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1. Introduction  
 
Phononic crystals have attracted a great deal of 
research in  recent years. These inhomogeneous 
structures are the periodic arrangement of 
inclusions in an elastically different material. 
The frequency range in which elastic waves 
cannot propagate in any direction is called 
complete band gap. By realization of the 
complete band gap, these crystals can manage 
propagation of elastic waves in any direction 
[1,2]. Some applications of phononic crystals 
are acoustic filters and waveguides.  
Theoretical and experimental studies on 
phononic crystals have been performed in 
several types of researches [3-6]. To analyze 
these composites numerically, several  

 
 
researchers have used the plane wave expansion 
(PWE) method [7-10]. Despite the simplicity of 
PWE method, it encounters convergence 
problems when the phononic crystal has a large 
elastic mismatch. In this case, a great number of 
plane waves are required for convergence. 
Furthermore   , the PWE method fails when the 
inclusion is a fluid or vacuum [11-12].  
To study phononic crystals, several authors 
have applied finite difference time domain 
(FDTD) method [13-16]. Also, boundary 
element [17], multiple-scattering [18], wavelet 
[19], and finite element [20-22] methods have 
been applied to simulate phononic crystals. 
Among applicable numerical methods, FDTD 
method has various benefits. This method can 
analyze the phononic crystal even though a 
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large elastic mismatch exists. It can deal with 
finite size structures and arbitrary shaped 
inclusions. In addition, it doesn't require any 
matrix calculations (explicit). In spite of these 
advantages, the FDTD method requires 
considerable computations. Therefore, it is 
necessary to optimize the conventional FDTD 
method.  
Although Cao et al. [23] presented an 
appropriate initial condition to reduce the 
computational cost of the FDTD method, they 
used the same formulation of the conventional 
FDTD method. In this paper, a new algorithm 
for analysis of phononic crystals is presented. 
Against the conventional FDTD method, this 
approach combines equations of motion and 
constitute laws to derive displacement-based 
elastic wave equations. Then, these equations 
are discretized by finite difference method. We 
called it displacement-based finite difference 
time domain (DBFDTD) method. Comparing 
the DBFDTD formulas presented in the 
appendix with those of FDTD [11] reveals that 
the new algorithm requires less elementary 
arithmetical operations. Therefore computation 
cost of the new approach is less than the 
conventional FDTD method. 
Three square arrangements, i.e., steel cylinders 
in water, circular vacuum holes in an aluminum 
matrix and steel cylinders in an epoxy host are 
considered. Band structures of elastic waves 
that propagate perpendicular to the cylinder axis 
are calculated. The results are compared with 
experimental measurements [4] and the 
conventional FDTD method. The computational 
cost of the new approach is compared with the 
conventional FDTD method.  
Comparison of the DBFDTD results for 
computing the band structure of various 
phononic crystals with those of the 
conventional FDTD method and experimental 
measurements showed that the DBFDTD 
method can be used reliably to simulate 
phononic crystals. In addition, the 
computational cost of the DBFDTD approach is 
less than the FDTD method so that the 
calculation time can be reduced up to 37.5 
percents. These features indicate the efficiency 
of the presented method for analyzing phononic 
crystals.  

2. Formulation 
 
For simplicity, two-dimensional (2D) phononic 
crystals are considered. The formulation can be 
easily expanded to 3D crystals. The cylinders 
are aligned along the z-direction and are 
repeated infinitely in the XY plane. The 
equations of elastic wave can be written as: 
 

..

