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Article info:  Abstract 

In fracture mechanics and failure analysis, cracked media energy and 
consequently stress intensity factors (SIFs) play a crucial and significant 
role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy 
of cracked media may be estimated. This study presents the novel 
modification of decoupled scaled boundary finite element method 
(DSBFEM) to model cracked media. In this method, only the boundaries of 
problems are discretized using specific higher-order sub-parametric elements 
and higher-order Lagrange polynomials as mapping functions. Implementing 
the weighted residual method and using Gauss-Lobatto-Legendre numerical 
integration yield diagonal Euler’s differential equations. The chief 
modifications among the research conducted and the previous studies 
concerning DSBFEM is that here in, generation of geometry process of the 
functional interpolation, integration of the diverse is chosen, and by current 
technic, the difficulty of the DSBFEM is decreased. Therefore, when the 
local coordinates origin is located at the crack tip, the geometry of crack 
problems are implemented directly without further processing. Validity and 
accuracy of the proposed method are fully illustrated through three 
benchmark problems, whose results agree very well with those of other 
numerical and/or analytical solutions existing in the literature. 
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1. Introduction 

 
The existence of crack and notch may cause 
remarkable concerns in the failure analysis of 
solids and structures. In order to analyze this 
type of engineering subjects, the stress intensity 
factors (SIFs) are used to survey singularity at 
the crack tips. Since the majority of these 
problems do not have closed-form solutions [1, 
2], numerical methods are usual approaches to 
deal with fracture mechanics problems. 

According to linear elastic fracture mechanics 
(LEFM), various classes of numerical methods 
such as finite element method (FEM), boundary 
element method (BEM), extended finite 
element method (XFEM), meshless methods, 
fractal-like finite element method (FFEM), 
scaled boundary finite element method 
(SBFEM), and hybrid methods have been 
extensively developed to compute the SIFs of 
crack tips for simulation of crack problems in 
brittle or quasi-brittle materials. 
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The FEM is employed frequently in the analysis 
of fracture mechanics problems because of its 
flexibility [3–8]. Some disadvantages of FEM 
lead to the development of the other numerical 
methods. For example, due to the difficulties of 
remeshing techniques to predict crack 
propagation, the XFEM is elaborated [9–12]. 
Similarly, since very fine crack tip meshes 
require high computational efforts in the FEM, 
the BEM is used in the fracture analysis, as an 
alternative method. Although the BEM does not 
require domain discretization but the 
boundaries, the computational costs are 
dramatically reduced. However, the BEM needs 
a fundamental solution for the governing 
differential equations as well as relatively 
advanced mathematical techniques to calculate 
the singular integrals (see for example [13–17] 
among others). Also, FEM is not the perfect 
numerical method to be used in fracture 
mechanics issues as stress singularity at the 
crack tips is not modeled precisely. Thus, the 
strain energy approach is recently developed by 
Treifi and Oyadiji [18, 19], in which stresses at 
the notch tip vicinity are evaluated by means of 
the distributed dislocation technics. Larrosa et 

al. [20] presented a methodology to evaluate the 
strain energy density and notch SIF, rapidly. 
The meshless methods have become another 
attractive approach for fracture mechanics 
problems. These methods do not require any 
discretization of the problem domain, and  
therefore the approximate solution of the 
problem is gained using a set of dispersed 
nodes. One of the attractions of the meshless 
methods may be devoted to their flexibility in 
dealing with discontinuities (such as cracks) 
[21–26]. The FFEM was first developed to 
calculate the SIFs for cracked domains [27]. In 
this method, the global interpolation functions, 
which are the analytical solutions of the 
displacement patterns near the crack tip, are 
used. Although the analytical solutions do not 
satisfy the boundary conditions in general, the 
FFEM considers the boundary conditions by 
master nodes. The SBFEM combines the 
advantages of both the FEM and BEM with its 
own unique features and has shown its 
efficiency and accuracy for determining the 
SIFs (e.g., [28-31]). On the other hand, the 

