Linear Thermal Radiation Effects on MHD Viscoelastic fluid flow through porous moving plate with first order chemical reaction, variable temperature and concentration

K. Suneetha, S. M. Ibrahimb,*, P. Vijaya Kumarb and K. Jyothsnac

aResearch Scholar, Department of Mathematics, K L Educational Foundation Vaddeswaram, Guntur(Dt), 502522, India
bDepartment of Mathematics, GITAM (Deemed to be University, Visakhapatnam, Andhra Pradesh-530045., India
cDepartment of Basic Sciences and Humanities, VIGNAN’s Institute of Engineering for Women, Visakhapatnam, Andhra Pradesh-530049, India

Article info:

Abstract
Due to the presence of rheological flow parameters and viscoelastic properties, non-Newtonian fluid structure is intricate and enticing to investigate. The flow has been made by considering variable temperature and radiation effects for the magnetohydrodynamic viscoelastic liquid past a moving vertical plate in a porous state. First order homogeneous chemical reaction, Soret number, variable temperature and concentration has been taken into account. The leading mathematical proclamation is handled analytically by perturbation strategy. The central aspiration of this work is to explore the consequences of sundry parameters on fluid flow, thermal boundary and concentration profiles. Diagram and tabular trends of the profiles are delineated with apropos parameters. Our sketches illustrate that the velocity profile exposes decelerate scenery with escalating \(M \) due to the Lorentz force in the opposite direction of flow. Temperature profile is getting accelerated owing to thermal radiation and concentration distribution is declined by boosting up the chemical reaction and Schmidt number. Diminishing nature of momentum boundary layer with \(Sc \) is also portrayed. Furthermore, at the end of this paper the effects of different parameters on skin friction coefficient and local Nusselt number are investigated.

Nomenclature

\begin{itemize}
 \item \(A \) suction parameter
 \item \(B_0 \) magnetic field intensity (N m\(^{-1}\) A\(^{-1}\))
 \item \(C^* \) fluid concentration
 \item \(C_\infty \) free stream dimensional concentration
 \item \(E \) visco-elastic parameter
 \item \(D^* \) Brownian diffusion coefficient (m\(^2\) s\(^{-1}\))
 \item \(Gm \) modified Grashof number
 \item \(Gr \) Grashof number
\end{itemize}

*Corresponding author
Email address: a.author@emailaddress.com
flow has captured great attention by the current research community. The probe of non-Newtonian fluid nature turns out to be more strenuous as opposed to Newtonian fluid because the prior one does not show a linear relationship between shear stress and strain. Beard and Walters [1] first perceived the boundary layer analysis of idealized visco-elastic fluid. Natural convection flow between two vertical parallel plates was proposed by Singh et al. [2]. Sajid et al. [3] developed a fully mixed convection flow between two permeable vertical walls in visco-elastic. The importance of visco-elastic fluid flow in presence of different parameters has studied by many authors [4-14]. Radiative dissipative MHD natural convection flow under the influence of heat source and sink was derived by Suneetha et al. [15].

Heat may be transferred from one space to another space without any intervening medium. This procedure is known as thermal radiation. Linear thermal radiation has a variety of applications in industry like polymer production, Nuclear reactors, thermal furnaces etc. Thermal radiation is a point of departure which is prolific in research in behalf of its applicability in fields like space technology and the schemes that hold high temperatures. Reddy et al. [16] studied the proposed the magnetohydrodynamic free convection flow behaviour in a porous medium with constant heat and mass flux under thermal radiation and chemical reaction. Ahmed [17] and Sandeep [18] observed the nature of chemically reactive flow over a vertical plate under different background.

In current research prodigious attempt has been acclimated on heat source or sink in perspective of its essence in heat transfer analysis. Heat source/sink effects possession over moving fluid is imperative in outlook of more than a few bodily cases such as fluids undergo exothermic or endo-thermic substance response. In recent past, great care has been taken to audit the repercussion of chemical reaction and heat source (or sink) on different flow types [19-23].

