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Abstract 
Metal matrix composites have been widely used in industries, especially 
aerospace industries, due to their excellent engineering properties. However, it 
is difficult to machine them because of the hardness and abrasive nature of 
reinforcement elements like silicon carbide particles (SiCp).In the present 
study, an attempt has been made to investigate the influence of spindle speed 
(N), feed rate (f), depth of cut (d) and various %wt. of silicon carbide (S) 
manufactured through stir cast route on tool flank wear and surface roughness 
during end milling of LM25 Al-SiCp metal matrix composites. Statistical 
models based on second order polynomial equations were developed for the 
different responses. Analysis of variance (ANOVA) was carried out to identify 
the significant factors affecting the tool flank wear and surface roughness. The 
contour plots were generated to study the effect of process parameters as well 
as their interactions. The process parameters are optimized using desirability-
based approach response surface methodology. 

 
 

1. Introduction  
 
The Metal matrix composites (MMC) are the 
new class of materials and are being used to 
replace conventional materials in various 
engineering applications such as the aerospace 
and automobile industries. The most popular 
reinforcements are silicon carbide (SiC) and 
alumina (Al2O3). Aluminum, titanium, and 
magnesium alloys are commonly used as the 
matrix phase.  

The density of most of the MMCs is 
approximately one third that of steel, resulting 
in high-specific strength and stiffness [1]. In the 
last decades, SiC/Al composites have been 
increasingly used in the aerospace industry and 
advanced arm systems such as satellite bearing, 
inertia navigation system, and laser reflector. It 
is possible to produce high-quality MMC 
components to near-net shape through various 
manufacturing techniques, but additional 
machining is unavoidable to achieve the desired 



JCARME                                              R. Arokiadass et al.                     Vol. 2, No. 1, Sept. 2012 

2 
 

surface quality and dimensional tolerance for 
efficient assembly [2]. 
Several studies have been done in order to 
examine the efficiency of different cutting tool 
materials, such as carbide, coated carbide, and 
diamond in turning, milling, drilling, reaming, 
and threading of MMC materials. The main 
problem while machining MMC is the 
extensive tool wear caused by the very hard and 
abrasive reinforcements. Manna et al. [3] 
investigated the machinability of Al/SiC MMC 
and found that no built-up edge (BUE) is 
formed during machining of Al/SiC MMC at 
high speed and low depth of cut and also 
observed better surface finish at high speed 
with low feed rate and low depth of cut.  
Davim et al. [4] made a correlation between the 
chip compression ratios and shear plane angle 
or chip deformation during MMCs turning. The 
results showed shear angle decreased with the 
chip compression ratio. On the contrary, the 
chip deformation increased with chip 
compression ratio. The merchant model gives, 
in general, an overestimation of the shear plane 
angle value in cutting of aluminum matrix 
composites [5]. 
Kannan et al. [6] studied tool wear, surface 
integrity, and chip formation during machining 
of Al-MMC under both wet and dry condition. 
The turning results showed that the tool life was 
increased at higher cutting speeds in influence 
of coolant but the surface quality was 
deteriorated. Suresh Kumar Reddy et al. [7] 
studied quality of components produced during 
end milling of Al/SiC PMMCs. The results 
showed that the presence of the reinforcement 
enhances the machinability in terms of both 
surface roughness and lower tendency to clog 
the cutting tool, when compared to a non-
reinforced aluminum alloy.  
Tamer Ozben et al. [8] investigated the 
mechanical properties and the effects of 
machining parameters on tool wear and surface 
roughness of silicon carbide particulate (SiCp) 
reinforced aluminum MMC for different 
volume fraction. It was observed that the 
increase in reinforcement addition produced 
better mechanical properties, but the tool flank 
wear will be higher. The surface roughness was 
enerally affected by feed rate and cutting speed. 

