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Abstract 
In the design of heat exchangers, it is necessary to determine the heat transfer rate 
between hot and cold fluids in order to calculate the overall heat transfer coefficient 
and the heat exchanger efficiency. Heat transfer rate can be determined by inverse 
methods. In this study, the unknown space-time dependent heat flux imposed on the 
wall of a heat exchanger internal tube is estimated by applying an inverse method 
and simulated temperature measurements at the specified points in the flow field. It 
is supposed that no prior information is available on the variation of the unknown 
heat flux function. Variable metric method which belongs to the function estimation 
approach is utilized to predicate the unknown function by minimizing an objective 
function. Four versions of the presented inverse method, named DFP, BFGS, SR1, 
and Biggs, are used to solve the problem and the results obtained by each version are 
compared. The estimation of the heat flux depends on the location of the sensor and 
the uncertainties associated with temperature measurements. The influence of each 
factor is investigated in this paper. Results show that variable metric method is a 
rapid and precise technique for estimating unknown boundary conditions in inverse 
heat convection problems. 
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Nomenclature 
e Solution error, % 
f Objective function 
H Hessian matrix 
k Thermal conductivity, W/m K 
q Heat flux, W/m2 

Q Defined by Eq. (18) 

r Radial component of cylindrical spatial 
coordinate  

R Tube radius, m 

S Direction of the descent 
t Time, s 
T Temperatures, K 
u Velocity, m/s 
U Mean velocity, m/s 

x Axial component of cylindrical spatial 
coordinate  

X Sensitivity coefficient 
Y Measured temperatures, K 
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Greek Symbols 
  Thermal diffusivity, m2/s 
  Search step size 
  Standard deviation of measurement error 
  Tolerance  
  Defined by Eq. (21) 
  Defined by Eq. (24) 
  Random variable 

(.)f  Gradient of objective function 
Subscripts 
0 Initial value 
est Estimated value 
exa Exact value 
f Fluid 
i Iteration number 
k The kth sensor 
K Number of sensors 
m The mth time step 
max Maximum value 
m~  Time component of heat flux vector  
M Number of time steps  
RMS Root mean square 
Superscripts 
+ Sensor location 
* Optimized values 
n~  Space component of heat flux vector  

ns 
Number of space component of heat Flux 
vector  

T Transpose  
 
1. Introduction  
 
Heat exchangers have been widely used in 
various engineering applications such as chip-
cooling, refrigerating, power production, waste 
heat recovery, and chemical processing. Inverse 
analysis is suitable for the problem of finding 
unknown initial or boundary conditions and 
constants in the equation using the given 
measurement data. They have been developed 
to be applied in practical situations. For 
example, the outer wall temperature profile of a 
pipe [1] or tube wall heat flux in a heat 
exchanger can be predicted by an inverse 
method in order to design an improved heat 
exchanger. In practice, the inverse heat transfer 
techniques have been utilized to reduce 
experimental efforts by the accurate prediction 
of heat transfer rates in heat exchangers.  
It is well known that inverse problems are 
solved by minimizing an objective function 
using some stabilization technique employed in 