The grasp on this subject assist to reconcile abundant biological problems. Considering the model of visco-elastic fluid, many scientists have solved problems of engineering interests viz. In the last few years, many investigations

1. Introduction

Being multifaceted and having an ample scope of application in industry, non-Newtonian fluid
have been accomplished regarding the ongoing work. In most technology, in production and actual real-life situations, there exist flows which are combined by the heat and mass variation. The variation in heat (mass) transfer changes the rate of heat (mass) transfer. In industries, a lot of transfer process be real in which heat and concentration transfer take position. The occurrence of heat transfer and mass transfer normally exists in many chemical procedures involved in industries namely food and polymer process, etc. Chemical reaction may be defined in two ways as homogeneous and heterogeneous process. It depends whether the action of chemical reactor takes in single or multiple phases. There are flows in countless science engineering and real-life problems that are caused by the difference in first order and higher order chemical reaction. The changes in the chemically reactor, changes the rate of mass transfer. In industries, a huge number of applications where chemical procedures involved in industries, namely food and polymer process, etc. Stangle and Aksay [37] carried out an excellent theoretical work on blinder removal process by taking disordered porous materials. The stream of viscous flow because of exponentially accelerated isothermal sheet with chemical reaction was studied by Muthucumaraswamy et al. [38].

Soret can be defined as thermo-diffusion affect, for illustration, was utilized in isotope variation and combination of the fluids having nominal molecular load (Hydrogen, Helium) and of state molecular load (Nitrogen, Oxygen). Hari Mohan [39] presented the thermo diffusion influence on the rotator thermo solutal, over the vernonis kind of convection flow. Plattern and Charepeyer [40] represented the Soret effect of oscillatory flow in Bernard cell. Hydromagnetic field of natural convection flow of Water’s memory with Suction, Soret and Heat sink was reported by Pavan Kumar et al.[41]. David Jacqmin [42] derived parallel flows with thermo-diffusion affect in slanted cylinders. Hurle and Jakeman [43] presented significance of the thermo-diffusion consequences on the Rayleigh-Jeffrey’s systems.

In the light of the above studies, this segment of research is intended prove the consequences of heat generation or absorption and first order chemical reaction effects on laminar boundary layer flow through porous medium with thermal radiation, variable temperature and concentration. The dimensionless equations are then solved analytically using perturbation technique. The behaviors of numerous parameters on the physical quantities have been examined.

2. Mathematical Descriptions

A two-dimensional unsteady MHD flow of an incompressible electrically conducting fluid over a semi-infinite vertical permeable moving plate permeable stretching surface in presence of thermal radiation is considered. The system of coordinate is taken in way that x-axis is measured along the sheet and y-axis is orthogonal to it as presented in figure 1. Induced magnetic field is negligible as compared to the applied magnetic-field. The effects like non-linear radiative and variable thermal may be expected for affect of the heat transfer process in the equation of heat, while the variable molecular diffusivity is implicit to affect the mass transfer phenomenon. Assume that all the fluid regions are taken constant but not density variable. Under the above statement and considering Boussinesq estimates the steady laminar leading equations of the flows of continuity, momentum, heat and concentration for a flow We assume that the equations are subjected to visco-elastic fluid flow proposed by Babu et al. [44]. In the absence of the gradient of pressure, one can obtain the following equations for mass, momentum energy and concentration...
Acknowledging a self-similar solution of the form

\[u = \frac{u^*}{V_0}, \quad y = \frac{V_0 y^*}{u^*}, \quad t = \frac{V_0^2 y^*}{u^*}, \quad u_p = \frac{u_p^*}{V_0}, \]

\[n = \frac{n^*}{V_0^2}, \quad \theta = \frac{T^*-T_w}{T_w-T_n}, \quad C = C^*-C_\infty, \]

(7)

the basic field Eqs. (2-4) can be expressed in non-dimensional form as

\[\frac{\partial u^*}{\partial t} + \left(1 + \varepsilon Ae^m\right) \frac{\partial u^*}{\partial y} = \frac{\partial^2 u^*}{\partial y^2} \left(\sigma B_0^2 + \frac{\rho}{K} \right) u^* \]

\[+ Gr\theta + GmC - E \left[\frac{\partial^2 u^*}{\partial y^2} \right] \left[1 + \varepsilon Ae^m\right] \frac{\partial^2 u^*}{\partial y^2} \]