Ibrahim Ciftci et al. [9] studied the influence of 
different particle size of SiC and cutting speed 
on tool wear and surface roughness during 
machining of Al/SiC MMC using cubic boron 
nitride (CBN) cutting tool. The results showed 
that tool wear was mainly observed on flank 
side with a strong influence by abrasive 
reinforcement. Palanikumar [10] developed a 
model for surface roughness through response 
surface method (RSM) while machining GFRP 
(Glass Fibre Reinforced Plastics) composites. 
Four factors five level central composite 
rotatable design matrix was employed to carry 
out the experimental investigation. Analysis of 
variance (ANOVA) was used to check the 
validity of the model.  
Jenn-Tsong Horng et al. [11] made an attempt 
to model the machinability evaluation through 
the RSM while machining Hadfield steel. 
Results indicated that the flank wear was 
influenced by the cutting speed and the 
interaction effect of feed rate. Muthukrishnan et 
al. [12] developed two modeling techniques 
used to predict the surface roughness namely 
ANOVA and artificial neural network (ANN). 
Oktem et al. [13] developed an effective 
methodology to determine the optimum cutting 
conditions leading to minimum surface 
roughness while milling of mold surfaces by 
coupling RSM with a developed genetic 
algorithm (GA). 
From the literature it is found that the 
machining of Al MMC is an important area of 
research, but only very few  studies have been 
carried out on optimization of tool flank wear 
and surface roughness while machining of  
particulate aluminum metal matrix composite 
(PAMMC).  Hence, the main objective of the 
present work is to optimize tool flank wear and 
surface roughness while machining LM25 
AlSiCp metal matrix composite using RSM 
approach. 
 
2. Experimental planning  
 
In the present experimental study, the material 
to be machined is LM25 Al alloy reinforced 
with SiCp, at a various composition of 5%wt., 
10%wt., 15%wt., 20%wt. and 25%wt. and of 
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5µm particle size manufactured through stir-
casting route was used for experimentation.  
Microscopic examinations of the specimens 
were carried out using a scanning electron 
microscope (SEM). The typical microstructures 
of the LM25Al alloy with different percentage 
weight of SiCp composites are shown in Fig. 1. 
The dimensions of the specimens were of 100 
mm × 50 mm × 40 mm. 
The chemical composition of the LM25 Al 
alloy specimen is presented in Table 1.  The 
cutting tools used were flat end uncoated solid 
carbide cutters, having diameter of 12 mm, 
helix angle of 45º, rake angle of 10º and 
number of flutes 4. The important factors 
influencing the tool flank wear and surface 
roughness and their levels are presented in 
Table 2.  
 
 
Table 1. Chemical composition of LM25 aluminum 
alloy (%wt.). 

Material Si Mg Mn Fe Cu Ni Ti 

LM25 
Al alloy 

7 0.33 0.3 0.5 0.1 0.1 0.2 

 
 
The machining operations were carried out as 
per the conditions given by the design matrix at 
random to avoid systematic errors. 
In the present study, the tool wear area was 
considered as the criterion that would affect the 
results of cutting process. The measurement of 
the width of the flank wear land of the cutting 
tool was used to evaluate the tool wear as 
shown in Fig. 2. The maximum value of flank 
wear (VBmax) was adopted as the machinability 
evaluation of machining MMC. Here, the tool 
flank wear (VBmax) was measured by using 
Metzer tool maker’s microscope. 
The surface roughness (Ra), which is mostly 
used in industries, is taken for this study.  The 
surface roughness (Ra) of the machined test 
specimens was measured using a Talysurf tester 
with a sampling length of 10mm. 
 

3. Design of experiment based on response 
surface methodology  
 
In order to investigate the influence of process 
parameters  on the tool flank wear and  surface 
roughness, four principal process parameters 
such as the spindle speed (N),  feed rate (f), 
depth of cut (d) and percentage weight of 
silicon carbide (S) were  taken. In this study, 
these process parameters were chosen as the 
independent input variables. The desired 
responses are the tool flank wear and surface 
roughness which are assumed to be affected by 
the above four principal process parameters.   
The response surface methodology is employed 
for modeling and analyzing the process 
parameters in the end milling process so as to 
obtain the machinability performances of VBmax 
and Ra. In the RSM, the quantitative form of 
relationship between the desired response and 
independent input variables are represented as 
follows: 
 
Y =F {N, f, d, S}                                   (1)
            
where Y is the desired response and F is the 
response function (or response surface). In the 
procedure of analysis, the approximation of Y 
was proposed using the fitted second-order 
polynomial regression model, which is called 
the quadratic model. The quadratic model of Y 
can be written as follows: 
 
