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1. Introduction 

The vibration of a beam subjected to the 

harmonic base excitation is of high importance 

because of the wide application of such a 

structure in many fields of engineering as 

manipulator arms, offshore flexible structures 

and space structures0 [1]. Many theoretical and 

experimental studies have been performed in 

this area since 1971 [2-8]. Because of the 

complexity of the governing nonlinear 

equations, and the need for rapid estimation of 

the amplitude dependent frequencies, numerous 

attempts have been made to obtain an accurate 

analytical solution of the problem [1, 6, 7]. 

Different methods such as the method of 

multiple scales and harmonic balance are used 

in these studies and are shown to be effective 

and accurate. These methods, however, loose 

their accuracy as the nonlinearity increases 

unless their higher order approximations are 

used. This may not be accomplished in a 

convenient and systematic manner, and in most 

cases requires heavy mathematical 

manipulations or numerical treatments to solve 

many nonlinear algebraic equations.
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New analytical methods have been introduced 

in recent years, which do not depend on the 

parameters such as the Adomian 

decomposition, Homotopy Perturbation, He’s 

parameter expanding (HPEM), Variational 

iteration, Max–Min approach (MMA), Iteration 

perturbation (IPM), and the Homotopy analysis 

(HAM) methods [9]. An active research area 

has been opened in recent years to demonstrate 

the reliability and accuracy of these analytical 

methods for different engineering applications. 

The HPEM was used by Sedighi and Shirazi 

[10]0 for studying the vibration of a cantilever 

beam with nonlinear boundary conditions, and 

also by Sedighi et al. [11] for vibrations of a 

beam with preload discontinuity. Application of 

some of the above mentioned analytical 
methods in the nonlinear vibration of beams 
was also considered in Refs. [9, 12-14]. In all 
of these studies, it has been demonstrated 
that the new modern techniques may be very 
helpful in providing analytical solutions for 
the vibration of structural systems 
possessing strong nonlinearities. Among 
these methods, the HAM has also been 
proved to be easy and accurate for treating 
nonlinear vibration problems [15-22]. One of 
the main advantages of this method over 
many other analytical methods mentioned 
above is that the convergence of the series 
solution obtained by the method can be 
guaranteed using the so-called auxiliary 
parameter. It is in fact shown in Ref 0 that 
the convergence rate can be considerably 
improved by choosing a proper value for the 
auxiliary parameter. The proper value of this 
auxiliary parameter can be determined by 
visually inspecting the so-called h-curves. 
However, this may slow down the solution 
process in cases that the frequency-response 

(backbone) curves are intended to be plotted. 
The reason is that the proper value of the 
auxiliary parameter may not be the same for 
different vibration amplitudes. Hence 
although the auxiliary parameter would be 
beneficial in terms of controlling the 
convergence rate, it may also slow down the 
method if the backbone curves are needed to 
be plotted. This drawback is shown in the 

present study that can be removed if the 
Pade approximant is employed. The 

combination of the Pade approximant and the 

HAM is used by Liao and Cheung 0 under the 

name of the homotopy-Pade technique and is 

shown to have a better convergence rate than 

the HAM.  

Due to the capabilities of the HAM and the 

homotopy-Pade technique mentioned above, 

they are used in the present study to provide a 

convergent analytical solution for the nonlinear 

vibration of a parametrically excited beam. The 

equation of the motion is based on the Euler-

Bernoulli’s assumption with the order of three 

nonlinearity. The solution process is initiated by 

discretizing the integro-partial differential 

equation of motion using the Galerkin’s 

method. The resulted nonlinear ordinary 

differential equation is then solved by the HAM 

and the homotopy-Pade technique. It is found 

that the homotopy-Pade technique has a 

superior performance over the HAM since the 

corresponding solution has faster convergence 

and minimal dependence on the auxiliary 

parameter. The results are compared using 

numerical solution to show high accuracy and 

efficiency of the method for a wide range of 

vibration amplitudes. It is worth to mention that 

the solution method used in the present study 

can, in fact, be used for strongly nonlinear 

vibration analysis of any structural systems like 

plates or beam assemblies, as long as their 

motion can be described by a single mode. 

However, in cases that more than one mode is 

required to accurately predict the nonlinear 

vibration of the system, the method may not 

always yield accurate results especially when 

the nonlinear interactions occur between the 

modes due to internal resonances. 