(8)

\[\frac{\partial \theta}{\partial t} - \left(1 + \varepsilon Ae^m\right) \frac{\partial \theta}{\partial y} = \frac{1}{Pr \frac{\partial^2 \theta}{\partial y^2}} \left(Q + R \right) \theta \]

(9)

\[\frac{\partial C}{\partial t} - \left(1 + \varepsilon Ae^m\right) \frac{\partial C}{\partial y} = \frac{1}{Sc \frac{\partial^2 C}{\partial y^2}} - KrC + So \frac{\partial^2 \theta}{\partial y^2} \]

(10)

The boundary conditions for the above described model

\[u^* = u_p^*, \quad T^* = T_w + \varepsilon (T_w-T_n) e^{n^*}, \]

\[C^* = C_w + \varepsilon (C_w-C_\infty) e^{n^*}, \quad \text{at} \quad y^* = 0 \]

\[u^* = 0, \quad T^* \rightarrow T_n, \quad C^* \rightarrow C_\infty \quad \text{as} \quad y^* \rightarrow \infty \]

(5)

It is unambiguous that Eq. (1) that the velocity of suction at the surface plate is time function. Presuming it yields into the form:

\[v^* = -V_0 (1 + \varepsilon Ae^{n^*}) \]

(6)

\varepsilon \text{ and } A \text{ are small such that } \varepsilon \ll 1, A \ll 1.

Solutions of Eqs. (8-10) are reap by regular and multi-parameter perturbation technique. \(E, \varepsilon \text{ and } A \) are presumed small, such that \(E \ll 1 \text{ and } \varepsilon \ll 1 \). For getting solutions we introduce

\[E = \frac{k_0 V_0^2}{\nu^2} \]

(12)

3. Problem’s solution

Solutions of Eqs. (8-10) are reap by regular and multi-parameter perturbation technique. \(E, \varepsilon \text{ and } A \) are presumed small, such that \(E \ll 1 \text{ and } \varepsilon \ll 1 \). For getting solutions we introduce
where, \(u_0 \) is the mean velocity, \(\theta_0 \) is the mean temperature and \(C_0 \) is the mean concentration. Applying Eq. (13) into Eqs. (8-10). Tallying non-harmonic and harmonic statement to above location, after neglecting coefficient of \(\epsilon^2 \), we secure zero order

\[
\begin{align*}
Eu_0'' + u_0' - n_1u_0 &= -Gr\theta_0 - GmC_0 \\
\theta_0' &= \text{Pr} \theta_0' - n_3 \text{Pr} \theta_0 = 0 \\
C_0' + ScC_0' - ScKrC_0 &= -ScSo\theta_0'
\end{align*}
\]

where \(n_1 = M + \frac{1}{K}, n_3 = Q + R \) with

\[
\begin{align*}
u_0 &= u_p, \theta_0 = 1, C_0 = 1, & \text{at } y = 0 \\
u_0 &\to 0, \theta_0 \to 0, C_0 \to 0, & \text{as } y \to \infty
\end{align*}
\]

And first order

\[
\begin{align*}
Eu_0'' + (1-nE)u_0' - n_2u_1 &= -Gr\theta_1 - GmC_1 \\
\theta_1' + Sc\theta_1' - Scn_2\theta &= -ASc\theta \\
C_1' + ScC_1' - ScKnC_1 &= -AScC_0 - ScSo\theta_1'
\end{align*}
\]

where, \(n_2 = \left(M + \frac{1}{K} + n \right), n_4 = Q + R + n \), \(n_5 = Kr + n \) \n
with corresponding boundary conditions

\[
\begin{align*}
u_1 &= 0, \theta_1 = 1, C_1 = 1, & \text{at } y = 0 \\
u_1 &\to 0, \theta_1 \to 0, C_1 \to 0, & \text{as } y \to \infty
\end{align*}
\]