,i ij juρ σ=  ,  (1) 

,ij ijmn m nC uσ =  ,  (2) 
 
where ( , )x yρ ρ= and ( , )ijklC x y are the 
density and elastic stiffness tensor of the 
structure, respectively. The summation 
convention over dummy indices is considered. 
Since propagation of the elastic wave in the XY 
plane is assumed, the displacement of the lattice 
and its stress tensor do not depend on z, i.e., 

( , , )i iu u x y t= and ( , , )ij ij x y tσ σ= .  
According to Bloch theorem, the periodic 
boundary condition can be written as: 
 

( , ) exp(i ) ( , )i iu t u t=x +a k.a x  ,  (3) 
( , ) exp(i ) ( , )ij ijt tσ σ=x +a k.a x  ,  (4) 

 
where T( , )x y=x . a and k are the lattice 
vector and wave vector, respectively. Subscript 
i, j are tensor indices. To apply easily the 
periodic boundary condition, iu  and ijσ  are 
introduced as follows:  
 

( , ) exp( i ) ( , )i iu t u t= −x k.x x  ,  (5) 
( , ) exp( i ) ( , )ij ijt tσ σ= −x k.x x  ,  (6) 

The periodic boundary condition can be 
rewritten as: 
 

( , ) ( , )i iu t u t=x +a x  ,  (7) 
( , ) ( , )ij ijt tσ σ=x +a x  ,  (8) 

Substitution of Eq. (5-6) in Eq. (1-2) yields 
[11]:  
 

..

, ii ij j j iju kρ σ σ= +  ,  (9) 
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,( i )ij ijmn m n n mC u k uσ = +  ,  (10) 
 
Now these equations may be discretized and 
solved by the FDTD method. Suppose that the 
inclusion and host materials are isotropic. For 
the study of the mixed mode, in this case, the 
discretized form of Eq.  (9) in a typical node 
(l,m) at time step n+1 can be rewritten as [11]:  
 

, ; 1 , ; , ; 1 2 ,
1 1 1

1/2, ; 1/2, ;
1 11 1 11

, 1/2; , 1/2;
2 12 2 12

2 /

(

)

l m n l m n l m n l m

l m n l m n

l m n l m n

u u u t

K K
K K

ρ

σ σ

σ σ

+ −

+ + − −

+ + − −

= − +∆

+

+ +
  (11)  

 
where 11 12,σ σ  are components of stress tensor 
calculated from the constitutive Eq. (10); (l,m) 
defines a two-dimensional grid point and n 
stands for time step incremental number. The 
symbols 1K + , 1K − , 2K + , 2K −  are defined as: 
 

1 1( 2) / (2 )K k x x+ = ∆ + ∆ , 

1 1( 2) / (2 )K k x x− = ∆ − ∆ , 

2 2( 2) / (2 )K k y y+ = ∆ + ∆ ,

2 2( 2) / (2 )K k y y− = ∆ − ∆ .  
 

x∆ and y∆  are grid spacing. 1k and 2k  are the 
x and y component of the wave vector, 
respectively. For example the discretized form 
of 11σ is as follows: 
 

1/2, ; 1/2, 1, ; , ;
11 11 1 1 1 1

1/2, 1/2, 1/2;
12 2 2

1/2, 1/2,;
2 2

( )

(

)

l m n l m l m n l m n

l m l m n

l m n

C K u K u

C K u
K u

σ + + + + −

+ + + +

− + −

= +

+

+

 (12)  

 
There are some equations similar to Eq. (11-12) 
which has been found in detail in Ref. [11].  
To update x component of displacement at node 
(l, m), Eq. (11) shows that it is needed to 
evaluate components of stress tensor at four 
coordinates, .i.e. , 1/2, ;

11
l m nσ + , 1/2, ;

11
l m nσ − , , 1/2;

12
l m nσ +

, , 1/2;
12
l m nσ − . As Eq. (12) shows, computation of 

each of aforementioned stress components 

requires considerable elementary arithmetical 
operations. To calculate band structure, fast 
Fourier transformation of displacement data are 
taken, therefore calculated stress components 
have not any direct contributions.  
So conventional FDTD method requires 
computation of components of stress tensor 
which are only used for updating components of 
displacement. By derivation of displacement-
based forms of elastic wave equations and 
discretization of resultant equations one can 
remove components of stress tensor from the 
updating equations. This leads to the efficient 
updating equations which require less 
elementary arithmetical operations and therefore 
less computational cost. This efficiency can be 
easily understood by comparison of Eq.  (A.5-
A.6) with Eq. (11-12). This comparison shows 
that Eq. (A.5-A.6) have about 44% less 
elementary arithmetical operations. The 
procedure of derivation of these updating 
equations is explained below. 
For points beyond the interface of the inclusion 
and the host material, we have: 
 

