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Article info: Abstract 
Recently, a large amount of studies have been related to nonlinear systems 
with multi-degrees of freedom as well as continuous systems. The purpose of 
this paper is to optimize passive vibration absorbers in linear and nonlinear 
states for an Euler-Bernoulli beam with a nonlinear vibratory behavior under 
concentrated moving load. The goal parameter in the optimization is 
maximum deflection of the beam. The large deformation for beam modeling 
is considered, i.e. the relation between strains and deflections is nonlinear. 
The force magnitude and beam length are two effective factors for the beam 
deflection. Vibration absorber with linear damping and linear or nonlinear 
stiffness is also considered in this manuscript. The results show that, for 
normal forces and short beams, linear and nonlinear models have similar 
behaviors, while surveying nonlinear behavior is necessary by increasing the 
force and length of the beam, i.e. large deflections. Moreover, the difference 
between linear and nonlinear beam models for regular force magnitudes and 
beam lengths is negligible. For higher loads and longer beams, beam model 
nonlinearity can be important. Results demonstrate that,in the presented 
numerical values (train bridge application) for cubic nonlinear vibration 
absorber, there are two optimal locations for vibration absorber installation: 
one inclined from the middle of the beam to the direction of moving loads 
and the second which is more interestingly inclined from the middle of the 
beam to moving loads in the opposite direction. Moreover, depending on the 
model's numerical parameters, for short beams, linear vibration absorber is 
more effective, while for long beams, cubic nonlinear beam behaves better 
than the linear one. 
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1. Introduction

The dynamic response of bridges subjected to 
the passage of moving vehicles continues to be 
a subject of great interest for structural 
engineers. In early studies, a bridge has been 
modeled as a beam-like structure and a vehicle 

as a moving load or moving mass [1-5]. Such a 
model has been adopted in later studies 
including those by Warburton [6], Stanisic [7], 
Sadiku and Leipholz [8], and Akin and Mofid, 
[9]. Meanwhile, more delicate vehicle and 
bridge models that consider the effects of multi-
axle loadings, multi-lane loadings, vehicle 
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suspension, surface roughness have been 
developed and included in the analysis of the 
bridge response [10, 11]. 
Two common ways for simulating the beam 
model are Euler-Bernoulli and Timoshenko 
beam models in linear or nonlinear conditions; 
nonlinearity may arise from material 
nonlinearity or geometry nonlinearity. The 
relationship of material nonlinearity between 
stress and strain is nonlinear; also, the 
relationship of geometry nonlinearity between 
strain and displacement is nonlinear. The latter 
one is important for the systems with large 
deformations or systems that may fail due to 
buckling. In beams and plates, nonlinearity is 
from the nonlinear strain equations, in which 
the transverse displacement is coupled to the 
axial strains. As a result, mid-plane stretching 
of the beam or plate may occur. 
Von Karman theory or large deformation theory 
of plates uses geometric nonlinearity in its 
derivations. Nonlinear moment-curvature 
relationship becomes significant when large 
deformations without stretching are considered. 
This theory does not consider the slope of the 
beam deflected middle surface. Another type of 
nonlinearity is related to boundary conditions, 
e.g.  nonlinear spring or damper at plate edges 
or nonlinear spring in a mass-spring-damper 
vibration absorber. Duffing’s equation is a 

special case of a cubic nonlinear spring in a 
mass-spring-damper system [12]. 
In this article, linear and nonlinear vibration 
absorbers are optimized for the nonlinear beam 
model. The results show that the linear 
vibration absorber has better performance for 
short and regular beam lengths, while for long 
beams, the vibration absorber with cubic 
nonlinear stiffness behaves better than the linear 
one. 
It is demonstrated that, for the beams with 
ordinary lengths, it is not necessary to consider 
the nonlinearity for the beam equations. In this 
paper, nonlinear vibration absorbers behave 
better than the linear ones for longer beams and 
also the nonlinearity of the beam can be ignored 
for the ordinary length even if nonlinear 
vibration absorbers are applied. From the 
practical point of view, the results may become 
important for micro- and nano-scales, which 
can be a recommendation for future works. 
 