Eqs. 14 and 18 are differential equations of 3rd order by virtue of viscoelastic parameter. Since there are exclusively two accessible boundary conditions, it necessitates an additional boundary condition to novel solution.

\[
\begin{align*}
u_0 (y) &= u_00(y) + Eu_01(y) + 0(\epsilon^2) \\
u_1 (y) &= u_10(y) + Eu_11(y) + 0(\epsilon^2)
\end{align*}
\]

put Eq. 22 in Eq. 14. Now compare the coefficient of first and zero order of \(\epsilon \), \(\text{Ne} \) can procure

\[
\begin{align*}
u_0^* + u_0' - n_1u_0 &= -Gr\theta_0 - GmC_0 \\
u_1^* + u_1' - n_2u_1 &= -Gr\theta_1 - GmC_1
\end{align*}
\]

The boundary conditions are

\[
\begin{align*}
u_0 &= u_p, \theta_1 = 0, & \text{on } y = 0 \\
u_0 &\to 0, \theta_1 \to 0, & \text{as } y \to \infty
\end{align*}
\]

put Eq. 22 in Eq. 18 and compare the coefficients of zero and first order of \(\epsilon \), we get

\[
\begin{align*}
u_0^* + u_0' - n_1u_0 &= -Gr\theta_0 - GmC_0 \\
u_1^* + u_1' - n_2u_1 &= -Gr\theta_1 - GmC_1
\end{align*}
\]

with

\[
\begin{align*}
u_0 &= 0, u_1 = 0, & \text{on } y = 0 \\
u_0 &\to 0, u_1 \to 0, & \text{as } y \to \infty
\end{align*}
\]

Using the Eq. (25) and Eq. (28) one can solve the Eq. (23), Eq. (24), Eq. (26), and Eq. (27) in order to obtain

\[
\begin{align*}
u_{00} &= A_7e^{-m_0y} - A_8e^{-m_0y} - A_6e^{-m_0y} \\
u_{01} &= A_7e^{-m_0y} + A_2e^{-m_0y} - A_3e^{-m_0y} - A_4e^{-m_0y} \\
u_{10} &= A_7e^{-m_0y} + A_2e^{-m_0y} - A_3e^{-m_0y} - A_4e^{-m_0y} \\
u_{11} &= A_25e^{-m_0y} + A_8e^{-m_0y} + A_9e^{-m_0y} + A_20e^{-m_0y} \\
u_{0}(y) &= u_{00}(y) + Eu_{01}(y) \\
u_{0}(y) &= \left(A_7e^{-m_0y} - A_8e^{-m_0y} - A_6e^{-m_0y} \right) \\
&\quad + E\left(A_1e^{-m_0y} + A_2e^{-m_0y} - A_3e^{-m_0y} - A_4e^{-m_0y} \right)
\end{align*}
\]

and

\[
\begin{align*}
u_{1}(y) &= u_{10}(y) + Eu_{11}(y)
\end{align*}
\]
\[u_1(y) = \left(A_{17}e^{-m_iy} + A_{22}e^{-m_2y} - A_{13}e^{-m_3y} \right) - A_{41}e^{-m_4y} - A_{53}e^{-m_5y} - A_{62}e^{-m_6y} \]
\[+ E \left(A_{23}e^{-m_3y} + A_{34}e^{-m_4y} + A_{90}e^{-m_9y} + A_{30}e^{-m_{30}y} \right) \]

\[u(y, t) = u_0(y) + \varepsilon e^{nt}u_1(y) \quad (29) \]

\[C(y, t) = \left(A_2e^{-m_2y} - A_4e^{-m_4y} \right) + \varepsilon e^{nt} \left(A_4e^{-m_4y} + A_5e^{-m_5y} \right) \quad (30) \]

\[\theta(y, t) = e^{-m_3y} + \varepsilon e^{nt} \left(A_4e^{-m_4y} + A_5e^{-m_5y} \right) \quad (31) \]

