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Abstract 
This paper deals with a multi-period fixed charge production-distribution problem 
associated with backorder and inventories. The objective is to determine the size 
of the shipments from each supplier and backorder and inventories at each period, 
so that the total cost incurred during the entire period towards production, 
transportation, backorder and inventories is minimised. A 0-1 mixed integer 
programming problem is formulated.  
Genetic algorithm based population search heuristic, Simulated annealing based 
neighbourhood search heuristic and Equivalent variable cost based simple 
heuristic are proposed to solve the formulation. The proposed methodologies are 
evaluated by comparing their solutions with the lower bound solutions. The 
comparisons reveal that Genetic algorithm and Simulated annealing algorithm 
generate better solutions than the Equivalent variable cost solutions and are 
capable of providing solutions close to the lower bound value of the problems. 

 
 

1. Introduction 
 
In a scattered production system, the production 
location also determines the overall production 
costs. It is because, the urban location will 
require more labour and overhead costs than 
rural location. Moreover, in such scattered 
production system with scattered customers, the 
production location influences the distribution 
schedule and thereby distribution costs. 
Therefore, in industrial problems where 
production and distribution costs are both of a 

similar magnitude, it is necessary to coordinate 
the two functions in order to limit global costs 
[1]. Most companies manage these two 
functions independently, with little or no 
coordination between production and 
distribution planning. This decoupled approach 
works acceptably well if there is sufficient 
finished goods inventory to buffer the 
production and distribution operations from 
each other. However, the cost of carrying 
inventory and the trend to just-in-time 
operations is creating pressure to reduce 
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inventories in the distribution channel. As a 
result of this pressure, many companies are 
exploring closer coordination along the 
manufacturing/ distribution channel [2].  Many 
companies strive to synchronize their 
production, transportation and replenishment 
planning by adopting supply chain management 
practices such as vendor-managed inventory, 
efficient consumer response, and collaborative 
planning, forecasting and replenishment. The 
main objective of these collaborative methods 
is to reduce inefficiencies and to eliminate 
redundancies between the different partners [3]. 
The multi-period fixed charge production-
distribution problem (MPFCPDP) is an 
extension of FCT (fixed charge transportation) 
problem, where the time based strategic 
decisions on size of the shipments from each 
supplier, inventory, and backorder can make an 
economical distribution. The MPFCPDP 
problem is difficult to solve due to the presence 
of fixed costs, which cause nonlinearities in the 
objective function and are known to be Non-
deterministic Polynomial-time ‘NP’ hard [4]. 
The complexity of the problem is further 
increased, when supplier dependent product 
cost, time dependent inventory and backorder 
are included in the model. This limits the usage 
of the conventional multi-period and fixed 
charge solution procedures. 
There are many different multi-period 
distribution problems (MPDP) in the literature 
[2, 3, 5-12] involving considerations of 
production and transportation, possibly together 
with other functions. The review on multi-
period problems reveals the following: most of 
the models attempt to integrate inventory and 
transportation issues; excess in availability in 
any period is held as inventory at the suppliers 
end and is used for the subsequent periods; 
inventory at the demand points has not been 
given due consideration; admission of 
backorder may considerably reduce the total 
cost of logistics; not all the papers (except 
[6,8,10]) have included the fixed charge 
associated with transportation; though few 
papers have included fixed charge in their 
models, they do not deal exactly the multi-
period fixed charge production-distribution 
between multiple sources (suppliers) and 

multiple destinations (customers) with 
inventory alternatives and backorder 
consideration to optimize the total production-
distribution cost. 
In the light of the above, this paper considers a 
MPFCPDP problem concerning the production, 
transportation and storage of finished goods 
from ‘m’ suppliers (industrial producers) to ‘n’ 
customers (demand centers like assembling 
centers, distribution centers etc.). The 
transportation cost is the main element in the 
proposed production-distribution model. The 
other considerations are storage and backorders. 
This paper considers a two-echelon inventory 
system where the suppliers’ supply capacity 
and customers’ demands are deterministic. The 
purpose of maintaining two-echelon inventory 
is to minimize the total distribution cost while 
integrating production, transportation, 
backorder and inventories. The production-
distribution planning problem addressed here as 
MPFCPDP, is formulated as a 0-1 mixed 
integer programming problem. Genetic 
algorithm (GA) based population search 
heuristic, Simulated annealing algorithm (SAA) 
based neighbourhood search heuristic and an 
Equivalent variable cost (EVC) based simple 
heuristic are proposed to solve the formulation. 
The rest of the paper is organised as follows: 
Section 2 addresses the problem environment 
and mathematical formulation of the 
MPFCPDP. Section 3 discusses about the 
proposed heuristics.  Section 4 provides a 
numerical illustration. Section 5 discusses the 
computational results and performance analysis 
of the proposed methodologies. A summary of 
the present analysis and future research 
directions are presented in the concluding 
section 6. 
 