, , ,( i )ij j ijmn m nj n m jC u k uσ = +   (13)  
 
By Substitution of Eq. (10, 13) in Eq. (9), the 
displacement-based formulation of the elastic 
wave propagation in phononic crystals can be 
derived as: 
 

..

, , ,( i i )i ijmn m nj n m j j m n j n mu C u k u k u k k uρ = + + −

  (14)  
 
It is remarkable to emphasize that Eq. (14) 
cannot be applied to the points near the 
interface of the inclusion and the host materials 
due to discontinuity of elastic constants. 
Displacements of these points must be updated 
with discretized form of Eq. (9-10). These 
equations require that components of stress 
tensor are computed between two neighboring 
nodes, for instance at the coordinates (i+1/2,j). 
The elastic constants at that coordinate are 
defined as the geometric average of the values 
at two neighboring nodes ,.i.e, (i+1,j) , (i,j) [24]. 
Figure 1 shows the discretized unit cell of a 
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typical phononic crystal. In this figure, the solid 
and hollow circles indicate interfacial grid and 
half-grid points, respectively. As can be seen 
from Fig. 1, the four points surrounding each 
interfacial point may not be the same material.  
Also Fig. 1 shows that a few numbers of points 
are interfacial. To update the displacements of 
these points, Eqs. (9-10) should be used.  To 
update the displacements of other ones, Eq. (14) 
is applied. So displacements of plenty of points 
can be updated by Eq. (14) which is more 
efficient than Eqs. (9-10).  
 

 
Fig. 1. Discretized unit cell of a typical phononic 
crystal. The solid and hollow circles represent 
interfacial grid and half-grid points, respectively. 

 
Now, finite difference method may be used to 
discretize the displacement-based Eq. (14) in 
both space and time domains. The discretized 
form of Eq. (14), which is called displacement-
based finite difference time domain (DBFDTD), 
is given in the appendix. To discretize Eq. (14), 
all derivatives are replaced with central 
difference approximations. By applying the 
initial (pulse type) and periodic boundary 
conditions, resultant equations can be solved 
numerically to give the displacement of the non-
interfacial grid points for a specified wave 
vector. For the interfacial grid and half-grid 
points, the discretized form of the Eq. (9-10) are 
used. To implement the DBFDTD method, the 
periodic boundary condition reduced to Eq. (7). 
Taking fast Fourier transformation of a 
sufficiently large number of displacement data 
for a given wave vector leads to the frequency 
spectrum. Peaks of obtained frequency spectrum 
indicate the position of eigenfrequencies. 

3. Numerical examples 
 
Consider propagation of the elastic wave in the 
XY plane. Therefore the displacement of the 
lattice and its stress tensor do not depend on z. 
With this assumption, there are two decoupled 
vibrational modes: mixed mode with the 
displacements in the XY plane and transverse 
mode with the displacement along the z 
direction. Explicitly, propagation of the mixed 
mode in the XY plane is studied. In numerical 
calculation, three different square arrangements 
are considered, i.e., steel rods in epoxy, vacuum 
holes in aluminum and steel rods in the water. 
To implement the DBFDTD scheme, a grid of 

*n n (n=60-200) points in the unit cell was 
assumed. Numerical examples were calculated 
by a developed FORTRAN code based on 
parallel processing algorithm. The parallel code 
divides the calculation by wave vectors. 
 