Y =a0+ΣaiXi+ΣaiiXi

2+ΣaijXiXj                     (2) 
 
where a0 is constant, ai, aii, and aij represent the 
coefficients of linear, quadratic, and cross 
product terms, respectively. Xi reveals the 
coded variables that correspond to the studied 
machining parameters. The coded variables Xi, 
i=1, 2, 3, 4 are obtained from the following 
transformation equations: 
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Fig. 1. SEM micrographs of LM 25 Al alloy reinforced with: (a) LM25 Al alloy; (b) 5% SiC; (c) 10% SiC; (d) 
15% SiC; (e) 20% SiC and (f) 25% SiC (black regions SiC particles). 
 
 
 

 
 

 

Fig. 2. Measurement of flank wear. 
 
 
 
 

Table 2. Experimental parameters and their levels. 

Factor Unit Notation 
Levels 

(‒2) (‒1) 0 (+1) (+2) 

Spindle speed RPM N 2000 2500 3000 3500 4000 

Feed rate mm/rev f 0.02 0.03 0.04 0.05 0.06 

Depth of cut mm d 0.5 1 1.5 2 2.5 

Silicon Carbide %wt S 5 10 15 20 25 
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X1= [N–N0]/∆N                                           (3) 
X2= [f –f0]/∆f                                 (4) 
X3= [d–d0]/∆d                       (5) 
X4= [S–S0]/∆S                                  (6) 
 
where X1, X2, X3, and X4 are the coded values 
of parameters N, f, d, and S respectively; N0, f0, 
d0, and S0 are the values of N, f, d, and S, 
respectively, at zero level. ∆N, ∆f, ∆d, and ∆S 
are the intervals of variation in N, f, d, and S, 
respectively. The purpose of using this 
quadratic model Y in this study was not only to 
investigate over the entire factor space but also 
to locate the region where the response 
approaches its optimum or near optimal value 
of the desired target.  The necessary data for 
building the response models are generally 
collected by the experimental design.  
The pertinent process parameter selected for 
the present investigation are spindle speed, 

feed rate, depth of cut and percentage weight 
of silicon carbide on the tool flank wear and 
surface roughness during the end milling 
process. For the four variables the design 
required 31 experiments with 16 factorial 
points, eight axial points to form central 
composite design with α=2 and seven center 
points for replication to estimate the 
experimental error. The design was generated 
and analyzed using MINITAB 15.0 statistical 
package. The levels of each factor were chosen 
as −2, −1, 0, 1, 2 in closed form to have a 
rotatable design [14]. Table 2 shows the 
factors and their levels in coded and actual 
values. The experiment has been carried out 
according to the designed experimentation 
based on central composite second-order 
rotatable design as depicted in Table 3. 

 
Table 3. Experimental design matrix and results. 

Ex.No 
 

Coded factors  
 

Actual factors  
Flank wear, 
VBmax (mm) 