the estimation procedure. In addition, solution 
methods of the inverse heat transfer problems 
can be classified into two categories: sequential 
methods and whole domain methods. 
Sequential methods can be used in real time 
mode and need less memory and computational 
time. On the other hand, whole domain methods 
are more accurate and stable in the estimation 
of the unknown parameters [2]. Generally, the 
minimization (optimization) of objective 
functions is achieved by traditional 
mathematical programming techniques, such as 
the Levenberg-Marquardt method of Marquardt 
[3] and the conjugate gradient method 
pioneered by Alifanov [4]. Furthermore, the 
variable metric method is a powerful technique 
in nonlinear optimization problems. Since 
inverse heat transfer problems can be viewed as 
an optimization problem, the variable metric 
method is adapted to solve whole domain 
inverse heat transfer problems [5].  
The inverse heat transfer analysis has been 
applied mainly to several convection problems 
including heat flux estimations. The conjugate 
gradient method is widely used. Huang and 
Ozisik [6] used a combination of conjugate 
gradient method and modified conjugate 
gradient method to solve the inverse problem of 
determining the space-wise variation of an 
unknown wall flux for laminar flow inside a 
parallel plate duct. In the work by Colaco and 
Orlande [7], the conjugate gradient method was 
used for the simultaneous identification of two 
unknown boundary heat fluxes in an irregularly 
shaped channel with laminar flow. In the work 
by Ding and Tao [8], the unknown space-
dependent heat flux at the boundary of a 
circular pipe is identified using the Fletcher-
Reeves conjugate gradient method. The actual 
applications of the inverse analysis to heat 
exchanger systems are quite few. Huang et al. 
[9] calculated the heat transfer coefficients for a 
plate-tube heat exchanger using the steepest 
descent method. Chen and Yang [10] applied an 
inverse technique to predict the heat transfer 
rate around two in-line cylinders. Bozzoli et al. 
[11] presented and validated a procedure to 
estimate the local convective heat transfer 
coefficient along the circumferential coordinate 
at the internal wall of a coiled pipe and based 
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on the solution of the inverse heat conduction 
problem. The thermal resistance network 
method was employed by Noh et al. [12] to 
solve an inverse heat conduction problem in a 
hollow cylindrical tube with a coating layer on 
its inner wall. Unknown heat flux on the inner 
wall of the tube was estimated from the 
measured temperature on the outer wall of the 
tube by a recursive input estimation algorithm. 
However, variable metric method has been 
rarely used to solve the inverse heat transfer 
problems.  
In this work, four different versions of variable 
metric method called Davidon-Fletcher-Powell 
(DFP), Broydon-Fletcher-Goldfrab-Shanno 
(BFGS), symmetric rank-one (SR1), and Biggs 
are employed to estimate the unknown space-
time dependent heat flux on the wall of a heat 
exchanger inner tube. Surface heat flux will be 
discretized both in the space and time and the 
function of sum of the squares of errors is 
accordingly defined. Simulation of temperature 
measurements is used in the analysis. 
 
2. Inverse problem 
 
Hydrodynamically developed, thermally 
developing laminar forced convection of a 
constant property fluid flowing inside a tube 
with the length of L  and radius of R  is 
considered here. Fluid enters the duct at 
uniform velocity and temperature, 0u  and 0T , 
respectively. The initial temperature of the fluid 
is assumed 0T . 
The tube is subjected to a time and space 
dependent heat flux, ),( txq . So, the 
temperature of the fluid flowing in the tube 
varies with both space and time. The geometry 
and coordinates of the problem are illustrated in 
Fig. 1. 
The natural convection and heat diffusion in the 
axial direction of the tube are assumed to be 
negligible here. By taking into account the 
symmetry and neglecting the viscous 
dissipation, the energy equation governing the 
problem as well as the proper boundary and 
initial conditions is given as: 
 
 

߲ଶܶ(ݔ, ,ݎ (ݐ
ଶݎ߲

+
1
ݎ
,ݔ)߲ܶ ,ݎ (ݐ

ݎ߲
+
߲ଶܶ(ݔ, ,ݎ (ݐ

ଶݔ߲
 

= ௫ݑ
1
ߙ
,ݔ)߲ܶ ,ݎ (ݐ

ݔ߲
+

1
ߙ
߲ܶ
ݐ߲

 
(1) 

,ݔ)ܶ ,ݎ (ݐ = ଴ܶ     ܽݔ     ݐ = 0 (2) 
,ݔ)ܶ ,ݎ 0) = ଴ܶ     ܽ0     ݐ < ݔ <  ,ܮ
                                          0 < ݎ < ܴ (3) 

−݇
,ݔ)߲ܶ ,ݎ (ݐ

ݎ߲
= ,ݔ)ݍ ݎ     ݐܽ     (ݐ = ܴ (4) 

,ݔ)߲ܶ ,ݎ (ݐ
ݔ߲

= ݔ      ݐܽ                      0 =  (5) ܮ

 
where k  and   are heat conductivity and 
diffusivity, respectively. 
The fully developed velocity is calculated from: 
 

௫ݑ = ܷ ൬1− ቀ௥
ோ
ቁ
ଶ
൰ (6) 

 
where U  is the mean velocity of the fluid in the 
tube. 
 