2. Problem environment and description 
 
There are ‘m’ suppliers (industrial producers) to 
produce and distribute a product to ‘n’ 
customers (demand centres like assembly 
centres, distribution centres etc.) in T planning 
periods; each supplier i =1,2,……m has Pi

t units 
of production in each period t =1,2……T and 
each customer j =1,2,……n has Dj

t units of  
demand in each period t =1,2……T. Each 
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supplier i can produce the product at a 
production cost of CUi per unit and ship it to 
any customer j at a transportation cost of Cij per 
unit for shipping from supplier i to customer j 
plus a fixed cost of FCij included for operating 
the route i to j. At any time period t, the total 
cumulative production of the suppliers may or 
may not be equal to the total demand of the 
customers. The excess or shortage of 
production in the period t is carried over to the 
subsequent period t+1. The excess of 
production in period t, addressed here as the 
inventory, is considered as an additional supply 
available for the period t+1. It is notified as SIi

t 
at an inventory holding cost of SHi per unit per 
period at ith supplier’s location and CIj

t at an 
inventory holding cost of CHj per unit per 
period at jth customer’s location. On the other 
hand, the production shortage of the period t 
(excess demand), addressed here as backorder, 
is considered as an additional demand for the 
period t+1. It is notified as BLj

t at a penalty cost 
of BCj per unit per period at jth customer’s 
location. As the proposed model considers short 
planning periods (days/weeks/months), the cost 
associated with production (CUi), transportation 
(i.e. Cij and FCij), inventory (i.e. SHi and CHj) 
and backorder (i.e. BCj) are independent of 
period t. The beginning period’s inventory and 
backorder (i.e., SIi

0, CIj
0 and BLj

0) are known 
quantities. Minimization of the sum of costs of 
production, transportation, holding inventory 
and penalty for the backorder supply is 
considered as the objective criterion of the 
problem. 
 
3. Decision variables 
 
Xij

  :Number of units of shipments from 
supplier i to customer j in period t 
SIi

t :Number of units of inventory with 
supplier i in period t  
CIj

t :Number of units of inventory with 
customer j in period t  
BLj

t :Number of units of backlog for 
customer j in period t 
ij

t :Binary variable that specifies the 
product distribution from supplier i  to   
customer j in period t (i.e., ij

t = 1 if Xij
t > 0 and 

ij
t = 0 if Xij

t = 0) 

4. Mathematical model 
 
This model attempts to integrate production, 
transportation, backorder and inventory 
decisions monolithically from a centralized 
planning point of view. Let ij

t be a binary 
variable to account fixed transportation cost. 
The mathematical model of the MPFCPDP 
problem is formulated as a 0-1 Mixed Integer 
Programming (MIP) problem as given below. 
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i , i=1… m, j , j=1… n & t , t=1…T;        (4) 

 0;   if  0    t
ij

t
ij X

 

i , i=1… m, j , j=1… n   &  t , t=1…T;              

                                                                        (5) 

0t
ijX  and integer;  
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i , i=1… m, j , j=1… n   &  t , t=1…T;                    

                                                            (6) 

0t
iSI   and integer;  

i , i=1… m,  &  t , t=1…T;                     (7) 

0t
jCI  and integer;  

j , j=1… n   &  t , t=1…T;                     (8) 

0t
jBL  and integer;  

j , j=1… n   &  t , t=1…T;                     (9) 

The objective function given by Eq. (1) aims to 
minimize the sum of the total costs associated 
with production, transportation, inventory at 
supplier’s side and customer’s side and 
backorder. The first term of the objective 
function provides the total cost of production 
for the entire period T and the second term 
provides the total cost of transportation for the 
entire period T. The third term addresses the 
total cost of holding inventory at supplier’s 
locations for the entire period T. The fourth and 
the fifth terms indicate respectively the total 
cost holding inventory for the entire period T 
and the total cost of backorder penalty for the 
entire period T. Constraint set given by Eq. (2) 
expresses the material balance at the supplier’s 
side between any two successive time intervals. 
Similarly, constraint set (3) expresses the 
material balance at the customer’s side between 
any two successive time intervals. In the left 
and right sides of the constraint set 3, either the 
inventory or backorder is present. Constraint 
sets given by Eqs. (4) and (5) return a binary 
value of ij

t depending on the value of Xij
t. 