Non-dimensional skin friction coefficient heat transfer rate and mass transfer rates

\[\tau = \frac{\partial u}{\partial y} \bigg|_{y=0} = \left[\begin{array}{c}
-m_6A_1 + m_5A_2 + m_4A_3 \\
+m_6A_2 + m_5A_3 + m_4A_4 \\
-m_7A_4 + m_6A_5 + m_5A_6 \\
+m_7A_5 + m_6A_6 + m_5A_7 \\
+m_8A_{25} - m_7A_{18} - m_6A_9 \\
-m_8A_{26} + m_7A_{19} + m_6A_5 \\
+m_8A_8 - m_7A_9 + m_6A_9 \\
+m_8A_9 + m_7A_9 + m_6A_9 \\
\end{array} \right] \]

\[-\varepsilon e^{nt} \left[\begin{array}{c}
-m_6A_1 + m_5A_2 + m_4A_3 \\
+m_6A_2 + m_5A_3 + m_4A_4 \\
-m_7A_4 + m_6A_5 + m_5A_6 \\
+m_7A_5 + m_6A_6 + m_5A_7 \\
+m_8A_{25} - m_7A_{18} - m_6A_9 \\
-m_8A_{26} + m_7A_{19} + m_6A_5 \\
+m_8A_8 - m_7A_9 + m_6A_9 \\
+m_8A_9 + m_7A_9 + m_6A_9 \\
\end{array} \right] \]

\[Nu = \left(\frac{\partial \theta}{\partial y} \right)_{(y=0)} = m_3 + \varepsilon e^{nt} \left(m_4A_4 + m_3A_1 \right) \quad (33) \]

\[Sh = \left(\frac{\partial C}{\partial y} \right)_{(y=0)} = \left(m_3A_2 - m_3A_1 \right) + \varepsilon e^{nt} \left(m_4A_4 + m_5A_3 \right) \quad (34) \]

4. Results and discussions

Eclectic evaluations have been reported graphically in all the sketches by allocating the values to the pertinent parameters by outlining the fluid flow structure. Extensive analytical computations are done for velocities, thermal and concentration distributions together with friction factor feature, Nusselt as well as Sherwood number for distinct standards of physical constraints which illustrate the structures of flow. Numerical conclusions are well established in Figs. 2-18 additionally Tables 1-3. The problem composes of one independent variable (y), three dependent variables (u, T, C) with the Gr = 10, Gm = 5.0, M = 0.2, K = 1.0, E = 0.01, P r = 0.7, Q = 0.5, R = 0.2, Sc = 0.1, Kr = 2.0, A = 0.1.

Figs.2-3, illustrate the impact of the flow for heterogeneous values of Gr and Gm. The Grashof number for thermal be a sign of the virtual consequence of the heat buoyancy (due to thickness differences) force to viscous hydrodynamic force in the border layer flow. The positive values Grashof number Gr communicate to cooling of the plate by free convection. Heat is therefore conducted away from the vertical plate into the fluid which elevates thermal edge layer thickness and by this means rises the buoyancy force. It is also noticed that the momentary of the flow accelerates due to augmentation in the thermal buoyance force. The Grashof number for concentration Gm defines the proportion of the species buoyancy force to the hydrodynamic viscous force. It is scrutinized the elevating of Grashof number Gm results in the form of an improvement in the flow of the flow

The influence of electrical conducting factor M and permeability of porous state K on flow profile for set ideals of other parameters is revealed in Figs. 4-5. It is observed the flow is abatement by the elevating the values of conducting parameter M. Since, an applied conducting field acts as Lorentz’s strength which reduces the flow of the flow. Figure 3 is displayed to analyze conduct of flow profile against the permeability of porous state K. It further witnesses that uplifting values of permeability of porous state K enhance the flow of model.