 

2.  Governing equation 

 

Consider a cantilever beam shown in Fig. 1, 

with the length, l , the mass per unit length,   

and the flexural rigidity, EI , which is attached 

at its base, to a rigid mass having a harmonic 

motion of frequency   and amplitude b . The 

integro-partial differential equation of motion 

that describes the moderately large amplitude 
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vibration of the beam can be written in the 

following non-dimensional form [1, 23]: 
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where 4 1/2( / )EI L t = , 2 1/2

0 ( / )l EI =  , 

/w w l=  with w  being the transverse 

deflection, 0 /b b l= , and /s x l= . Also, 

denoting the gravitational constant by g , 0g  is 

defined by 3

0 ( / )g g l EI= . It is to be noted that 

the nonlinear equation of motion of the beam 

given in Eq. (1) are derived in Ref. 0 based on 

the generally large deformation of the beam, 

which is then simplified to contain only up to 

the third-order nonlinear terms. Moreover, since 

the beam is not constrained in the axial 

direction, the beam is assumed to be 

inextensible. The warping, shear deformation 

and also the rotary inertial of the cross section 

of the beam are also neglected due to the small 

thickness of the beam. 

 

 
Fig. 1. Cantilever beam subjected to base excitation. 

 

In order to solve Eq. (1), the Galerkin’s method 

is used at first to convert it to an ordinary 

differential equation. The displacement function 

used for this purpose corresponds to the exact 

modes of the linear vibration of a cantilever 

beam, which is defined as: 
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(2) 

with i   being the ith root of the transcendental 

equation, cos( )cosh( ) 1 0  + = . Assuming that 

the motion of the beam is dominated by a single 

mode, the single-mode Galerkin’s procedure 

may be used for discretization purpose [1]. This 

assumption may not be acceptable if the 

equations of motion contain quadratic nonlinear 

terms [24] or internal resonance occurs between 

the modes of the beam. Considering that no 

quadratic terms are present in Eq. (1) and also 

since it is assumed that the frequencies are not 

commensurate (or nearly commensurate) with 

each other, the single linear mode may 

accurately describe the motion. 

Next, introducing the relation, ( ) ( )iw s v =  into 

Eq. (1), applying the Galerkin’s procedure and 

defining the dimensionless parameters, 
2 2

0, / 2t     = =   and u v= , the following 

equation is obtained as [1]: 
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where the constant coefficients  , 1 , 2  and 

p  are dependent on the system properties. 

 

3.  Solution by HAM 

 

The HAM begins with introducing the 

transformation, T t = , into Eq. (3) as follows: 
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(4) 

 

The so-called zeroth order deformation 

equation is then constructed as 0: 
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0(1 ) [ ( ; ) ( )] [ ( ; )],q L T q u T qhN T q − − =  (5) 

where 0u  is the zeroth order solution, q  is the 

embedding parameter that varies from 0 to 1, 

and h  is the auxiliary parameters to be 

determined later. Also, N  is a nonlinear 

operator that is defined for the present problem 

as follows: 
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where ( )q  and ( ; )T q  are unknown mapping 

functions that satisfy the following relations: 

 

0( ;0) ( ), (0) ,

( ;1) ( ), (1) ,

oT u T

T u T

 

 

=  =

=  =
 (7) 

 

with o  being the first order solution for the 

non-dimensional frequency. L in Eq. (5) is also 

the linear operator which is defined as: 
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The above linear operator is chosen such that its 

homogeneous solution would be in the form of 

the functions that appear in the base function of 

the solution. For vibration problems with 

periodic solution, the base function can be 

represented by the series, 
1
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  whose 

first term is cos( )t . Hence it would be 

reasonable to define the linear operator by Eq. 

(8), since its homogeneous solution is also 

cos( )t . 

Taylor’s expansion of the unknown functions, 

( )q  and ( ; )T q  in terms of the embedding 

parameter, q , are then obtained as: 

 

1 0

( ; )
( ; ) ( ;0) ,

!

m
m

m
m q

T q
T q T q

m q


 



= =


= +


  (9) 

1 0

( )
( ) (0) .

!

m
m

m
m q

q
q q

m q



= =

 
 =  +


  (10) 
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Considering the initial condition, (0)u A=  and 

0

0
T

du

dT =

= , the zeroth order solution 0 ( )u T  is 

taken as: 

 

0 ( ) cos( ),u T A T=  (12) 

which is the solution of the homogeneous linear 

equation given in Eq. (8). The remaining 

unknowns, i ’s and iu ’s  will be determined 

using the higher-Order deformation equations. 