Surface 
roughness, 
Ra (µm) X1 X2 X3 X4 N f d S 

1 ‒1 ‒1 ‒1 ‒1  2500 0.03 1 10  0.224 4.406 
2 1 ‒1 ‒1 ‒1  3500 0.03 1 10  0.284 3.812 
3 ‒1 1 ‒1 ‒1  2500 0.05 1 10  0.258 6.034 
4 1 1 ‒1 ‒1  3500 0.05 1 10  0.291 5.229 
5 ‒1 ‒1 1 ‒1  2500 0.03 2 10  0.235 4.472 
6 1 ‒1 1 ‒1  3500 0.03 2 10  0.294 3.802 
7 ‒1 1 1 ‒1  2500 0.05 2 10  0.27 6.032 
8 1 1 1 ‒1  3500 0.05 2 10  0.297 5.312 
9 ‒1 ‒1 ‒1 1  2500 0.03 1 20  0.338 4.978 
10 1 ‒1 ‒1 1  3500 0.03 1 20  0.407 4.395 
11 ‒1 1 ‒1 1  2500 0.05 1 20  0.377 6.789 
12 1 1 ‒1 1  3500 0.05 1 20  0.422 5.945 
13 ‒1 ‒1 1 1  2500 0.03 2 20  0.358 5.071 
14 1 ‒1 1 1  3500 0.03 2 20  0.413 4.402 
15 ‒1 1 1 1  2500 0.05 2 20  0.384 6.804 
16 1 1 1 1  3500 0.05 2 20  0.419 6.054 
17 ‒2 0 0 0  2000 0.04 1.5 15  0.262 6.202 
18 2 0 0 0  4000 0.04 1.5 15  0.361 4.638 
19 0 ‒2 0 0  3000 0.02 1.5 15  0.314 3.679 
20 0 2 0 0  3000 0.06 1.5 15  0.357 7.008 
21 0 0 ‒2 0  3000 0.04 0.5 15  0.309 5.062 
22 0 0 2 0  3000 0.04 2.5 15  0.341 5.299 
23 0 0 0 ‒2  3000 0.04 1.5 5  0.211 4.334 
24 0 0 0 2  3000 0.04 1.5 25  0.443 5.639 
25 0 0 0 0  3000 0.04 1.5 15  0.322 5.183 
26 0 0 0 0  3000 0.04 1.5 15  0.328 5.177 
27 0 0 0 0  3000 0.04 1.5 15  0.319 5.221 
28 0 0 0 0  3000 0.04 1.5 15  0.326 5.163 
29 0 0 0 0  3000 0.04 1.5 15  0.323 5.155 
30 0 0 0 0  3000 0.04 1.5 15  0.327 5.199 
31 0 0 0 0  3000 0.04 1.5 15  0.329 5.229 
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4. Mathematical modeling  
 
The Mathematical models based on second-
order polynomial equations were developed for 
tool flank wear and surface roughness using 
the experimental results shown in Table 3 was 
obtained from planned set of experiments 
based on CCD. The coefficients of regression 
analysis for flank wear (VBmax) and surface 
roughness (Ra) is shown in Tables 4 and 5 
along with their P value of the parameters, 
higher order, and interactions. The P value of 
regression analysis of VBmax in Table 4 
indicates that linear effect of spindle speed, 
feed rate and percentage weight of SiCp are 
the most significant. In Square and interaction 
terms, spindle speed and feed rate are the most 
significant.  
Similarly, the P value of regression analysis of 
Ra in Table 5 indicates that linear effect of 
spindle speed, feed rate and percentage 
weight of SiCp are significant.  
In Square terms, spindle speed , feed rate 
and percentage weight of SiCp are 
significant. In interaction terms, spindle 
speed-feed rate and feed   rate-%wt. SiCp 
are significant. Equations (7 and 8) represent 
the regression model equation for flank wear 
(VBmax) and surface roughness (Ra). 
 
Table 4. Regression analysis of flank wears (VBmax). 

Term Coefficient P- value 

Constant ‒0.2551 <0.001 

X1 0.0002 <0.000 

X2 2.4923 <0.042 

X3 0.0404 0.078 

X4 0.0084 <0.001 

X1
2 ‒0.0000 <0.011 

X2
2 34.4196 <0.001 

X3
2 0.0033 0.372 

X4
2 0.0001 0.158 

X1 X2 ‒0.0013 <0.000 

X1 X3 ‒0.0000 0.123 

X1 X4 0.0000 0.207 

X2 X3 ‒0.3125 0.207 

X2 X4 0.0088 0.718 

X3 X4 ‒0.0002 0.642 

Table 5. Regression analysis of surface roughness 
(Ra). 