Fig. 6 and Fig. 13 display the dimensionless flow of the fluid and thermal boundary profiles for different values of Pr. These figure explores that the fluid flow and thermal boundary de-escalate with uplift in Pr. Because thermal diffusivity dwindles subjected to higher Pr observations, which elucidates downfall in the velocity and temperature. The Figs.(7, 8, 14,15) show the antecedent profiles for assorted values of Q and radiation R. The fluid flow and temperature profiles dwindle with the hike of Q and the fluid flow and temperature profiles are boosted up with the rise of R. Decelerating nature of velocity with Sc is portrayed in Fig. 9.
The influence of visco-elastic parameter E and suction parameter A on velocity profiles has been illustrated in Fig. 11 and Fig. 12. It can be identified that when E and A increase the velocity profile increases. The Fig. 16 and Fig. 17 depict the change of behavior of concentration profiles against y under the impact of Kr, Sc respectively. It is perceptible that raise in Sc contributes to downtrend of concentration of the fluid medium. Further, it is seen that Sc does not contribute much to the concentration field as we move far away from the boundary surface. Analogous effect is noted with chemical reaction parameter Kr on concentration profile. Fig. 10 and Fig. 18 show the variation of flow and diffusion distribution to various values of Soret number So. It is notable from these graphs that elevating in the values of So, increase velocity and concentration distribution.

The effects of where Grashof value Gr, modified Grashof value Gm, magnetic parameter M, porosity parameter K, Prandtl value Pr, radiation parameter R, visco-elastic parameter E, suction parameter A, heat sink parameter Q, Schmidt value Sc, Soret number So and chemical reaction parameter Kr on the friction factor (Cf), Nusselt value (Nu) and Sherwood value (Sh) are represented in Tables 1 - 3.

From Table 1, It is perceptible that as Gr or Gm or K or A enhances, the friction factor uplifts, whereas as the friction factor downtrends as M or E increases from table 1. It is concluded that as R or Q or Pr escalates from table 2, the friction factor and Nusselt number escalates. From Table 3, it is found that as Sherwood value escalates when both the parameters Schmidt number Sc and chemical reactor accelerate, while opposite tend for Soret parameter So.
Fig. 5. Distribution of u for K.

Fig. 6. Distribution of u for Pr.

Fig. 7. Distribution of u for Q.

Fig. 8. Distribution of u for R.

Fig. 9. Distribution of u for Sc.

Fig. 10. Distribution of u for So.

$K=1.0, 1.5, 3.0$

$Pr=0.3, 0.5, 0.7$

$Q=0.4, 0.5, 0.6$

$R=0.1, 0.2, 0.3$

$Sc=0.1, 1.0, 1.5$

$So=0.5, 1.0, 2.0$
Fig. 11. Distribution of u for E.

Fig. 12. Distribution of u for A.

Fig. 13. Distribution of θ for Pr.

Fig. 14. Distribution of θ for Q.

Fig. 15. Distribution of θ for R.

Fig. 16. Distribution of C for Sc.
Table 1. Impact of different physical parameter on friction factor for
Pr = 0.7, Q = 0.0, R = 0.2, Sc = 0.1, Kr = 2.0, So = 0.5.

<table>
<thead>
<tr>
<th>Gr</th>
<th>Gm</th>
<th>M</th>
<th>K</th>
<th>E</th>
<th>A</th>
<th>Cf</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>1.0</td>
<td>0.2</td>
<td>1.0</td>
<td>0.01</td>
<td>0.1</td>
<td>2.0115</td>
</tr>
<tr>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.2585</td>
</tr>
<tr>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5055</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.1408</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.2702</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.6009</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.3221</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.5941</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.8830</td>
</tr>
</tbody>
</table>

Table 2. Impact of different physical parameter on friction factor and Nusselt value
for Gr = 8.0, Gm = K = 1.0, M = 0.2, Ec = 0.01, Kr = 2.0, Sc = A = 0.1, So = 0.5.

<table>
<thead>
<tr>
<th>Pr</th>
<th>R</th>
<th>Q</th>
<th>Cf</th>
<th>Nu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>0.2</td>
<td>0.5</td>
<td>2.0115</td>
<td>5.7375</td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td>2.8576</td>
<td>1.3118</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td>8.7732</td>
<td>3.3588</td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td>3.8078</td>
<td>1.8848</td>
</tr>
<tr>
<td>0.9</td>
<td></td>
<td></td>
<td>4.4935</td>
<td>1.9581</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td>3.3065</td>
<td>1.8110</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td>9.9184</td>
<td>2.1758</td>
</tr>
</tbody>
</table>

Table 3. Impact of different physical parameter on friction factor, Nusselt value and Sherwood value
for Gr = 8.0, Gm = K = 1.0, M = 0.2, R = 0.2, Pr = 0.7, Ec = 0.01, Kr = 2.0.