These equations can be obtained by 

differentiating the zeroth-order deformation 

equation m times with respect to q , dividing 

the result by !m  and finally setting 0q = . The 

result for the m’th order deformation equation is 

as follows: 
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Equation (13) with the initial conditions, 

0
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= = , constitute a set of 
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hierarchical linear equations that should be 

successively solved to obtain mu ’s. Moreover, 

in order to avoid the secular terms in the 

solution, all terms at the right-hand side of the 

Eq. (13) that contain cos( )T  should be set to 

zero. This provides additional algebraic 

equations for m ’s. The first order 

approximation of the frequency can then be 

obtained as follows: 
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The second and third order approximations of 

the frequency can also be determined by 

obtaining the solution for 1  and 2  as: 
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(17) 

Equations (16 and 17) contain the auxiliary 

parameter, h , which is not yet assigned a value. 

This parameter does in fact, have a considerable 

influence on the convergence of the solution 

and should be determined such that its variation 

has a minimal effect on the variation of the 

solution. To do this, the so-called h-curves 

should be plotted for specific values of system 

parameters. Then the proper value for h  can be 

chosen from the region where the slope of the 

h−  curve is near to zero. This, however, may 

impose difficulty in plotting the frequency-

amplitude curves, especially when h  changes 

with A , since the proper value of h  will not be 

the same for different values of A  and thus the 

h−  curves should be successively inspected 

to determine the proper value of h  for each 

oscillation amplitude. To avoid this, the Pade 

approximant of the HAM solution can be used 

by following procedure of the homotopy-Pade 

technique. This technique applies the Pade 

approximation to the power series solution of 

the HAM obtained by Taylor’s series expansion 

of the solution in q. The Pade approximation 

may be viewed as the generalization of Taylor’s 

series, which uses the ratio of two polynomials 

to approximate a function (say f) as [25]: 
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where ( )mP q   and ( )nQ q  are polynomial 

functions of degrees m  and n respectively. This 

approximant has usually faster convergence 

rates than Taylor’s series. Moreover, in cases 

that f  is Taylor’s series, its Pade approximant 

may considerably accelerate the convergence. 

This is also true for the power series expansion 

of ( )q  given in Eq. (10), whose [m,n] Pade 

approximant can be  written as [16]: 
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where ,m kA  and ,n kB  may be computed by 

different algorithms such as the qd-algorithm 

and the algorithm of Gragg [26]. In the present 

study, they are obtained by the Maple software. 

The embedding parameter q  is then set to unity 
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in Eq. (19) leading to the final solution for   

based on the [m,n] Pade approximant. For the 

present problem, the [1, 1] homotopy-Pade for 

the third order HAM solution, can be obtained 

as follows: 
2

1

0

1 2

,



 

=
−

+  
(20) 

 

the [2, 2] homotopy-Pade approximant 

corresponding to the fifth order HAM solution 

is also obtained as follows: 
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where 0 , 1 , 2 , 3  and 4  are given in Eqs. 

(15-17). 

 

4. Numerical results 

 

Numerical results are presented in this section 

for the steady state frequency response of the 

beam, using different-order approximations of 

the HAM solution and are compared with the 

numerical solution. Numerical simulations are 

performed by the Maple software, which uses 

the Fehlberg fourth-fifth order Runge-Kutta 

method (rkf45). The properties of the beam 

considered here are, 76.29 ,Ib sEI =  
4 20.2888 10 /2Ib s in −=  , 35.625inl =  and 

0.014p = . Moreover, the numerical values of 

 , 1 , 2  and   corresponding to these 

properties are given in Table 1.  

 
Table 1. Numerical values of the parameters in 

Eq.(3)  for the beam with 76.29 ,Ib sEI =  

4 2

0.2888 10 /
2

Ib s in
−

=   and 35.625 inl = [1]. 

Mode   

Number 
1 2 3 4 

  1.8751 4.6941 7.8548 10.99554 

1
  1.182 3.4556 8.2535 16.6 

2
  5.5 1.4623 1.189 1.123 

4
  3.7813 438.3 3670.64 143361.1 

p  0.014 0.014 0.014 0.014 
 

 

Finding a proper value for the auxiliary 

parameter, h , is crucial for accurate prediction 

of the response by the HAM. For this purpose, 

the variation of the non-dimensional frequency, 

 , corresponding to the first two modes, are 

depicted in Figs. 2-3. Results are obtained for 

two different values of vibration amplitudes, 

A . The best values of h  correspond to the 

regions where the rate of change of   with h  

is zero. These values, however, are not the same 

for different amplitudes even when the seventh-

order approximation is used. Similar results are 

also obtained for higher modes of vibration 

which confirms the necessity of using the 

homotopy-Pade technique for obtaining a 

unique expression for different vibration 

amplitudes.  