Term Coefficient P value 

Constant 4.716 <0.000 

X1 ‒0.002 <0.000 

X2 61.948 <0.000 

X3 0.050 0.810 

X4 0.099 <0.000 

X1
2 0.000 <0.000 

X2
2 365.551 <0.001 

X3
2 ‒0.017 0.628 

X4
2 ‒0.002 <0.000 

X1 X2 ‒0.008 <0.004 

X1 X3 0.000 0.927 

X1 X4 ‒0.000 0.758 

X2 X3 0.612 0.791 

X2 X4 0.789 <0.003 

X3 X4 0.002 0.638 

 
 
VBmax = –0.2551 + (0.0002 X1) + (2.4923 X2)  
+ (0.0404 X3) + (0.0084 X4) + (34.4196 X2

2)  
+ (0.0033 X3

2) + (0.0001 X4
2) – (0.0013 X1 X2)  

– (0.3125 X2 X3) + (0.0088 X2 X4)  
– (0.0002 X3 X4)                                            (7) 
 
Ra = 4.716 – (0.002 X1) + (61.948 X2) +  
(0.050 X3 ) + (0.099 X4) + (365.551 X2

2) 
– (0.017 X3

2) – (0.002 X4
2) – (0.008 X1 X2) 

+ (0.612 X2 X3) + (0.789 X2 X4) 
+ (0.002 X3 X4)                                              (8) 
 
where X1, X2, X3, and X4 represent the decoded 
values of spindle speed (N), feed rate (f), depth 
of cut (d) and percentage weight of silicon 
carbide (S), respectively.  
 
5. Analysis of the developed mathematical 
models  
 
The ANOVA and F ratio test have been 
performed to justify the goodness of fit of the 
developed mathematical models. The 
calculated values of F ratios for lack-of-fit 
have been compared to standard values of F 
ratios corresponding to their degrees of 
freedom to find the adequacy of the developed 
mathematical models. The F ratio calculated 
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from ratio of Mean Sum of Square of source to 
Mean sum of experimental error.  
The fit summary recommended that the 
quadratic model is statistically significant for 
analysis of tool flank wear.  
The value of R2 is over 99.65%, which means 
that the regression model provides an excellent 
explanation of the relationship between the 
independent variables (factors) and the 
response (VBmax). 
The associated P value for the model is lower 
than 0.05 (i.e., p=0.05, or 95% confidence) 
indicates that the model is considered to be 
statistically significant.  The ANOVA table for 
the quadratic model for VBmax is shown in 
Table 6.  
Similarly, the value of R2 for surface 
roughness is 99.85%, which means that the 
regression model provides an excellent 
explanation of the relationship between the 
independent variables (factors) and the 
response (Ra).  
The associated P value for the model is lower 
than 0.05 (i.e., p=0.05 or 95% confidence), 
which indicates that the model is considered 
statistically significant. 
The ANOVA table for the quadratic model for 
surface roughness is shown in Table 7. The 
standard percentage point of F distribution for 
95% confidence limit is 4.06.  
As shown in Table 6 and 7, the F value is 2.15 
and 3.58 for lack-of-fit is smaller than the 
standard value of 95% confidence limit. Thus, 
both the models are adequate in 95% 
confidence limit. 
 It is also seen that from the P values, for both 
tool flank wear (VBmax) and surface roughness 
(Ra), linear, square, and interaction effects are 
significant. 
The plot of normal probability of the residual 
for tool flank wear and surface roughness are 
shown in Fig. 3 and 4.  
From the normal probability plots of residuals 
(i.e error = predicted value from model – 
actual value) in Fig. 3 and 4, it is evident that 
the residuals lie reasonably close to a straight 
line implying that errors are distributed 
normally. 
 
 

6. Results and discussion  
 
6.1. Effect of machining parameters on flank 
wears (VBmax) 
 
Based on the mathematical model given by Eq. 
(7) developed through experimental 
observations and response surface 
methodology, studies have been made to 
analyze the effect of the various process 
parameters on the flank wear (VBmax). The 
contour plots were drawn for various 
combinations. The number represent in the plot 
is flank wear (VBmax). In Fig. 5, it is clear that 
the flank wear (VBmax) increases with the 
increase in the spindle speed (N). At lower 
spindle speed, flank wear is lesser extent, 
which can be attributed to formation of larger 
size unstable BUE due to high contact pressure 
and friction which protects the cutting edge 
from further wear [15].  
But with increase in spindle speed, an increase 
in tool flank wear is observed which could be 
due to generation of higher temperature at 
higher spindle speed and associated thermal 
softening and deterioration of form stability of 
the cutting edge [16]; also, the flank wear 
increases with increase in feed rate. It is due to 
BUE formed on flank face that changes the 
geometry of the tool [17]. Fig. 6 shows the 
effect of spindle speed and %wt. of SiCp on 
flank wear (VBmax). Increase in spindle speed, 
an increase in tool flank wear. Increasing  the  
percentage  of  the  SiC  particles  also  
increases  the  tool  wear  because  of 
increasing  the  surface  contact  between  the  
SiC  particles  and  the  cutting  tool  edge  in  
higher percentage of the SiC particles [18].   
The depth of cut (d) also has least influence 
factor on flank wear (VBmax) in machining of 
MMC. Fig. 7 show the effect of spindle speed 
and depth of cut on flank wear (VBmax). 
Increasing the depth of cut increases the flank 
wear (VBmax) due to increase in area of 
contact, normal load, and friction.  This, in 
turn, increases temperature, which will cause 
work softening and thus results slight increase 
in flank wear (VBmax). 
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Table 6. Analysis of variance for tool flank wears (VBmax). 