2. Basic equations 
 
Consider the system represented in Fig. 1: a 
simply supported nonlinear beam is connected 
to a small mass through a linear or nonlinear 
spring and a linear viscous damper; the beam is 
loaded with a traveling pointload [13, 14]. 
 

  
 

 
Fig. 1. The beam model. 
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In this article, numerical parameters of the 
beam without any attachment from [15] are 
used. L=17.4 m is the beam length, m=16300 
kg/m is the mass per unit length, A=6.8 m×1m 
is the cross-section area, D=EI=1.12×1011N.m2 
is bending rigidity, E=209 GPa is Young's 
modulus, I is the moment of inertia of the cross-
section area, ξ=0.04 is the beam damping rate, 
and V=72.22 m/s is the moving load speed. 
Considering the Hamilton's principle for 
classical nonlinear Euler-Bernoulli theory in 
beam modeling[12], the equation of motion of 
the nonlinear beam without vibration absorber 
is given by Eq. (1): 
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where Lu  is the axial deformation of the beam 
at x = L and u0 is the axial deformation of the 
beam at x=0. In this manuscript, these 
parameters are assumed as u0 = uL= 0 [12]. 
The beam dynamics is governed by the PDE 
represented by Eq. (2) with simply supported 
boundary conditions (3) and initial conditions 
(4) (Fig. 1): 
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The term [ ( ) / ] ( )f u u t x d      
represents the force exerted by the vibration 
absorber, f(u) is stiffness force, see Eq. (6) for

( )u t   definition, is viscous damping 
force,δ(x-d) defines the location of 
vibrationabsorber, andF(x,t) is the external 

force for simulating moving load. Equation (5) 
governs the dynamics of the vibration absorber. 
y (x,t) is the transverse displacement field of the 
beam (down is positive), v(t) is the absolute 
position of the mass m0, x=d represents the 
location of the damper on the beam, is the 
damping coefficient of the viscous damper, 
andm0 is the mass of the vibration absorber. 
The attached mass is lightweight compared to 
the beam mass; indeed, using weighty masses 
for the vibration absorber causes a more 
effective vibration–reduction on the beam; 
however, the static deflection of the beam 
increases as well. Therefore, the mass of the 
vibration absorber cannot be too large; in this 
work, the lumped mass of the vibration 
absorber is taken as 5% of the total mass of the 
beam [13]. 
The dynamics of the system (2) is analyzed 
after projecting the partial differential Eq. (2) 
into a complete and orthonormal basis; for the 
present problem, the eigenfunctions of the 
linear operator representing the simply 
supported beam with no attachments can be 
used. 
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r  is the natural frequency of the rth mode. The 

eigenfunctions satisfy the following 
orthonormality conditions. 
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where ji  is Kronecker delta. 
The transverse vibration of the beam can be 
assumed to be expressed as: 
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where )(tar  are unknown functions of time 
(modal coordinates) and )(xr are the 
normalized eigenfunctions. By inserting Eq. (9) 
in Eq. (2), projecting into the thp
eigenfunctions, and using the orthonormality 
conditions, the following is obtained: 
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Linear vibration absorber: 
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Cubic nonlinear vibration absorber: 
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which are obtained by considering the 
following forcing in Eq. (2). 
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δis the Dirac function and )(tH  is the 
Heaviside function. 
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The transient dynamics are studied by 
numerically integrating the dynamical system 
represented by Eqs. (10) and (11) after 
truncating series (9); the truncation is suitably 
chosen by checking the convergence of the 
expansion. Three terms are considered for the 
truncation. 
 
3. Validations 
 
The basic model and numerical calculations for 
linear beam model subjected to transient 
moving load in this text is the same as that 
mentioned in [13]. Deep analyses and 
comparisons were carried out in [13]; therefore, 
the present model can be considered partially 
validated. Additional comparisons and 
validations are performed to check the 
nonlinear beam model. In the following 
section,the results of nonlinear beam model are 
compared with those of linear beam model. 
There is no vibration absorber attached to the 
beam. y is the beam deflection,

maxLinear
y is the 

maximum deflection of linear beam, and VCritical 
is the critical velocity of the train. 