 

h



-3 -2 -1 0
1.257

1.258
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3rd order approximation

5th order approximation

7th order approximation
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1.65
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1.75

1.8
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3rd order approximation

5th order approximation

7th order approximation

2A =  

Fig. 2. Variation of excitation frequency with 

auxiliary parameter h  for the first mode. 
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h


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h
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3rd order approximation
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2A =  

Fig. 3. Variation of excitation frequency with 

auxiliary parameter h  for the second mode. 

 

 

Next, the accuracy of the analytical solution is 

examined in Figs. 4-7 by depicting the 

frequency-amplitude curves for the first four 

modes of vibration. Analytical results, based on 

the HAM, are obtained using the proper values 

of h  for 2A = . The results of the [1, 1] 

homotopy-Pade technique and also the [2, 2] 

Pade approximant of the fifth order HAM 

solution are also included in these figures. It 

can be seen that the first order approximation is 

adequate for the first mode’s amplitudes smaller 

than 0.5. For higher modes, the nonlinearity 

seems to become stronger and thus the first 

order HAM is only accurate for 0.3A  . The 

third order approximation is also seen to 

become closer to the numerical solution, even 

though that h is chosen based on the  -h curve 

obtained for 2A = . Considering the close 

agreement of the third order HAM with the 

numerical result at 2A = , it may be expected 

that better result may have been obtained if h is 

separately determined for different values of A . 

However, this would considerably slow down 

the process of obtaining the whole frequency-

amplitude curve. Instead, the homotopy-Pade 

technique is used here which is found to have a 

minimal dependence on h. In fact, the solution 

is found to be varied with h  in a narrow region 

near 0h = . So taking an arbitrarily large value 

for h , say 10h = − , a unique expression can be 

obtained for all values of A . This is evident in 

Figs. 4-6, which shows excellent agreements 

between the [1, 1] homotopy-Pade and the 

numerical result, especially for the first and 

fourth modes. Slight discrepancy, however, 

exists for the second and third modes when 

1.5A  , which has completely disappeared by 

using the [2, 2] homotopy-Pade technique. It 

must be mentioned here that the oscillation with 

1A   is strongly nonlinear and the high 

accuracy of the solution obtained by the 

homotopy-Pade technique for this range of 

vibration amplitudes, completely confirm the 

significant power of the analytical method.  
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Fig. 4  . Amplitude-frequency curve for the first mode 

( 0.1h = −  for the third order HAM). 
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Fig. 5   . Frequency-Amplitude curve for the second 

mode ( 0.05h = −  for the third order HAM). 
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Fig. 6   . Frequency-Amplitude curve for the third 

mode ( 0.03h = −  for the third order HAM). 
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Fig. 7. Frequency-Amplitude curve for the fourth 

mode ( 0.015h = −  for the third order HAM). 

5. Conclusions 

The HAM and the homotopy-Pade technique 

were used to obtain an accurate and efficient 

analytical solution for the nonlinear vibration of 

a parametrically excited cantilever beam. An 

explicit expression was presented for the third 

order approximation of the amplitude-frequency 

of the system. It was found that proper values 

of the auxiliary parameter, h , change with the 

non-dimensional vibration amplitude, A , 

making the HAM not suitable for the rapid 

depiction of the frequency-amplitude curves. 

The homotopy-Pade technique was thus 

employed, which besides improving the 

convergence rate, gave the solution that was 

almost independent of the auxiliary parameter 

h . The numerical results were presented for 

different modes of vibration, using both the 

HAM and homotopy-Pade technique and 

compared with the numerical solution. Highly 

accurate results were obtained using the [1, 1] 

Pade approximant of the third order HAM for 

non-dimensional amplitudes smaller than 1.5. 

For larger amplitudes up to 2, the [2, 2] Pade 

approximant of the fifth order HAM was found 

to coincide with the numerical solution, 

showing the significant power of the method in 

solving oscillatory equations with the strong 

nonlinearity.  
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