Source of variation 
Degree of 
freedom 

Sum of 
squares 

Mean sum of 
squares 

F- value 
 

p-value 
 

Regression 14 0.103963 0.007426 328.73 0.000 

Linear 4 0.102512 0.000268 11.88 0.000 

Square 4 0.000642 0.000160 7.10 0.002 

Interaction 6 0.000809 0.000135 5.97 0.002 

Residual Error   16 0.000361 0.000023   

Lack of fit 10 0.000283 0.000028 2.15 0.181 

Pure Error 6 0.000079 0.000013   

Total 30 0.103963    

 
 
 

Table 7. Analysis of variance for surface roughness (Ra). 

Source of variation 
Degree of 
freedom 

Sum of 
squares 

Mean sum of 
squares 

F- value 
 

p-value 
 

Regression 14 22.0127 1.572334 763.09 0.000 

Linear 4 21.7361 0.078294 38.00 0.000 

Square 4 0.2282 0.057041 27.68 0.000 

Interaction 6 0.0485 0.008076 3.92 0.013 

Residual Error   16 0.0330 0.002060   

Lack of fit 10 0.0282 0.002823 3.58 0.066 

Pure Error 6 0.0047 0.000789   

Total 30 22.0456    

 
 
 

  

Fig. 3. Normal probability plot of residuals for VBmax.       Fig. 4. Normal probability plot of residuals for Ra. 
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Fig. 5. Effect of spindle speed and feed rate on 
VBmax. 

    Fig. 6. Effect of spindle speed and %wt. of SiCp     
    on VBmax. 

 
 

 
Fig. 7.  Effect of %wt. of spindle speed and depth of 
cut on VBmax. 
 
 
6.2. Effect of machining parameters on surface 
roughness (Ra) 
 
Based on the mathematical model given by Eq. 
(8), the study of the effects of various process 
parameters on surface roughness (Ra) has been 
made so as to analyze the suitable parametric 
combinations that can be made for achieving 
controlled surface roughness. The contour plots 
were drawn for various combinations. The 
number represent in the plot is surface 
roughness (Ra).  
From Fig. 8, the surface roughness (Ra) 
decreases as the spindle speed (N) increases. At 
low spindle speed (N), the unstable larger BUE 

is formed and also the chips fracture readily 
producing the rough surface. As the spindle 
speed (N) increases, the BUE vanishes, chip 
fracture decreases, and, hence, the roughness 
decreases [19].  
Also, the increase in feed rate (f) increases the 
surface roughness (Ra). With the lower feed 
rates, the BUE forms readily and is 
accompanied by feed marks resulting in 
increased surface roughness.  
With the increase in feed rate the rate of 
increase in surface roughness (Ra) is less due to 
the reduced effect of BUE [20]; the best surface 
finish was achieved at the lowest feed rate and 
highest cutting speed combination.  
The effect of spindle speed and %wt. of SiCp on 
the surface roughness (Ra) is shown in Fig. 9. 
The surface roughness (Ra) increases with the 
increase in the %wt. of SiCp. Because addition 
of reinforcing materials which are normally 
harder and stiffer than the matrix, machining 
becomes significantly more difficult than in the 
case for conventional materials [21]. This result 
is observed commonly in all metal cutting 
processes.  
Figure10 show the effect of spindle speed and 
depth of cut on surface roughness (Ra). Increase 
in depth of cut (d) results in high normal 
pressure and seizure on the rake face and 
promotes the BUE formation. Hence, the 
surface roughness (Ra) slightly increases along 
with increase in depth of cut (d). 
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Fig. 8.  Effect of spindle speed and feed rate on Ra.    Fig. 9. Effect of spindle speed and %wt. of SiCp on       
   Ra. 