<table>
<thead>
<tr>
<th>Sc</th>
<th>Kr</th>
<th>So</th>
<th>Cf</th>
<th>Nu</th>
<th>Sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2.0</td>
<td>0.5</td>
<td>2.0115</td>
<td>5.7375</td>
<td>0.6432</td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td></td>
<td>2.0313</td>
<td>5.7375</td>
<td>1.2076</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td>2.0124</td>
<td>5.7375</td>
<td>1.6467</td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
<td>2.0124</td>
<td>5.7375</td>
<td>0.7667</td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td></td>
<td>2.0146</td>
<td>5.7375</td>
<td>0.8714</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td>2.1126</td>
<td>5.7375</td>
<td>0.9125</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td>2.3120</td>
<td>5.7375</td>
<td>0.9512</td>
</tr>
</tbody>
</table>

5. Conclusions
In the present study a mathematical framework has been evolved to simulate 2D unsteady
magneto hydrodynamic flow of an incompressible electrically conducting fluid over a permeable moving plate through porous
medium under the importance of thermal radiation and chemical reaction. The governed
mathematical statement is handled analytically by perturbation technique. The governed
mathematical statement is handled analytically...
by perturbation strategy. The obtained results have led to the following conclusions:

- Fluid velocity is enhancing reducing function of all parameters such as Grashaf number Gr, modified Grashaf number Gm, Permeability parameter K, Radiation parameter R, viscoelastic parameter E, Suction parameter A.

- Thermal boundary distribution falls down against Pr or Q, while radiation parameter R enhances it.

- Presence of chemical reaction enhances the rate of mass transfer which is a desired consequence of the flow of reacting species.

- Friction factor down trends when magnetic parameter is enlarged. Nusselt number enhances for huge values of Pr. By increasing Schmidt number or chemical reaction parameter Sherwood number progress.

Appendix

$$m_1 = \frac{Sc + \sqrt{Sc^2 + 4ScKr}}{2}, \quad m_2 = \frac{Sc + \sqrt{Sc^2 + 4ScKm}}{2},$$

$$m_3 = \frac{Pr + \sqrt{Pr^2 + 4Pr n_1}}{2}, \quad m_4 = \frac{Pr + \sqrt{Pr^2 + 4Pr n_4}}{2},$$

$$m_5 = \frac{1 + \sqrt{1 + 4n_2}}{2}, \quad m_6 = \frac{1 + \sqrt{1 + 4n_6}}{2},$$

$$m_7 = \frac{1 + \sqrt{1 + 4n_2}}{2}, \quad m_8 = \frac{1 + \sqrt{1 + 4n_6}}{2},$$

$$A_1 = \frac{AScm}{m_3^2 - Scm - Scn}, \quad A_2 = 1 - A_1,$$

$$A_3 = \frac{Ap + m_3}{m_5^2 - Pr m_5 - Pr m_4}, \quad A_4 = 1 - A_1,$$

$$A_5 = \frac{Gr}{m_3^2 - m_3 - n_1}, \quad A_6 = \frac{m_5^2 - m_1 - n_1}{m_1^2 - m_1 - n_1},$$

$$A_7 = u_p + A_5 + A_6, \quad A_8 = \frac{A_7 m_5^3}{m_5^2 - m_3 - n_1},$$

$$A_9 = \frac{A_7 m_5^3}{m_5^2 - m_3 - n_1}, \quad A_{10} = \frac{A_8 m_5^3}{m_5^2 - m_1 - n_1},$$

$$A_{11} = A_{10} + A_9 - A_8.$$

References

[35] P.V Satya Narayana, B. Venkateswarlu, and B. Devika,”Chemical reaction and heat...