 
Fig. 2. Comparing deflection between linear (. . .) and nonlinear (___) beams with F0=216kN.

Linear NonlinearCritical max max
73.89 m/s , 0.2357 mm , 0.2357 mmV y y  

 



JCARME                                                  The application  . . .                Vol. 5, No. 1, Aut.-Win. 2015-16 

55 
 

 
 

Figure 2 presents a comparison between linear 
and nonlinear beam deflections. It is obvious 
that beam deflection for the nonlinear beam 
model is almost the same as that of the linear 
model for regular loads. Note that, later, it will 
be found that, for bigger loads, the difference 
between these two models can be 
consequential. In the next sections, the effects 
of some factors on the beam deflection such as 
force and beam length are considered. 
 
4. Evaluating critical velocity 
 
In this section,  the purpose is  to determine 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

critical velocity of moving load. Critical 
velocity occurs in the place of maximum 
beamdeflection. In Savin's bridge model[15], 
the minimum and maximum velocity of the 
train, when it passes from the bridge, is 114 
and342Km/h, respectively. The following 
charts show that results 
 of linear and nonlinear beamsare the same 
when F0=216kN [15]. Note that, maximum 
and minimum train speed is 31.67 m/s and 
95m/s [15], respectively. Figure 3 
demonstrates critical velocity in linear and 
nonlinear beam modelsas 73.89 m/s and 
maximum deflection of beam as 0.2473 mm in 
both models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Maximum deflection vs. loadspeed for linear (. . .) and nonlinear (___) beam. 

 

 
Fig. 4. Comparison linear (. . .) and nonlinear (___) beamdeflection with F=216 kN. 

Critical Linear Nonlinear73.89 m/s , 235.7 mm , 213.9 mmV y y    
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5. Effect of load magnitude 
 
this section, the effects of force amplitude on 
the beam deflection are examined. By 
increasing the magnitude of the force, 
difference between linear and nonlinear beam 
deflections is remarkable. Validation of this 
subject is shown in the following charts and 
their results are presentedin Table 1. In this 
table, F0is equal to 216 kN. Figure 4 
demonstrates the comparison of linear and 
nonlinear beam deflections.  
By increasing force magnitude,the difference 
of linear and nonlinear beam deflections 
increases gradually. Linear beam displacement 
is bigger than the nonlinear one andresults 
show that usage of nonlinear beam model is 
important, just in the case of big loads. 
 
6. Effect of beam length 
 
In this section, effect of length on the 
maximum beam deflection is surveyed. The 
moving load passage time is 2.94 s for the 
longest beam considered in this section. In 
order tocomparedifferentbeamlengths,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

execution time equal to 4s is considered. In 
Savin's bridge model [15], beam length is 
equal to 17.4 m. 
The above chart shows that,with increasing 
beam length, deflection in the linear beam 
becomes higher than that of the nonlinear one 
and the difference of linear and nonlinear beam 
models increases (Fig. 5). 
 
7. Optimizing vibration absorber  
 
The vibration absorber is a classical device for 
avoiding large amplitude vibrations of a 
mechanical system subject to a sinusoidal 
varying excitation when the forcing frequency 
coincides or is near one of the natural 
frequencies of the system. Obviously, severe 
vibrations of a given structure or mechanical 
system may cause considerable disturbance, 
which is inconvenient from the human factors 
viewpoint and may be conducive to failure due 
to fatigue, etc. Percentage of deflection 
difference for the linear and nonlinear beams is 
shown in Fig. 6 and their results are presented 
in Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Deflection difference percent in linear and  nonlinear beam varying by force amplitude; F0=216 kN. 
F [kN] F0 10F0 100F0 1000F0 
Deflection difference percent 0 % 0 % 0.13 % 9.25 % 
yLinear [mm] 0.2357 2.357 23.57 235.7 
yNonlinear [mm] 0.2357 2.357 23.54 213.9 

 
 

 
Fig. 5. Comparison linear (. . .) and nonlinear (___) beam’s deflection, L=167.4m. 