hybrid methods as popular methods by 
combining the advantages of different 
numerical methods are widely used to compute 
SIFs [32–36]. 
A modification of the SBFEM, so-called 
decoupled scaled boundary finite element 
method (DSBFEM), has been developed by 
Khaji and Khodakarami for potential problems 
[37], elastostatic problems [38], elastodynamic 
problems [39], and fracture mechanics 
problems [40-42].  In this study, the efficiency 
and reduced complexity of the DSBFEM, 
which have been proposed in [37-42], has 
improved for fracture mechanics issues, where 
the Lagrange polynomials is used as mapping 
functions instead of Chebyshev polynomials, 
and also Gauss-Lobatto-Legendre (GLL) 
quadrature is employed instead of Clenshaw-
Curtis integration technique in order to 
calculate the coefficient matrices. By the way, 
with implementing this technique, the 
governing equations for each node are 
independent of the other nodes, and this will 
reduce the computational costs because the 
evaluation of matrices and vectors and 
obtaining the solution procedure is easier while 
one employs Lagrange polynomial and GLL 
quadrature [43]. Furthermore, the fracture’s 
parameters at the crack tip based on the LEFM 
are extracted based on the new modification. 
Finally, some benchmark problems are modeled 
using the modified DSBFEM to illustrate 
validity and accuracy of the achieved outcomes. 
 
2. Fundamentals of the semi-analytical 

method 

 
As this paper demonstrates, a novel 
modification of DSBFEM for the analysis of 
crack’s issues; the main concepts of the 
DSBFEM are given here. In other words, the 
emphasis is primary devoted to those important 
aspects of the method which are subjected to 
remarkable modifications in comparison with 
the previous works of the authors [37-42]. For 
more details on the formulation of the 
DSBFEM, the readers are referred to Ref. [38]. 
In the DSBFEM, the so-called local coordinates 
origin (LCO) is selected at a point, from which 
the entire domain boundary can be detected. For 
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the bounded domains, as a major category of 
solid mechanics problems, the LCO may be 
selected on the boundary or inside the 
domain  . Furthermore, only the boundaries 
that do not pass through the LCO need to be 
discretized, while other rest boundaries passing 
through the LCO are not required to be 
discretized (e.g., 1  and 6 in Fig. 1(a)). 
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Fig. 1. Modeling of 2D bounded domain in (a) 
global and (b) local coordinates systems. 
 
As may be seen from Fig. 1(b), one-
dimensional (1D) elements are used to 
discretize the boundaries which do not pass 
through the LCO, at which 0 yx


. In Fig. 

1(b), only the first and the last nodes of the 1D 
element are displayed. Using Chebyshev 
polynomials as mapping functions, the 
geometry of the problem may be transformed 
from global Cartesian coordinate ( yx

, ) to local 
dimensionless coordinates (  , ). The radial 
coordinate ]1,0[   varies between the LCO 
and the boundaries. The tangential coordinate 

]1,1[  are defined on boundaries that do 
not pass through the LCO. 
Location of the nodes of the 1D element on the 
boundaries is measured by x and y in the global 
Cartesian coordinates. If the global coordinates 
of the ith node of each element on the 
boundaries are indicated by ix and iy , the 
element may be defined in terms of a set of n  
mapping functions )(i , for which 

11,2,...,  ηni . In other words, the geometry 
of the element is interpolated using the mapping 
functions )( in the local coordinates as: 
 

xx )()(    (1) 
 
or 
 

i

n

i

i xx )()(
1

1









 , i

n

i

i yy )()(
1

1









   (2) 

 
where 
 










)(
)(

)(





y

x
x  (3) 

 
Also 
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implies nodal points’ coordinates of an element 
in the local Cartesian coordinates, and 
 

])(,,)(,)([)( 121 III 
  n  (5) 

 
in which I denotes an 22  identity matrix. 
In this method, any given point inside the 
domain with ( , )x y coordinates is related to the 
corresponding point on the elements of 
boundaries by the following relations: 
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In the DSBFEM, the relation between a 
differential element of area dx dy (in the 
global coordinates) and d d   (in the local 
coordinates) is introduced by: 
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where ),( J


denotes the Jacobian matrix of 

transformation as: 
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Furthermore, the Jacobian matrix on the 
boundary is shown to be written as: 
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By introducing the differential operator L , a 
virtual vector T

yx ss },{ s  in the global 
coordinates system is related to its spatial 
derivatives by: 
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It may be shown that the differential 
operator L is rewritten as: 
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To compute the surface traction, the unit normal 
vector n  on the boundary may be defined as: 
 

)(
)(

1



x

x
n 


  (16) 