3. 1. Steel in epoxy 
 
As the first example, a 2D square steel/epoxy 
lattice was considered. The steel cylinders have 
a diameter d=6 mm and the lattice constant is 
a=8 mm. The density and elastic constants C11 
and C44 of the steel are assumed to be 7900 
kg/m3, 280.2 GPa and 82.9 GPa, respectively, 
and those for epoxy are 1180 kg/m3, 7.61 GPa 
and 1.59 GPa. Figure 2 shows the band structure 
obtained by DBFDTD calculation of the mixed 
mode. A grid of 60*60 points in the unit cell 
was assumed. The equations of motion were 
solved over 217 time steps with each time step 
lasting for 15 ns. The dispersion relation shows 
a complete band gap that extends from 88 kHz 
to 210 kHz. The computed band gap compares 
very well with that of calculated by the FDTD 
method (90-204 kHz) [25].  
The CPU time to calculate eigenfrequencies for 
a given wave vector is typically 30 min for the 
DBFDTD method and 48 min for the 
conventional FDTD method on an Intel core i7 
CPU. The calculations were done for a grid of 
60*60 points in the unit cell and 217 time steps. 
So the calculation time of the DBFDTD method 
is 37.5 percents less than that of the FDTD 
method.  
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3. 2. Steel in water 
 
Figure 3 presents the dispersion relations of the 
mixed mode calculated with the DBFDTD 
method for a 2D square steel/water lattice. The 
steel rods have a diameter d=2.5 mm and the 
lattice constant is a=3 mm. The density and 
longitudinal velocity of the water are assumed 
as 1000 kg/m3 and 1490 m/s, respectively. A 
grid of 60*60 points in the unit cell was 
considered. The equations of motion were 
solved over 217 time steps with each time step 
lasting 2.4 ns. 
Figure 3 shows a complete band gap extending 
from 231 kHz to 321 kHz. An experimental 
observation of the phononic crystal showed a 
complete band gap extending from 250 kHz to 
325 kHz [4]. So the computed complete band 
gap and the experimental data are in good 
agreement. 
 

 
 
Fig. 2. DBFDTD results (with a grid of 60*60 points 
in the unit cell) for the band structure of the mixed 
mode in a two-dimensional square arrangement of 
steel rods in the epoxy background. The diameter of 
cylinders is d=6 mm and the lattice constant is a=8 
mm. The complete band gap is represented as the 
rectangular area. 

 

 
 
Fig. 3. The band structure of the mixed mode in a 
two-dimensional square arrangement of steel rods in 

water background. The diameter of cylinders and 
lattice constant are d=2.5 mm and a=3 mm, 
respectively. The DBFDTD method was 
implemented with a grid of 60*60 points in the unit 
cell. The complete band gap is showed as the 
rectangular area. 

 
3.3 Vacuum holes in aluminum 
 
In Fig. 4 the dispersion relations of the mixed 
mode calculated by DBFDTD method for 2D 
square vacuum/aluminum lattice is shown. The 
diameter of circular vacuum holes (d) and the 
lattice constant (a) are 2.5 and 3 mm, 
respectively. The density and elastic constants 
C11 and C44 of aluminum are assumed as 2700 
kg/m3, 110.9 GPa and 26.1 GPa, respectively. A 
grid of 200*200 points in the unit cell was 
assumed. The equations of motion were solved 
over 217 time steps with each time step lasting 
for 0.83 ns. Figure 4 shows a complete band 
gap extending from 609 kHz to 772 kHz. The 
frequency range of the computed complete band 
gap can be given in terms of the reduced 
frequency (wa/vt) as 3.69-4.68, where w is the 
angular frequency and vt is the shear velocity of 
aluminum. The DBFDTD result for the band 
gap is in agreement with the result (3.8-4.8) 
obtained by the FDTD method [11].  
 