 
Fig. 1. Tube geometry and coordinates of the 
problem adopted. 
 
 
The unknown heat flux, ),( txq , is discretized 
into sn  spatial components )( ~

1
mtq , )( ~

2
mtq , … 

and )( ~m
n tq s , each of which is a function of 

time. Each spatial component is also assumed 
to be composed of M discrete time components. 
All of these components can be gathered in a 
single vector q : 
 

u0 
T0 

 

heat flux 
q(x,t) 

 

fluid Tf (x,r,t) 
 x 

r 
R 

R+ 

L 
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௡ೞ×ଵݍ⃗

= ቎
,(ଵݐ)ଵݍ ,(ଶݐ)ଵݍ … , ,(ெݐ)ଵݍ ,(ଵݐ)ଶݍ
,(ଶݐ)ଶݍ … , ,(ெݐ)ଶݍ … , ,(ଵݐ)௡ೞݍ

,(ଶݐ)௡ೞݍ … , (ெݐ)௡ೞݍ
቏

்

= ቈ
,ଵଵݍ ,ଶଵݍ … , ெଵݍ , ,ଵଶݍ ,ଶଶݍ … , ெଶݍ ;  … ;

ଵݍ
௡ೞ , ଶݍ

௡ೞ , … , ெݍ
௡ೞ ቉

்

 

(7) 

 
The temperature is measured by K  sensors, 
each located at )( , kk rx , where Kk ...,,2,1 , 
and described below: 
 
௞ݔ)ܻ  , ௞ݎ , (௠ݐ = ௞ܻ(ݐ௠)     ݇ = 1,2, …   ܭ,
                                                ݉ = 1,2, …  (8)  ܯ,

 
The sensitivity coefficients with respect to each 
component of vector q  are defined as: 
 
ܺ൫ݔ௞ , ௞ݎ , ௠ݐ , ௠෥ݍ

௡෤ ൯ = ܺ௞൫ݐ௠ ௠෥ݍ,
௡෤ ൯ (9) 

=
߲ܶ൫ݔ௞ , ௞ݎ , ௠ݐ , ௠෥ݍ

௡෤ ൯
௠෥ݍ߲

௡෤ ൜ ݎ݋݂       ෥݉ = 1,2, … ܯ,
෤݊ = 1,2, … ,݊௦

 

 
The first derivative appeared in the definition of 
the sensitivity coefficient can be calculated 
using finite difference method. Using forward 
scheme, the sensitivity coefficient is estimated 
by [3]: 
 
ܺ൫ݔ௞ , ௞ݎ , ௠ݐ , ௠෥ݍ

௡෤ ൯ ≅ 

⎣
⎢
⎢
⎡ܶ ൬

௞ݔ , ௞ݎ , ௠ݐ ,
,ଵଵݍ  ,ଶଵݍ … , ௠෥ݍ

௡෤ + ௠෥ݍߝ
௡෤ , … , ெݍ

௡ೞ൰ −

ܶ ൬
௞ݔ , ௞ݎ , ௠ݐ ,

ଵଵݍ , ,ଶଵݍ … , ௠෥ݍ
௡෤ , … , ெݍ

௡ೞ൰ ⎦
⎥
⎥
⎤

௠෥ݍߝ
௡෤  

(10) 

 
where 510  or 610 [3]. 
The objective function, i.e. the sum of the 
squared residuals, is defined as: 
 

݂ = ෍ ෍ ൤ܻ
௞ݔ) , ௞ݎ , (௠ݐ −
௞ݔ)ܶ , ௞ݎ , ௠ݐ , ൨(ݍ⃗

ଶ௠ୀெ

௠ୀଵ

௞ୀ௄

௞ୀଵ

 (11) 

where Y  is the measured temperature and T  is 
the estimated temperature obtained from the 
solution of the direct forced convection problem 
(Eqs. (1) - (5)) at the sensor location using 
estimated heat flux. The objective function is an 

implicit function of the unknown heat flux. 
Vector q  should be obtained in such a way that 
could minimize the objective function. 
 