Critical Linear Nonlinear73.89 m/s , 207.6 mm , 202.1 mm.  V y y  
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Table 2. Deflection difference percent for linear and nonlinear beam vs. beam length. 
Beam length [m] 17.4 67.4 117.4 167.4 
Deflection difference percent 0 % 0.1 % 0.81 % 2.65 % 
     
yLinear [mm] 0.2357 20.11 92.23 207.6 
yNonlinear [mm] 0.2357 20.09 91.48 202.1 

 

 

Fig. 6. Deflection difference percent of beam length between the linear and nonlinear beams. 
 

Optimum linear and cubic nonlinear vibration 
absorber was obtained for a linear beam model 
in [13]. In this section, the importance of beam 
nonlinearity model is evaluated when 
nonlinear vibration absorber is attached and 
the results are gathered in Table 3. As can be 
observed, if F0=216kN, results of linear and 
nonlinear beamswill bethe same. In Table 3,L 
equals 17.4 m. 
The governing equation of nonlinear Euler-
Bernoulli beam with linear vibration absorber 
is: 
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Equation (18) is the same as Eq. (17) for the 
vibration absorber with cubic nonlinear 
stiffness: 
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The goal function to define optimum vibration 
absorber is to minimize the maximum 
deflection of the beam. The optimization is 
carried out for the linear and nonlinear beam 
models. The optimal damping for the present 
transient load defined in [13] is zero. Small 
damping is considered here to prevent 
numerical errors. It is obvious that, for the 
present beam length and force magnitude, the 
results are the same for linear and nonlinear 
beam models. Figure 7(a) presents the 
variation of maximum beam deflection versus 
stiffness of linearvibration absorber. kLinear and 
kNonlinear represent the stiffness of optimal 
vibration absorber for linear beam models. 
Figure 7(b) presents the variation of maximum 
beam deflection versus stiffness of cubic 
nonlinear vibration absorber. CLinear and 
CNonlinearshow the optimal stiffness of vibration 
absorber for linear and nonlinear beam models. 
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Figure 8 presents the optimal location for 
linear and cubic nonlinear vibration absorber. d 
is the installation location of vibration 
absorber. 
As shown in the chart, the optimum location 
for attaching vibration absorber on the beam is 
not exactly in the middle of the beam. For 
example, when stiffness is nonlinear, its 
optimum location is 0.38 L, which is 6.612 m 
from the left side of the beam, as shown in 
Figure 1 called point A. The results show that 
the linear vibration absorber has better 
performance for short and regular beam 
lengths, while for long beams, the vibration 
absorber with cubic nonlinear stiffness behaves 
better. For the present numerical values, two 
special beam lengths   are recognized so that  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the linear and nonlinear vibration absorbers 
have the maximum influence.  
Moreover, the presented results illustrate the 
beam length, at which the performance of the 
optimal linear vibration absorber and the 
optimal cubic nonlinear vibration absorber is 
equal. The goal function to define optimum 
vibration absorber is to minimize the 
maximum deflection of the beam. The 
optimization is carried out for the linear and 
nonlinear beam models. The optimal damping 
for the present transient load defined in [13] is 
zero. Small damping is considered here to 
prevent numerical errors. It is obvious that, for 
the present beam length and force magnitude, 
the results are the same for linear and 
nonlinear beam models. Figure 7(a) presents 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Optimal stiffness of linear and nonlinear vibration absorber: maximum deflection vs. Stiffness. 