 
7. Analysis for optimization of the responses  
 
One useful approach to optimization of multiple 
responses is to use the simultaneous 
optimization technique popularized by 
Derringer and Suich [22]. Their procedure 
introduces the concept of desirability functions. 
The general approach is to first convert each 
response Y into an individual desirability 
function di that varies over the range. 
 
0 ≤ di ≤ 1                                                    (9) 
where if the response Y is at its goal or target, 
then di=1, and if the response is outside an 
acceptable region, di=0. The weight of the 
desirability function for each response defines 
its shape. For each response, one can select a 
weight (ri) to emphasize or de-emphasize the 
target. Finally, the individual desirability 
functions are combined to provide a measure of 
the composite or overall desirability of the 
multiresponse system [23]. This measure of 
composite desirability is the weighted 
geometric mean of the individual desirability 
for the responses. The optimal operating 
conditions can then be determined by 
maximizing the composite desirability. In the 
present investigation, the response parameters 
are chosen to maximize the overall desirability 
as follows: 

� = (��
��		��

��)
1
(�1+�2)�                         (10) 

where d1 and d2 are the desirability functions 
for flank wear (VBmax) and surface roughness 
(Ra), respectively, and i1 and i2 are the 
importance of transformed response parameters 
of d1 and d2. Usually, a reduced gradient 
algorithm with multiple starting points is 
employed that maximizes the composite 
desirability to determine the optimal input 
variable settings. Most of the standard  
statistical software packages (Minitab, Design, 
Expert, etc.) employ this popular technique for 
response optimization. In the present case, 
Minitab was used to optimize the response 
parameters. 
Optimization plot for both the responses is 
shown  Fig. 11. The objective is to minimize 
both responses considered at a time. As the 
composite desirability is close to 1, it can be 
concluded that the parameters are within their 
working range. The optimized values of process 
parameters are spindle speed (N) 3072.8597 
RPM, feed rate (f) 0.020 mm/rev, depth of cut 
(d) 1.2450 mm, and %wt. of silicon carbide (S) 
13.7250.  
 
8. Conclusions 
 
The experimental analysis highlights that the 
machining criteria like VBmax and Ra in 
composite machining are greatly influenced by 
the various predominant process parameters 
considered  in  the  present  study.  Response  
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Fig. 10. Effect of %wt. of spindle speed and depth 
of cut on  Ra. 
 
 
surface methodology used in the present 
research work has proved its adequacy to be an 
effective tool for analysis of the composite 
machining process. From the investigation, the 
following conclusions are drawn: 

1. Spindle speed and feed rate of the 
regression models are found to be more 
significant followed by percentage weight of 
silicon carbide and depth of cut. The proposed 
models for flank wear and surface roughness 
are found to be adequate and can be used to 
predict the characteristics within the 
experimental range. 

2. Formation of BUE significantly affects 
the tool wear at low speeds whereas thermal 
softening plays important role at higher speeds 
and feed rates. Also percentage weight of 
silicon carbide increases tool flank wear also 
increases. Depth of cut increases the increase in 
tool flank wear. 

3. The surface roughness is significantly 
affected by BUE formation at low speeds. The 
surface roughness is low at higher speed and 
lower feed rate ranges.  

4. The optimal machining parametric 
combination is obtained using desirability 
function. Cutting conditions such as spindle 
speed (N) 3072.8597 RPM, feed rate (f) 0.020 
mm/rev, depth of cut (d) 1.2450 mm, and %wt. 
of silicon carbide (S) 13.7250. can be used to 
achieve the minimum flank wear of 0.304mm 
and minimum surface roughness of 3.5854µm. 

 

 
Fig. 11. Optimum results of minimum VBmax and Ra. 
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