 
By substituting Eqs. (1 and 3) into Eq. (16), the 
unit normal vectors )(

n  and )(
n  are 

calculated as given by (see Fig. 1(b)): 
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For1D sub-parametric elements of the 
DSBFEM, the mapping functions )( are 
different from the shape functions )( . For 
an element with ( 1n  ) nodes, the proposed 

shape functions )(iN  of degree of ( 2 1n  ) 
are written as: 
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which have two special characteristics: (a) the 
shape functions have Kronecker Delta property, 
and (b) their first derivatives are equal to zero at 
any given node as: 



JCARME                                                  A novel modification of . . .                                    Vol. 7, No. 2 

247 
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For each element, the positions of nodes of 
shape and mapping functions are the same. 
The displacement field ),( u at any point 
( , )  is obtained by interpolation of the 
displacement function using the shape 
functions. In the proposed method, only 
domain’s boundaries may be discretized. 
Therefore, the displacement field is written as: 
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The strain vector at any point ( , )   may be 
derived using Eqs. (14, 15), and 22 as given by 
the following equation: 
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Based on the Hook's law, the relation between 
strain and stress fields is written as: 
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where D  denotes the elasticity matrix of the 
problem. 
The governing equilibrium equations for 
elastostatic problems may be illustrated as: 

0,  ijij f  (27) 
 

in which if  indicates the body forces. For a 2D 
problem in domain   in global coordinates, 

yxi
, and yxj

, . Instead of direct solving 
the strong form of Eq. (27), one may use a weak 
form by employing the weighted residual 
method. For this goal, Eq. (27) is weighted with 
an arbitrary weighting function (w), and 
integrated over the problem domainΩ . It may 
be shown that the SBFEM results in the 
following set of differential equations for 
elastostatic problems: 
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in which T

yx FF )}(),({)(  F indicates the 
nodal vector of the body forces. 
To calculate the coefficient matrices 0

D , 1
D , 

and the vector )(F , the Clenshaw–Curtis 
quadrature rule for 2D analyses at the CLL 
points is used in DSBFEM. Employing the 
Clenshaw–Curtis quadrature as well as special 
shape functions leads to diagonal coefficient 
matrices. Therefore, the set of differential 
equations (Eq. (28)) may be expressed as a set 
of decoupled differential equations regarding a 
specific node i as: 
 

0 1
, ,( ) ( ) ( ) 0ii i ii i iD u D u F         (32) 

 
It should be noted that Eq. (32) refers to an 
Euler’s differential equation that depends only 
on the elastostatic function of the ith degrees of 
freedom (DOF). This means that the coupled set 
of differential equations has been transferred to 
decoupled differential equations using special 
mapping functions, shape functions, and 
quadrature, through the weighted residual 
method. 
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3. Modification of the DSBFEM 

 
Else the mapping functions, control points and 
the numerical integration technique, the 
modeling and solution procedure used in the 
present work is similar to that study which is 
published in [41]. Here in, against of the 
previous DSBFEM, a set of higher-order 
Lagrange polynomials are used in order to 
interpolation of the model, and geometry, where 
these mapping functions are set up on GLL 
points as control points and employing the 
Gauss-Lobatto-Legendre quadrature for 
calculating the matrices, leads to decoupled 
partial differentials. 
 
 
3.1. Lagrange polynomials as mapping function 

 

For a  ηn 1   node element, a Lagrange 

polynomial of ηn  is used; these polynomials 
for the ith point will be calculated as: 
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Considering Eq. (33), the Lagrange 
polynomials have the properties of the 
Kronecker Delta at any control point as: 
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the first-order derivative of order ηn  Legendre 
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in which  0,1,2,..., 1i n   
 
3.2. Gauss-Lobatto-Legendre quadrature 

 
In this study, to calculate the vectors and 
matrices in Eq. (28), the Gauss-Lobatto-
Legendre numerical integration method is 
applied to calculate the values of the 
coefficients matrix in the GLL. According to 
the node element that corresponds to the points 
and also features a shape functions used, 
resulting diagonal matrix of coefficients used in 
the equation. Weight coefficients used in the 
method of integration is calculated using the 
following equation: 
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Consequently, the components of coefficient 
matrices may be expressed as: 
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where ij  denotes the Kronecker Delta which 
results in diagonal coefficient matrices. So, the 
system of partial differential Eq. (28) may be 
expressed as a single differential equation 
regarding to a specified point i as the following 
expression: 
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It is worthwhile remarking that Eq. (40) offers a 
set of ordinary differential equations for an 
elastostatic problem with 2n  DOFs. Each 
differential equation in Eq. (40) depends only 
on the elastostatic function of the ith DOF. This 
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means that the coupled system of differential 
equations has been transformed into decoupled 
differential equations using a special set of 
weak formulation procedure, mapping 
functions, quadrature, and shape functions. In 
other words, to evaluate the displacement 
function and its derivatives at a given point, the 
governing equation that is corresponding to the 
point should be solved, only. As may be 
illustrated later, the decoupled differential 
equations system proposed in this study can 
also provide higher rates of convergence by 
employing a few numbers of DOFs compared 
to other numerical methods. 
 