6
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Fig. 8. Optimal location of linear and nonlinear vibration absorber: maximum deflection vs. damper 
location. 
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the variation of maximum beam deflection 
versus stiffness of linear vibration absorber.  
kLinear and kNonlinear represent the stiffness of 
optimal vibration absorber for linear beam 
models. Figure 7(b) presents the variation of 
maximum beam deflection versus stiffness of 
cubic nonlinear vibration absorber. CLinear and 
CNonlinearshow the optimal stiffness of vibration 
absorber for linear and nonlinear beam models. 
Figure 8 presents the optimal location for 
linear and cubic 
 nonlinear vibration absorber. CLinear and 
CNonlinearshow the optimal stiffness of vibration 
absorber for linear and nonlinear beam models. 
Figure 8 presents the optimal location for 
linear and cubic nonlinear vibration absorber. d 
is the installation location of vibration 
absorber. 
As shown in the chart, the optimum location 
for attaching vibration absorber on the beam is 
not exactly in the middle of the beam. For 
example, when stiffness is nonlinear, its 
optimum location is 0.38 L, which is 6.612 m 
from the left side of the beam, as shown in 
Figure 1 called point A. The results show that 
the linear vibration absorber has better 
performance for short and regular beam 
lengths, while for long beams, the vibration 
absorber with cubic nonlinear stiffness behaves 
better. For the present numerical values, two 
special beam lengths   are recognized so that 
the linear andnonlinear vibration absorbers 
have the maximum influence. Moreover, the 
presented results illustrate the beam length, at 
which the performance of the optimal linear 
vibration absorber and the optimal cubic 
nonlinear vibration absorber is equal. 
 
8. Conclusions 
 
The purpose of this paper is to optimize 
passive vibration absorbers in linear and 
nonlinear states for an Euler-Bernoulli beam 
with a nonlinear vibratory behavior under the 
concentrated moving load. The goal parameter 
in the optimization is maximum deflection of 
the beam. The large deformation is 
consideredfor beam modeling; i.e. the 
relationship between strains and deflections is 
nonlinear. 

The presented numerical results show that 
critical velocity and maximum deflection of 
beam are identical in linear and nonlinear 
beam models. Moreover, by increasing beam 
length, deflection in the linear beam becomes 
higher than the nonlinear beam with vibration 
absorber; i.e. the difference  between    linear 
and nonlinear beam models becomes more 
sensible. For longer beams, the nonlinear 
absorber is more effective. It is demonstrated 
that, for the beams with ordinary lengths, it is 
not necessary to consider the nonlinearity for 
the beam equations. In this paper, nonlinear 
vibration absorbers behave better for longer 
beams and also the nonlinearity of the beam 
can be ignored for ordinary length, even if 
nonlinear vibration absorbers are applied. 
In the same manner, results show that, by 
increasing force magnitude, linear and 
nonlinear beam deflection difference is 
increased gradually. In addition, for severe 
loading, nonlinear absorbers become more 
effective than the linear one. Similar to the 
conventional beam length, for the conventional 
forces, nonlinear terms of the beam do not 
considerably affect the results. 
Vibration absorber with linear damping and 
linear or cubic nonlinear stiffness is 
considered. The obtained results demonstrate 
that the linear vibration absorber has better 
performance for short and regular beam 
lengths, while for long beams, the vibration 
absorber with cubic nonlinear stiffness behaves 
better. For the present numerical values, two 
special beam lengths are recognized so that the 
linear and nonlinear vibration absorbershave 
maximum influence. 
Results represented that, for the presented 
numerical values (train bridge application) in 
the case of cubic nonlinear vibration absorber, 
there are two local optimal locations: one 
inclined from the middle of the beam to the 
direction of moving loads and the second, 
which is more interesting, inclined from the 
middle of the beam to the opposite direction of 
the moving loads. 
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Table 3. Optimization results. 

F0=215732N Linear beam model  
(Damped linear beam) 

Nonlinear beam model  
(Damped nonlinear beam) 

optimum vibration 
absorber 

linear  
 vibration absorber 

nonlinear 
vibration absorber 

linear 
vibration absorber 

nonlinear 
vibration absorber 

Optimum stiffness 100×106 N/m 16.5×1015 N/m3 100×106 N/m 16.5×1015 N/m3 
d [m] 0.48L 0.38L 0.48L 0.38L 
∆1 [mm] 0.2357 0.2357 0.2357 0.2357 
∆2 [mm] 0.2083  0.2103 0.2083  0.2103 

Deflection decrease 
percentage 11.63% 10.78% 11.63% 10.78% 

d: Vibration absorber location,  ∆1: Maximum deflection without any vibration absorber,  ∆2: Maximum deflection with 
optimum vibration absorber. 
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