case as well as the necessary 
conditions for sustained limit-cycle-oscillations 
are derived. It is observed that the behavior of 
surge oscillations is significantly dependent on 
the choice of compressor characteristic. The 
amplitude equation gives birth to supercritical 
Hopf bifurcation phenomena. MTS has 
successfully captured the qualitative and 
quantitative aspects of the phenomena. The 
analytical solution obtained via MTS is well in 
agreement to the numerical results. Such 
knowledge can be very useful in turbomachinery 
design to avoid surge associated problems 
during conceptual design phase. 
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