3. Variable metric method 
 
The aim is to minimize the objective function 
defined by Eq. (10). The minimization of the 
objective function, f , which is a function of 
the unknown heat flux, q , is possible through 
an iterative method. Searching for the unknown 
boundary quantity can be proceeded using 
either direct or descent techniques. Both 
techniques start with an initial trial solution, q , 
and then proceed toward the minimum point in 
a sequential manner. The direct search 
techniques require only the objective function 
values and do not use the partial derivatives of 
the function in finding its minimum. The 
descent techniques require not only the function 
evaluations, but also its first and possibly 
higher order derivatives; therefore, they are also 
known as gradient based methods. The variable 
metric method belongs to the gradient based 
class of the methods and proceeds toward the 
minimum point by utilizing the following 
relation: 
 
௜ାଵݍ⃗ = ௜ݍ⃗ +  ௜∗ ܵ⃗௜ (12)ߣ
 
 where *  is the search step size, S


 is the 

direction of the descent, and i  is the iteration 
number. The direction of the descent is 
calculated by [13]: 
 
ܵ⃗ = ௜ܪ−  ∇ሬሬ⃗ ୧݂ (13) 
 
The gradient of the objective function in the 
variable metric method is defined as: 
 
∇ሬሬ⃗ ௡݂ೞ×ଵ = (14) 

ቈ
߲݂
ଵଵݍ߲

 ,
߲݂
ଶଵݍ߲

 , … ,
߲݂
ெଵݍ߲

,
߲݂
ଵଶݍ߲

,
߲݂
ଶଶݍ߲

, … ,
߲݂
ெଶݍ߲

, … ቉
்

 

 
Considering the definition of the objective 
function (Eq. (11)) and using the sensitivity 
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coefficients described in Eq. (10), the gradient 
f


 can be writhen as: 
 
∇ሬሬ⃗ ݂ = −2 × (15) 

⎣
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The optimal step size *

i  in the direction of iS  

is a value of i  minimizing )( Sqf i


  with 

respect to i , i.e., i  is the root of the 
following equation [3]: 
 
݂݀ ൫⃗ݍ௜ + ௜ܵ⃗൯ߣ 

௜ߣ݀
= 0 (16) 

 
By solving Eq. (16), the optimized search step 
size, *

i , is obtained as: 
 
∗௜ߣ = (17) 

∑ ∑ ቆ
[ ௞ܻ(ݐ௠) − ௞ܶ(ݐ௠ , [(௜ݍ⃗

ൣ∑ ∑ ܺ௞൫ݐ௠ ௠෥ݍ,
௡෤ ൯ ௜ܵ௠෥

௡෤௡ೞ
௡෤ୀଵ

ெ
௠෥ୀଵ ൧ቇ

ெ
௠ୀଵ

௄
௞ୀଵ

∑ ∑ ቀൣ∑ ∑ ܺ௞൫ݐ௠ ௠෥ݍ,
௡෤ ൯ ௜ܵ௠෥

௡෤௡ೞ
௡෤ୀଵ

ெ
௠෥ୀଵ ൧

ଶ
ቁெ

௠ୀଵ
௄
௞ୀଵ

 

 
In Eq. (13), H  is an nn  symmetric matrix, 
which will be modified in each iteration. 
Depending on which version of variable metric 
method is chosen, the modification procedure is 
different. BFGS, DFP, SR1, and Biggs are 

various versions of the variable metric method. 
The modification scheme in each version will 
be described later in this section. 
The variable, iQ , for each version of the 
variable metric method is defined as: 
 
ܳ௜ =  ∇ሬሬ⃗ (௜ାଵݍ⃗) ݂  −  ∇ሬሬ⃗  (18) (௜ݍ⃗) ݂
 
 DFP version modifies the matrix, H , in the 
following way [13]: 
 

௜ାଵܪ = ௜ܪ  + ∗௜ߣ
௜ܵ  ௜ܵ

்

௜ܵ
்  ܳ௜

 

                                    −  
௜ܪ)  ܳ௜) (ܪ௜  ܳ௜)்

ܳ௜் ௜ܪ   ܳ௜
 

(19) 

 
BFGS is a modified version of DFP and 
modifies the matrix, H , as follows [5]: 
 