4. The DSBFEM in cracked media 

 
Based on Sections 2 and 3, in order to use this 
method in fracture mechanics problems, the 
geometrical and physical modeling is discussed. 
Therefore, the procedure of implementing 
fracture mechanics issues in DSBFEM is 
explained in the following two sub-sections 
[40]. 
 
4.1. Geometrical modeling 

 
To model the cracked domains in the present 
method, the geometry of cracks is modeled in 
very small void spaces, at the first step. 
According to fracture mechanics relationships, 
it is necessary to rewrite governing equations in 
polar coordinates, in the proposed semi-
analytical method. Fig. 2 depicts a cracked 
domain modeled by the DSBFEM, in which the 
LCO is placed at the crack tip. Therefore, a 
simple relationship between ),(   and ),( r  
coordinates, with the LCO at the crack tip, may 
be written as: 
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By substituting Eqs. (6 and 7) into Eq. (41), one 
can write 
 

( )r r   (43) 
 

where 
 

)()()( 22  yxr   (44) 

x̂

ŷ
r









LCO

 
Fig. 2. A 2D cracked domain modeled by the 
DSBFEM. 
 
4.2. Physical modeling 

 
One of the other important stages of crack 
modeling in the DSBFEM is to implement the 
crack conditions in the solution procedure, to 
consider infinite stress at the crack tip. As may 
be observed from Eq. (40), the order of 
displacement function )(iu depends on )(iF . 

In elastostatic problems, )(iF varies in the 
undertaken domain like a body force. 
Therefore, )(iF  is defined as a linear function 

such as 
i ia b  , in which 

ia and ib are 
obtained according to traction conditions in the 
LCO and at the boundaries [38]. The proposed 
form of force function basically provides 
inappropriate displacement functions )(iu  for 
crack problems, as is not capable to produce 
infinite stresses at the crack tip. It is thus 
necessary to change the form of displacement 
function in this regard. Therefore, in fracture 
mechanics issues, a new form of force function 
is proposed to consider crack conditions of 
infinite stress at the crack tip, as given by: 
 




ba
F )(  (45) 

by which the stress approaches infinity at the 
crack tip, when 0 . Therefore, Eq. (40) 
may be rewritten as the following relation: 
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It may be shown that the general solution of the 
above differential equation for the ith DOF, 
may be given as: 
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(47) 

 
where iA and iB denote the constant 
coefficients which are evaluated by imposing 
the BCs at 0,1  , corresponding to the ith 
DOF. The BCs for the DOFs of the domain’s 
boundary are those of Dirichlet ( iu ) or 

Neumann ( iT ) ones, in which iu  and iT  denote 
the known values of displacements and 
tractions, respectively (see Fig. 3). 
 

 
 

Fig. 3. Various Dirichlet or Neumann BCs for the 
crack tip and domain’s boundary DOFs. 
 

 

5. Solution procedure 
 
As discussed before, the coefficient matrices 
have become diagonal as a set of single Euler’s 

differential equations for the ith DOF. If n 
implies the number of DOFs of the problem 
supposed to be solved by the DSBFEM, only n 
Euler’s differential equations (with only one 
unknown differential equation for each DOF) 
should be solved. In other words, the DSBFEM 
offers an efficient procedure for solving various 
problems as already reported in Refs. [37-42]. 
In this section, the required procedure for 
solving Euler’s differential equations fracture 
mechanics problems is explained. The solution 
procedure of the DSBFEM based on the novel 
modifications in the fracture mechanics is 
summarized in the following steps: 
 The coefficient matrices for all DOFs are 
determined at the first step, along x