Constraint sets given by Eqs. (6) to (9) ensure 
the non-negativity nature of decision variables 
Xij

t, SIi
t, CIj

t, and BLj
t. 

 
 
 

5. Solution methodologies 
 
In this paper, the MPFCPDP model is solved by 
GA and SAA based meta-heuristics and EVC 
based simple heuristics. They are delineated in 
the following sections.  
 
5.1. GA and SAA based meta-heuristics 
 
Over the last thirty years, there has been a 
growing interest in problem solving systems 
based on the principles of population based and 
neighborhood based search heuristics. In 
population based search heuristics, the GA has 
been increasingly applied to various search and 
optimization problems and has emerged as 
potential techniques to provide solutions with 
acceptable accuracy for NP hard problems [13-
15]. In neighborhood based search heuristics, 
many researchers considered SAA for solving 
many hard optimisation problems [15-20]. The 
proposed GA and SAA based heuristics are 
structured to solve the MPFCPDP in two 
stages. They are as follows.  
 
Stage I: Data input and transformation 
 
This stage remains common in both GA and 
SAA based heuristics. It accepts the data of 
MPFCPDP under consideration as input and 
modulates them as a single-period fixed charge 
production-distribution problem (SPFCPDP) 
data set. The conversion provides a modulated 
data suitable for allocating the shipment 
quantities in single-period layout and 
subsequently deriving a feasible multi-period 
distribution schedule in the following GA and 
SAA routines, which is delineated in Stage II. 
 
Stage II: Procedural steps of GA 
 
Step 1: Parameters setting 
 
The parameters of GA are: 
pop_size = 10; p_cross = 0.5; p_mut = 0.1; 
gen_no= 1; )*(*)*(100 TnTmn_gen  . 
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Step 2: Initial population generation 
 
In this proposed GA, a chromosome c  refers to 
a gene type representation of a distribution 
schedule to the SPFCPDP. The chromosome c  
is the permutation of cell numbers of SPFCPDP 
matrix, in which each cell is identified with a 
unique The total number of cells in the 
SPFCPDP, which is also equal to the length of 
the chromosome c , thus becomes 
(m*T)*(n*T). When the supply and demand are 
in same period (i.e. tc = tr), then they form T 
number of diagonal matrix of size m*n. The 
number of cells in the diagonal matrix thus 
becomes equal to m*n*T. Table 1 illustrates an 
example (m*n*T: 3*3*2) SPFCPDP matrix cell 
numbers.  
A chromosome is structured as two parts. The 
first part is framed by the cell numbers of 
diagonal SPFCPDP matrix. The second part is 
framed by the remaining cell numbers of non-
diagonal SPFCPDP matrix.  Table 2 shows a 
randomly developed chromosome with cell 
number for the above example. In the same 
way, a randomly developed ten chromosomes 
form the initial population. 
 

Table 1.  SPFCPDP cell numbers matrix. 

  tc 
1 2 

  j 
i 1 2 3 1 2 3 

t r 

 
1 

1 1 2 3 4 5 6 
2 7 8 9 10 11 12 
3 13 14 15 16 17 18 

 
2 
 

1 19 20 21 22 23 24 
2 25 26 27 28 29 30 
3 31 32 33 34 35 36 

 

 

 

Table 2. An example chromosome of SPFCPDP. 