௜ାଵܪ = ௜ܪ   + ∗௜ߣ   ௜ܵ   ௜ܵ
்

௜ܵ
்  ܳ௜

 

−  
௜ܪ)  ܳ௜) (ܪ௜  ܳ௜)்

ܳ௜் ܪ௜  ܳ௜
 +  ൫ܳ௜் ܪ௜  ܳ௜൯ ߭௜  ߭௜் 

(20) 

 
where: 
 

߭௜ =  ௜ܵ

௜ܵ
்  ܳ௜

 −  
௜ܪ  ܳ௜

ܳ௜் ௜ܪ   ܳ௜
 (21) 

 
SR1 version carries out the modification of the 
matrix, H , in the following manner [5]: 
 
௜ାଵܪ =  ௜ܪ 

+ ቆ1 −  
ܳ௜் ௜ܪ   ܳ௜
ܳ௜்  ൫ߣ௜∗ ௜ܵ൯

ቇ
ିଵ

 
1

ܳ௜்  ൫ߣ௜∗ ௜ܵ൯
 

× ∗௜ߣ)   − ௜ܪ   ܳ௜) (ߣ௜∗ ௜ܵ  − ௜ܪ   ܳ௜)் 

(22) 

 
The Biggs version is designed to modify the 
matrix, H , in the following way [14]: 
 

௜ାଵܪ = ௜ܪ  –  
௜ܪ  ܳ௜  ௜ܵ

்  + ௜ܵ  ܳ௜் ܪ௜
௜ܵ
்  ܳ௜

  

+ ቆ
1
߬௜

 +  
ܳ௜் ௜ܪ   ܳ௜
௜∗ ௜ܵߣ

் ܳ௜
ቇ ௜ߣ 

∗  ௜ܵ  ௜ܵ
்

௜ܵ
்  ܳ௜

 
(23) 

 
where: 
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߬௜ = −2 +
6

௜ߣ
∗ 

௜ܵ
் ܳ௜

 

 ቀ݂(⃗ݍ௜) − (௜ାଵݍ⃗)݂ ௜ߣ +
∗ ௜ܵ

் ∇ሬሬ⃗  ቁ(௜ାଵݍ⃗) ݂
(24) 

 
The DFP and BFGS versions are more widely 
used than others. The iterative procedure of the 
variable metric method can be expressed as 
follows: 
 1. Suppose an initial guess for 1q  and 1H . An 
identity matrix, I , is usually taken. Set the 
iteration number 0i . 
2.  Obtain the sensitivity coefficients,

),,,(
~
~
n
mmkk qtrxX , for each component of the 

vector, q , using Eq. (10). 
3. Solve the direct problem based on the 
guessed q  in order to obtain ),,,(

~
~
n
mmkk qtrxT  

using finite volume method. 
4. Check the stopping criteria f  . 
Continue if not satisfied. 
5. Calculate the gradient of the objective 
function, if


, using Eq. (15) and obtain the 

direction of descent from the relation 
iii fHS 


. 

6. Normalize iS  from: 
i

i
i S

SS 


  

7. Obtain the optimized search step size using 
Eq. (17). 
8. Compute the new estimate from 

iiii Sqq
 *

1   
9. Regarding the version of the selected variable 
metric method, modify the matrix, H  using 
proper relations defined in Eqs. (19) - (24). 
10. Set 1 ii  and return to step 3. 
 
4. Results and discussion 
 
4. 1. Simulated measurements 
 
In this study, the simulated measured data are 
used in order to evaluate the accuracy of the 
estimation of the heat flux by variable metric 
method. To do so, the unknown heat flux, 

),( txq , is supposed to vary in the form of step 
and sine functions.  