  and y
  

directions, separately. 
 Implementing the boundary conditions 
(BCs) of the problem, the governing differential 
equations are then solved for the DOFs excited 
by the external forces. Therefore, the 
displacement field of the problem’s domain 
along radial coordinate , related to the ith DOF 
is obtained in this step.  
 At the third step, the stress components 
along radial coordinate corresponding to the 
ith DOF is obtained using Eq. (26).  
 Finally, using the equilibrium equation, the 
internal stress components at the LCO, LCOi , 
are determined for each DOF. 
In the DSBFEM, the LCO is identical for all 
nodes, for which the LCO has the same 
displacement components. Consequently, the 
physical concept of this fact may be considered 
as parallel springs adjoining to each other at the 
LCO (see Fig. 4). To calculate the inner stresses 
at the LCO, the inner stress from each DOF is 
summed up at the LCO as given by: 
 





n

i

LCOiLCO

1
  (48) 

 
In this regard, the contribution of each DOF for 
the inner stresses of Eq. (48) may be computed 
by: 
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(49) 

The governing Euler’s differential equations 
with the internal body forces are then solved. 
For each DOF, the internal body forces may be 
obtained from internal stresses at the LCO, as a 
body force along  (see Eq. (40)) as given by: 
 

)()()(  

i

T

i nf   (50) 
 
It should be noted that the proposed procedure 
of this section is similar to the moment 
distribution procedure of classic structural 
analysis. Therefore, the proposed procedure is 
called “redistribution” in the DSBFEM.  
 

LCO

 
Fig. 4. The physical concept of the solution 
procedure of the problem. 
 
At the final step, using the calculated 
displacement field along , the displacement at 
any point of the problem’s domain may be 
interpolated by employing the proposed special 
shape functions. Although in the present 
method, the governing equation of each DOF is 
decoupled from those of other DOFs, however, 
the “redistribution” of the stresses at the LCO 
and resolving the problem for each DOF, 
represents the connection between all DOFs of 
the problem. 
 
6. Calculation of SIFs 

 
Williams showed that the stress and 
displacement in cracked media are expressed by 
infinite series [1]. The analysis of cracked 
domains based on the LEFM shows an infinite 
stress state at the crack tip, in which no material 
can resist such an infinite stress state. 
Therefore, instead of comparing the infinite 

stress field with a strength criterion, fracture 
mechanics adopts the SIFs or the first order 
terms of Williams’s series to illustrate existing 
singular stress field in the vicinity of the crack 
tip. In addition, the SIFs are the most important 
parameters for predicting crack propagation [2]. 
Recently, Berto and Lazzarin have shown that 
the T-stress or the second order terms of 
Williams’s series are important to show the 
stress field in the crack tips [44]. 
There are various analytical and numerical 
methods to compute the SIFs in the literature, 
such as using displacement or stress field [29], 
J-integral method (based on the theorem of 
energy conservation) [45, 46], and energy 
release rate technique (according to elastic 
strain energy release respect to crack growth) 
[47]. Each of these methods has its own 
advantages. For example, in using displacement 
or stress field, the SIFs may be calculated 
directly, while in energy release rate technique, 
the SIFs may be evaluated with coarse meshes. 
In this study, displacement field (as a direct 
method) and energy release rate technique (as 
an indirect method) is employed to evaluate the 
fractures’ parameters at the crack tip. 
The SIFs of mode-I and mode-II by using of 
displacement field are computed by using the 
following relations [2]: 
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in which   denotes the elastic shear modulus. 
Furthermore, 






 1
3

 for plane stress condition, 
while  43 for plane strain one, in which 
  indicates Poisson's ratio. The advantage of 
the direct method is that the SIFs may be 
usually obtained directly without further 
processing and computational efforts. The main 
disadvantage of the direct method may be 
devoted to the fine mesh requirements as well 
as singularities around the crack tip. Therefore, 
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in the DSBFEM Eqs. (51 and 52) can be 
rewritten as: 
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Also, the energy release rate method as an 
indirect procedure is used in this study to 
evaluate the fracture parameters. The advantage 
of the energy release rate method is that the 
crack tip stress field, which is singular and 
corresponds to an unreal situation in practice, 
makes only a relatively small contribution to 
the total strain energy of the cracked media. 
Significant applications of energy release 
method are in crack propagation and failure 
analysis. Let’s consider the energy release rate. 
The energy release rate G is defined as: 
 

da

d
G


  (55) 

 
in which a  is the length of the crack, and   
denotes the elastic strain energy in   domain 
as given by: 
 