First  
part 

Cell number 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
34 23 7 3 22 9 30 13 1 28 8 15 35 2 14 24 36 29 

 
 

Sec. 
part 

Cell number 
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

18 5 26 10 6 27 16 4 17 31 25 32 12 19 11 21 20 33 

 

Step 3: Evaluation 
 
The chromosome, on decoding, provides a 
feasible distribution schedule to the MPFCPDP 
by allocating shipment quantities to the cells of 
SPFCPDP based on their priority as per the cell 
number positions in the chromosome. Then the 
actual MPFCPDP distribution quantities Xij

t, 
suppliers’ inventory SIi

t
, customers’ inventory 

CIj
t
, and backlog BLj

t are derived by 
demodulating the allocations of SPFCPDP. The 
total production-distribution cost Z(m) 
corresponding to MPFCPDP distribution 
schedule (m) is calculated from the objective 
Eq. (1). Each chromosome c  in the initial 
population is evaluated in terms of Z  by the 
same procedure. 
 
Step 4: Updating 
 
At the end of first generation, the followings 
parameters are updated. 
 

tglobal_besbestpop _
.1 gen_nogen_no  

 
Step 5: Termination checking: 
 
The number of generations is considered as the 
termination criterion. The termination criterion 
value of the illustration is calculated as follows. 
Termination criterion = n_gen =100+ 
(m*T)*(n*T). If the  gen_no value is less than 
n_gen go to the next step, else go to step 7. 
 
Step 6: New population generation 
 
The generation of a new population involves 
three tasks: i) Selection, ii) Crossover and iii) 
Mutation. The selection process is repeated as 
many times as equal to pop_size. In crossover 
operation, each chromosome is selected with 
probability p_cross. In mutation, each gene is 
selected with probability p_mut . Then, that 
particular gene is mutated. After generating the 
new population the GA steps from 3 to 5 are 
repeated until it reaches termination. 
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Step 7: Output  
 
The distribution schedule ((best)) and 
distribution cost (Z(near opt)) in the global_best 
are the solutions to the problem and are given 
as output.  
 
Stage II:  Procedural steps of SAA 
 
Step 1: Initialization of SAA parameters and 
counters  
 
The parameters of SAA are: 
 TE = 475, ACCEPT = 0, TOTAL = 0, FREEZE 
= 0, α =0.90 and 
Termination condition = (FREEZE = 5 or TE = 
20). 
 
Step 2: Generation of initial seed string 
 
In this proposed SAA, a string S refers to a gene 
type representation of a distribution schedule to 
the SPFCPDP. The string S is the permutation 
of cell numbers of SPFCPDP matrix, in which 
each cell is identified with a unique The total 
number of cells in the SPFCPDP, which is also 
equal to the length of the string S, thus becomes 
(m*T)*(n*T). When the supply and demand are 
in same period (i.e. tc = tr), then they form T 
number of diagonal matrix of size m*n. The 
number of cells in the diagonal matrix thus 
becomes equal to m*n*T. Table 3 illustrates an 
example (m*n*T: 3*3*2) of SPFCPDP matrix 
cell numbers. 
 
 

Table 3.  SPFCPDP cell numbers matrix. 

  tc 
1 2 

  j 
i 1 2 3 1 2 3 

t r 

 
1 

1 1 2 3 4 5 6 
2 7 8 9 10 11 12 
3 13 14 15 16 17 18 

 
2 
 

1 19 20 21 22 23 24 
2 25 26 27 28 29 30 
3 31 32 33 34 35 36 

 

A string is structured as two parts. The first part 
is framed by the cell numbers of diagonal 

SPFCPDP matrix. The second part is framed by 
the remaining cell numbers of non-diagonal 
SPFCPDP matrix.  Table 4 shows an example 
of a randomly developed seed string with cell 
number for the above example.  

 

Table 4. An example seed string of SPFCPDP. 

 
First 
part 

Cell number 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
34 23 7 3 22 9 30 13 1 28 8 15 35 2 14 24 36 29 

 
Sec. 
part 

Cell number 
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 
18 5 26 10 6 27 16 4 17 31 25 32 12 19 11 21 20 33 

 
 
Step 3: Evaluation 
 
The string, on decoding, provides a feasible 
distribution schedule to the MPFCPDP by first 
allocating shipment quantities to the cells of 
SPFCPDP based on their priority as per the 
positions in the string. Then the actual 
MPFCPDP distribution quantities Xij

t, 
suppliers’ inventory SIi

t
, customers’ inventory 

CIj
t
, and backlog BLj

t are derived by 
demodulating the allocations of SPFCPDP. The 
total production-distribution cost Z(m) 
corresponding to MPFCPDP distribution  
schedule (m) is calculated from the objective 
Eq. (1).  
 