The time-varying step function is as: 
 

(ݐ)ݍ =  ൝
50            0 < ݐ ≤ 33

500          33 < ݐ ≤ 77
50             77 < ݐ ≤ 110

 (25) 

 
and the space-time dependent sine function is 
defined as: 

,ݔ)ݍ (ݐ = ቀ100 + 150 sin ቀ
ݔ

0.22
ቁቁ݁

௧
ଵଵ଴ (26) 

In addition, it is assumed that the fluid in Fig. 1 
with the velocity and temperature of )(2.0 sm  
and C20 , respectively, flows in a tube with 
radii R=0.2 (m) and L=0.7 (m). The thermo-
physical properties of air at the given 
temperature are as follows: 
 
ߙ = 2.2 × 10ିହ  (mଶ s⁄ ) 
݇ = 0.0262 (W m K⁄ ) 
 
In the current study, the final time is set equal 
to )(110 st f   and the time step of )(5 s  is 
found sufficient for the demanded precision. 
The sensors in most practical cases are located 
within the inner wall of the tube.  
The measured temperatures used in this study 
are all simulated. Solving the direct problem 
using the supposed functions for the unknown 
heat flux (Eqs. (25) - (26)) will give the 
simulated temperatures at sensor locations, 
denoted as )( iexa tY . Since all the actual 
measurements are associated with errors, some 
random errors should be added to the simulated 
temperatures. Generally, measurements 
containing random errors denoted as )( itY  are 
simulated by adding an error term to )( iexa tY  as 
[3]: 
 
ܻ = ௘ܻ௫௔ +  (27) ߪ߱ 
 
where   is the standard deviation of the 
measurement errors and   is a random variable 
with normal distribution, zero mean, and unitary 
standard deviation. For the confidence level of 
99%, we have 2.576<< 2.576-   [3]. 
 
 



JCARME                                                  Estimating the unknown . . .            Vol. 5, No. 2, Spring-2016 

133 

 
4. 2. Error analysis 
 
It should be noted that the stability of the 
inverse problem solution can be examined for 
various levels of measurement errors by 
generating measurements with different 
standard deviations  . In order to examine the 
accuracy of the estimation, we define root mean 
square (RMS) error as: 
 

݁ோெௌ  =  
௘௫௔ݍ‖ ௘௦௧ .‖ோெௌݍ– 

௘௫௔‖ோெௌݍ‖
 = 

 
ට1
ܯ  ∑ ൫ݍ௘௫௔ ,௠෥ − ௘௦௧ ,௠෥ݍ ൯

ଶெ
௠෥ୀଵ

ට1
ܯ  ∑ ൫ݍ௘௫௔ ,௠෥ ൯

ଶெ
௠෥ୀଵ

 × 100 
(28) 

 
where the subscript est refers to the estimated 
heat flux and M is the number of the transient 
measurements. 
 
4. 3. Step heat flux estimation 
 
The step or pulse heat flux function (Eq. (25)) 
is applied to evaluate the ability of the inverse 
method in estimating thermal shocks. Suddenly, 
the heat flux becomes 10 times greater for a 40-
second interval and, then, approaches to its 
previous value in a moment. The initial guess is 
equal to zero and the stopping criterion is 
considered 610f . The unknown heat flux 
vector has 21 components.  
As the results obtained from different versions 
of the variable metric method are rather similar 
to each other, only the estimations obtained 
using DFP version are illustrated in Fig. 2. As 
can be observed, the variable metric method has 
good accuracy in the estimation of the step heat 
flux, especially around the discontinuity points. 
The majority of the whole domain inverse 
methods show instability in the estimation of 
the unknown step functions [3]. We note that 
functions containing discontinuities and sharp 
corners (i.e. discontinuities on their first 
derivatives) are the most difficult to be 
recovered by an inverse analysis. 
 

 
Fig. 2. Estimation of the step heat flux using DFP 
version for 0 . 
 
The results obtained from using random 
measurements with standard deviation of errors 
of max01.0 T  are shown in Fig. 3. The estimated 
heat flux effectively covers the exact values. It 
also properly follows the abrupt variation in the 
heat flux. Similar to other whole domain 
methods, the solution shows instabilities at the 
beginning and end of the domain. As shown in 
Fig. 3, these instabilities are not significant. 
 

 
Fig. 3. Estimation of the step heat flux using DFP 
version for max01.0 T . 
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The convergence details of the solution by 
different versions of the variable metric method 
for predicting the step heat flux are shown in 
Table 1. The results are obtained using random 
measurements with max01.0 T . As shown in 
Table 1, SR1 version has the highest 
convergence speed and lowest error in the 
estimation of thermal shock and Biggs version is 
the slowest among the techniques presented 
here. BFGS, DFP, and Biggs versions estimate 
the unknown heat flux with the same amount of 
error. As suggested by Table 1, all the versions 
estimate the step heat flux with acceptable 
margin of error. 
 