 


 dWd T2
1  (56) 

where W is the strain energy density. G may be 
calculated from the rate of modification in the 
elastic strain energy  with respect to a crack 
growth a . In practice applications, G is 
evaluated considering the variation of the global 
potential energy  , when the crack growth is 

a , as written by the following relation: 
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 (57) 

where 1  and 2 denote the elastic strain 
energies related to the crack lengths  of 

1a and 2a , respectively. Finally, to calculate the 

SIFs, the relations of energy release rate G and 
the SIFs for mixed modes I and II are: 
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In the energy release rate approach, to compute 
the SIFs (see Eq. (57)), the total elastic strain 
energy of the cracked media is calculated. So, 
the elastic strain energy e  for any sub-
domain e  is defined as (see Fig. 5): 
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Fig. 5. Elastic strain energy for a sub-domain in the 
DSBFEM. 

 
Based on Eqs. (23 and 26), the stress and strain 
fields are determined analytically in the radial 
direction  , and therefore, the integrated form 
of Eq. (61) is solved analytically in the radial 
direction. In the tangential direction  , Eq. (61) 
is solved numerically using the Gauss-Lobatto-
Legendre quadrature at GLL point. The total 
elastic strain energy is then computed by adding 
the strain energy of each sub-domain as: 
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i
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where en  denotes the number of elements. 
Finally, based on Eq. (57) the released energy 
rate is computed according to a very small 
virtual growth of crack length, in the following 
numerical examples. 
 
7. Numerical examples 
 
The accuracy and efficiency of the present 
method for analysis of crack problems, based 
on direct and indirect method, is illustrated 
through three 2D benchmark problems. The 
results determined from the present approach 
are compared with other existing numerical 
methods available in the literature. 
 
7.1. Cracked plate under uniaxial tension 

 
The first example studies a through-thickness 
cracked plate. The plate contains a central crack 
and is subjected to tensile stress with intensities 
of 1   units applied on both sides of the plate 
(see Fig. 6). In this example, the plane stress 
status is considered, for which the elastic 
modulus and Poisson's ratio are 1E   unit and 

3.0 , respectively. 
Due to the symmetrical condition of the 
problem, only one-quarter of the plate is 
modeled as shown in Fig. 7(a). As Fig. 7(b) 
shows, the boundaries of the domain are 
divided into 15 three-node elements with total 
62 DOFs. This example represents a pure 
mode-I problem.  
In order to assess the accuracy of the first 
example, the experimental results are used [48] 
for comparison. To calculate the SIF of mode-I, 
one may write: 
 

aFKI  (60) 
 
in which 

2 31+0.13( ) 0.29( ) 15.25( )a a a
F

b b b
    (61) 

 

σ 

2a

2h

2b

σ  
Fig. 6. The BCs and geometry of the first numerical 
example. 
 
Using the energy release rate approach, the first 
numerical example problem is solved, whose 
SIF results are shown in Table 1, for various 
differential crack lengths ( a ). To get better 
sense on the obtained results, the errors of the 
proposed method compared to the experimental 
results [48] are demonstrated in Fig. 8. 
Obviously, the results of the present method 
agree very well with available experimental 
results. Figure 8 shows that very small values 

a  (say 0001.0a ) yields to converged 
results to real experimental values.  
 

 
Table 1. Determination of the SIF and the rate of 
SIF for mode-I in the cracked plate of the first 
example. 

 Present study DSBFEM 

a  IK  
a

K I



  
IK  

a

K I



  

0.01 2.861 0.735 2.837 0.738 
0.005 2.871 0.740 2.850 0.742 
0.001 2.879 0.744 2.864 0.746 
0.0002 2.928 0.745 2.916 0.747 
0.0001 3.010 0.745 3.000 0.747 
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(a) 

LCO  
(b) 

Fig. 7. (a) The BCs and geometry considered for one 
quarter of the first example plate, and (b) the mesh 
used for modeling of the example, in which the LCO 
and nodes of elements are depicted. 

 

 
Fig. 8. The errors of IK  and aKI  of the present 
study for the first example. 
 
Furthermore, due to independence of aKI   
to a , it represents minimal errors. In addition, 
Fig. 9(a) shows the stress distribution of the 
crack tip as well as the whole cracked domain. 
Also, the accuracy of the stress distribution is 
evaluated in Fig. 9(b), in which the results of 
the present method are compared with those of 
Ref. [12]. 
 