Step 4:  Generation of neighborhood seed 
string and its evaluation  
 
A neighborhood seed string S′ to the current 
seed string S is generated via mutation operator 
[21]. Mutation for this research is a unary 
random mutation. A random number U between 
0 and 1 is generated corresponding to every 
element of the seed and if the random number 
U is less than mut (0.5), then those two 
particular elements are interchanged (mutated). 
The mutation exchanges the sequence elements 
within the seed for maintaining the feasibility. 
This process is carried out separately in the first 
and second part of the string.  
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Step 5: Calculation of uphill acceptance 
parameter delta 
 
The new seed string S′ is selected by calculating 
the value of the delta. Delta is the cost 
difference between the neighborhood seed 
string distribution schedule and the initial seed 
string distribution schedule. i.e., Delta = Z(m′) 
− Z(m); If Delta ≤ 0 proceed to step 6 
(downhill move), else (Delta > 0) go to step 7 
(uphill move). 
 
Step 6: Downhill move 
 
Assign m =m′ Z(m) = Z(m′) and 

1  ACCEPT  ACCEPT   If Z (m) < Z (near 

opt) then set (best) =m and Z (near opt) = Z (m), 
else go to step 9. 
 
Step 7: Uphill move 
 

Computation of  
E )(-Delta /Te P   and sample 

R (Random no. generated (0, 1)).If P  R   
proceed to step 8 else proceed to step 9. 
 
Step 8: 
 
 Assign m=m′, Z(m) = Z(m′) and 

1  ACCEPT  ACCEPT  . 
 
Step 9: 
 
Set TOTAL= TOTAL + 1. 
 
Step 10: Check for termination  
 
The algorithm is frozen. The termination of the 
SAA is achieved when FREEZE counter 
reaches the specified value (FREEZE=5) or the 
temperature TE falls to a pre-specified value 
(TE=20). Now (best) contains the best 
MPFCPDP distribution schedule and Z(near opt) 
has the minimum Z(m). If (TOTAL > (m*n*t)) 
or (ACCEPT > (m*n*t)/2), then proceed to step 
11 else go back to step 4 until it satisfies the 
condition in step 10. 
 
 

Step 11: Output 
 
The distribution schedule ((best)) and 
distribution cost (Z(near opt)) in the tglobal_bes  
are the solutions to the problem and are given 
as output.  
 
5.2. Equivalent variable cost heuristic 
 
A linear distribution model can be obtained by 
relaxing the integral restrictions [22] of the 
nonlinear problem with equivalent variable 
transportation cost EVCij, which is defined as: 
 

  ) ,( /      t
j

t
iijijij DPMinFCCEVC   
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                                                          (10) 
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Subject  to : 
Contraint sets (2), (3), (6), (7), (8) and (9). 
The above linear programming problem can be 
solved optimally using LINGO Solver. The 
substitution of the optimal solution in Eqs. (1) 
and (12) respectively provides Equivalent 
variable cost solution Z(EVC) and lower bound 
value Z(L). 
 
5.3. Numerical illustration 
 
An illustration for the above three 
methodologies is given below with an example 
problem. The data used for the illustration are 
as follows: 333  , t, nm . Tables 5a and 
5c show the data related to transportation, 
supplier and customer respectively. 
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Table 5a. Transportation cost data (Cij & FCij). 

 
 

 
 
 

 

 

Table 5b. Suppliers’ data (Pi
t, CUi, SHi & SIi

0). 

 
 

 
 
 
 
  
 
 
  
Table 5c. Customers’ data (Dj

t, CHj, BCj, BLj
0 & 

CIj
0). 

 j  
∑Dj

t 1 2 3 

 
Dj

t 
 
t 

1 60 60 70 190 
2 60 20 30 110 
3 90 60 40 190 

CHj 5 10 15 - 
BCj 20 40 30 - 
BLj

0 0 20 0 - 
CIj

0 0 0 30 - 
 

5.4. GA and SAA based meta-heuristics 
solutions 
 
The distribution schedule (Tables 6 and 7) and 
total production-distribution cost (Z) of the 
above example problem are given as follows 
(solved using GA and SAA separately).  
 