4. Conclusions 
 
A displacement-based finite difference time 
domain (DBFDTD) method was developed for 
simulating elastic wave propagation in the 
phononic crystals. At first, the displacement-
based forms of elastic wave equations have 
been derived and then, this form has been 
discretized using finite difference method.  
The propagation of acoustic waves in three 
different 2D phononic crystals, i.e., a square 
arrangement of circular steel cylinders in the 
epoxy background, a square arrangement of 
circular steel cylinders in the water background 
and a square arrangement of circular vacuum 
holes in the aluminum background have been 
investigated by the new algorithm.  
Comparison of the computed dispersion 
relations by the DBFDTD method with the 
experimental data and those obtained by the 
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conventional FDTD method proves the 
efficiency of the new algorithm for studying 
phononic crystals. Also, the computational cost 
of the DBFDTD method has been compared 
with that of the FDTD method which showed 
the calculation time of the DBFDTD method is 
37.5 percents less than that of the FDTD 
method. 
 

 

 
Fig. 4. The dispersion relations of the mixed mode 
in a two-dimensional square arrangement of circular 
vacuum holes in the aluminum background. The 
diameter of cylinders and lattice constant are d=2.5 
mm and a=3 mm, respectively. The DBFDTD 
method was implemented with a grid of 200*200 
points in the unit cell. The complete band gap is 
showed as the rectangular area. 

 
 
 

Appendix 
It is assumed that the inclusion and the host 
materials are isotropic. For the study of the 
mixed mode, in this case, Eq. (14) can be 
rewritten as:  
 

..
2 2

1 1 11 2 44 1

1 2 12 44 2 1 11 1,1

1 12 44 2,2 2 44 1,2

2 12 44 2,1 11 1,11

44 1,22 12 44 2,12

( )
( ) 2i

i ( ) 2i
i ( )

( ) ,

u k C k C u
k k C C u k C u
k C C u k C u
k C C u C u

C u C C u

ρ = − +
− + +

+ + +

+ + +

+ + +

  

(A.1)  
 

..
2 2

2 1 44 2 11 2

1 2 12 44 1 2 11 2,2

2 12 44 1,1 1 44 2,1

1 12 44 1,2 11 2,22

12 44 1,12 44 2,11

( )
( ) 2i

i ( ) 2i
i ( )
( ) .

u k C k C u
k k C C u k C u
k C C u k C u
k C C u C u
C C u C u

ρ = − +
− + +

+ + +

+ + +

+ + +

 (A.2)  

 
For a suitable representation of discretized form 
of the above equations, the following 
coefficients are defined: 
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3 44
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4 1 11
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  (A.3)  
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  (A.4)  

  
Coefficients introduced by Eq. (A.3- A.4) may 
be calculated before the time evolution loop of 
the DBFDTD method and stored in appropriate 
matrixes. Then it is not required to calculate 
them in each time step. Discretizing of Eq. 
(A.1) using the finite difference method leads 
to: 
 

, ; 1 , ; , ; 1
1 1 1

2 ,
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 (A.6) 
 
Discretized form of Eq. (A.2) can be expressed 
as: 
 

1/2, 1/2; 1 1/2, 1/2; 1/2, 1/2; 1
2 2 2

2 1/2, 1/2

2

/

l m n l m n l m n

l m

u u u
t ρ χ

+ + + + + + + −

+ +

= −

+∆ ×
,   

 (A.7) 
 
where: 
 

1/2, 1/2 1/2, 1/2; 1/2, 1/2 1/2, 3/2;
1 2 2 2

1/2, 1/2 1/2, 1/2; 1/2, 1/2 3/2, 1/2;
3 2 4 2

1/2, 1/2 1/2, 1/2; 1/2, 1/2 1, 1;
5 2 6 1

1/2, 1/2
7

l m l m n l m l m n

l m l m n l m l m n

l m l m n l m l m n

l m

u u
u u

u u

u

χ γ γ

γ γ

γ γ

γ

+ + + + + + + +

+ + + − + + + +

+ + − + + + + +

+ +

= × + ×

+ × + ×

+ × + ×

+ × 1, ; 1/2, 1/2 , 1;
1 8 1

1/2, 1/2 , ;
9 1

l m n l m l m n

l m l m n

u

u

γ

γ

+ + + +

+ +

+ ×

+ ×
  (A.8) 
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