Table 1. Convergence history of four versions of the 
variable metric method for estimating the step heat 

flux with max01.0 T . 
 

Versions No. of 
iterations 

Convergence 
time (s) 

Error 
percentage, 

eRMS (%)   
DFP 7 6 6.4 

BFGS 7 5.7 6.4 
SR1 7 4.7 5.2 

Biggs 7 8 6.4 
 
4. 4. Sine Heat Flux Estimation 
 
The number of unknown vectors for space-time 
dependent sine heat flux function presented in 
Eq. (26) is 1071. This number of unknowns 
makes the current inverse problem so large and 
difficult. Figure 4 shows the estimated heat flux 
obtained from the Biggs version at times t= 
22.5, 55, 82.5, and 110 (s). The results are 
presented for errorless simulated measurements, 
i.e. 0 . Due to the similarity between the 
results of four versions of the variable metric 
method, only the predicted values obtained by 
Biggs version are shown in Fig. 4. 
The results obtained from using random 
measurements with standard deviation of errors 
of max01.0 T  are shown in Fig. 5. As is evident in 
Fig. 5, the estimated results are in good 
agreement with the exact values, especially 
around the final time. In addition, the 
instabilities in the solution decrease as time 
increases, which is the same characteristic of all 
whole domain methods [2].  

 
Fig.  4. Estimating the space-time dependent sine 
heat flux using Biggs version for 0 . 
 

 
Fig.  5. Estimating the space-time dependent sine 
heat flux using Biggs version for max01.0 T . 

 
The convergence details of the solution using 
different versions of variable metric method for 
predicting sine heat flux with max01.0 T  are 
shown in Table 2.  All the four versions have 
approximately the same error bound. SR1 
version converges more rapidly and its 
calculation cost is the lowest among other 
versions. On the other hand, Biggs version is 
the slowest and imposes the most calculation 
cost on the inverse solution. The trends shown 
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in Table 2 for sine function are similar to those 
obtained for a step function in Table 1. 
 
 
 
Table 2. Convergence history of four versions of 
variable metric method for estimating sine heat flux 
with max01.0 T . 
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DFP 7 6 7.9 5 4.8 2.8 
BFGS 7 5.7 7.2 6.6 4.7 2.3 
SR1 7 4.7 7.2 6.6 4.7 2.3 

Biggs 7 8 7.2 6.6 4.7 2.3 
 
 
 
4. 5. Effect of sensor location 
 
The effect of changing the sensor location on 
accuracy of the DFP version in estimating the 
step heat flux is presented in Fig. 6. The 
variation of root mean square error with the 
distance between the sensor location and tube 
axis is shown in Fig. 6. The accuracy of the 
solution increases with increasing the distance 
between the sensor location and the tube axis. It 
can be concluded from Fig. 6 that locating the 
sensor as close as possible to the unknown 
boundary condition, i.e.  the wall heat flux, will 
increase the accuracy of the solution. 
 
5. Conclusions 
 
The variable metric method was applied to 
estimate the unknown space-time dependent 
heat flux imposed to the outer wall of a tube 
with forced convection inside it. The simulated 
temperature measurements at certain points 
within the flow field were input to the analysis. 
The accuracy of the method in estimating an 
unknown step heat flux and a space-time 
dependent sine function was examined and the 
results obtained by four different versions of the 
presented method were compared with each 
other. Furthermore, the effect of the sensor 
installation location on the accuracy of the 
solution was evaluated. Numerical results 

indicated that the variable metric method 
estimated the unknown heat flux with acceptable 
accuracy even when the temperature 
measurements with error were used. 
Comparison of all four versions showed that the 
SR1 version was the most effective method with 
minimum convergence time and maximum 
accuracy. On the other hand, the BIGS method 
was found to be the slowest one in converging to 
the final solution with slightly larger error than 
other methods. 
 
 
 

 
Fig. 6. Variation of the solution error with the 
distance between the sensor location and tube axis in 
estimating the step heat flux using DFP version for 

0 . 
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