Z (near opt) = 27,170.00    
(GAs solution) 

 
Z (near opt) = 27,790.00    
(SAAs solution) 
 
5.5. Equivalent variable cost solution 
 
The equivalent variable cost matrix and the 
optimal distribution schedule (solved using 
LINGO solver) of the relaxed problem are 
given in Tables 8 and 9 respectively. The 
substitution of the optimal solution in Eqs. (1) 
and (11) respectively provides equivalent 
variable cost solution Z(EVC) and lower bound 
value Z(L). 
Z (L)  = 27,170.00 (Lower bound value) 
Z (EVC)  = 28,510.00 (Equivalent variable    
                                             cost solution) 
 
6. Computational results and performance 
analysis 
 
To evaluate the performance of the proposed 
heuristics, computational experiments were 
done on 40 test problems. Forty test problems 
along with their outputs are considered for this 
performance comparison. The comparisons 
reveal the followings: Equivalent variable cost 
method provides only approximate solutions to 
all the test problems but very few of them are 
close or equal to GA and SAA solutions. EVC 
heuristic can also provide the lower bound 
value of the problem; GA and SAA based 
heuristics generate better solutions than the 
EVC heuristic and are capable of providing 
solutions close or equal to lower bound values. 
The average percentage deviation of GA based 
heuristic with lower bound value is 2.12%. The 
average percentage deviation of SAA based 
heuristic with lower bound value is 2.21%. The 
average percentage deviation of EVC heuristic 
with lower bound value is 8.89%. They are 
depicted in Fig. 1. 

 

 

 

 

 

 

j 
i 1 2 3 

1 FCij 900 
Cij   20 

90 
35 

100 
25 

2 150 
40 

1100 
5 

50 
80 

    

3 800 
30 

70 
70 

1000 
15 

 i  
∑Pi

t 1 2 3 

 
Pi

t 
 
t 

1 60 40 60 160 
2 50 30 60 140 
3 80 60 30 170 

SHi 15 12 28 - 
SIi

0 10 0 0 - 
CUi 10 12 14 - 
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Table 6. Distribution schedule using GA. 

 t 
1 2 3 

j 
i 1 2 3 SIi

1 
 1 2 3 SIi

2 
 1 2 3 

SIi
3 

 
1  30 40 0   40 10 90   0 
2  40  0  30  0  60  0 
3 60   0 60   0   30 0 

BLj
t  

 0 10 0  0 0 0  0 0 0  

CIi
t 

 0 0 0  0 0 10  0 0 0  

 

 

 Table 7. Distribution schedule using SAA. 

 t 
1 2 3 

j 
i 1 2 3 SIi

1  1 2 3 SIi
2  1 2 3 SIi

3  

1  40 30 0   40 10 80  10 0 
2  40  0  20  10 10 60  0 
3 60   0 60   0   30 0 

BLj
t   0 0 10  0 0 0  0 0 0  

CIi
t  0 0 0  0 0 0  0 0 0  

 

 

 
 

Table 8. Equivalent variable cost (EVCij
t) matrix. 

 t 
1 2 3 

j 
i 1 2 3 1 2 3 1 2 3 

1 35 36.28 27.5 38 39.5 28.34 30 36.5 27.5 
2 43.75 32.5 81.25 45 60 81.66 42.5 23.34 81.25 
3 43.34 71.17 40 43.33 73.5 48.33 56.66 72.33 48.33 

 

  

       

Table 9. Optimal distribution schedule for the relaxed problem. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 t 
1 2 3 

j 
i 1 2 3 SIi

1  1 2 3 SIi
2  1 2 3 SIi

3  

1  40 30 0  20 30 0 70  10 0 
2  40  0 10   20 20 60  0 
3 50  10 0 60   0   30 0 
BLj

t   10 0 0  0 0 0  0 0 0  
CIi

t  0 0 0  0 0 0  0 0 0  
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7. Conclusions 
 
This paper proposes GA and SAA based meta-
heuristics and EVC based simple heuristics to 
solve the MPFCPDP problem. The proposed 
methodologies are evaluated by comparing their 
solutions with lower bound values. The 
comparison of results reveal that the GA and 
SAA generate better solutions than the EVC 
solutions and are capable of providing solutions 
close or equal to the lower bound values. This 
paper concentrates on single-stage multi-period 
fixed charge model. As a future research, the 
single period formulation to the proposed multi-
period fixed charge problem facilitates its scope 
for extending this to multi-stage supply chain 
problems. 
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