 
(a) 

 
(b) 

Fig. 9. The stress distribution ( yy ) for (a) the 
whole cracked domain and (b) along the crack tip in 
the direction of loading  1, 2a   , for the first 
example. 

 
7.2. Edge-cracked plate under shear traction 

 
The second example examines an edge-cracked 
plate, which is constrained at the end, and is 
loaded by shear stress 1  unit applied on the 
top of the plate. The geometry and BCs are 
demonstrated in Fig. 10. This problem may be 
considered as an example of a Mixed-Mode 
problem. The elastic modulus and Poisson's 
ratio are 630 10E   unit and 25.0 , 
respectively. The mesh is similar to that of Fig. 
7(b), whose boundary is divided into 46 three-
node elements with total 186 DOFs used. 
Again, the problem is solved based on 
displacement field approach as an indirect 
method and the results of the present method 
are compared to two other available results [40, 
49], as shown in Tables 2 and 3. The tables 
imply very good agreement with the referenced 
results, for which the maximum error is less 
than 5 percent. 
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Fig. 10. The geometry and BCs of the second 
numerical example. 

 
Table 2. Determination of the SIFs for mode-I in the 
edge-cracked plate of the second numerical example. 

/a b  DSBFEM SBFEM The present 
study 

Error 
(%) 

0.3 19.56 19.80 19.54 0.70 
0.4 25.73 25.64 25.69 0.17 
0.5 34.24 34.04 34.18 0.29 

 
Table 3. Determination of the SIFs for mode-II in 
the edge-cracked plate of the second numerical 
example. 

/a b  DSBFEM SBFEM The present 
study 

Error 
(%) 

0.3 2.52 2.46 2.54 2.02 
0.4 3.62 3.49 3.67 3.28 
0.5 4.69 4.54 4.73 2.51 

 
7.3. Slanting crack under uniaxial tension 
 
The third example is corresponding to an 
oblique-cracked plate, which is subjected to the 
tensile stress of 1  unit applied on both 
sides, as demonstrated in Fig. 11(a). Again, the 
plane stress condition is taken into account. 
Because of the axis-symmetrical condition of 
the problem, half of the plate is considered as 
depicted in Fig. 11(b). The geometrical 
parameters of this finite plate are as follow: 

0.1a  , 1L b  , and 60  . In addition, the 
elastic modulus 1E  , and Poisson's ratio 

0.3  . As shown in Fig. 11(c), the domain of 
this example is discretized into three 
subdomains which include 62, 14, and 16 three-
node elements (a total number of 370 DOFs). 
For this example which requires a mixed-mode 
analysis, the direction of virtual crack extension 

a is not determined, while computing of G in 
all directions is necessary. 
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2b

L





  
(a) 

a

L

b

L




 

a



LCO1

LCO2

LCO3

 
(b) (c) 

 

Fig. 11. The geometry and BCs considered for (a) 
the whole, (b) half of the plate, and (c) the mesh 
used for modeling of the third example using three 
LCOs. 
 
Also using Eq. (57), various lengths of a are 
tried in evaluating G. Finally, the problem is 
solved, whose obtained results are compared 
with the results reported in Ref. [50], as 
demonstrated in Fig. 12. According to Fig. 12, 
the maximum value of G is corresponding 
to 100  , which means that the direction of 
crack propagation is 40 clockwise from the 
direction of the crack axis. Again, the results of 
the present method show good agreement with 
the available results of Ref. [50]. 
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Fig. 12. Plot of G versus   with lengths of 

0.001a  . 
 

LCO1

LCO4

LCO5

LCO2

LCO3

 
Fig. 13. The second mesh used for modeling of the 
third example using five LCOs. 

 
In order to get a better sense of the accuracy of 
the present method’s results, the convergence of 
the evaluated G is investigated. In addition to 
the Fig. 11(c), as shown in Fig. 13, the domain 
of this example is discretized into five 
subdomains which include 36, 10, 10, 32 and 
32 three-node elements (a total number of 482 
DOFs), and again the results display in the Fig. 
14. Obviously, the results of the finest mesh of 
Fig. 14 shows the best accuracy. Consequently, 
the novel modification of the DSBFEM 
represents excellent converged results. 
In the third numerical example for more 
consideration, some details are addressed. For 
instance, the CPU time required for 
computing G is 670 s (11 min and 10 s) in a 
standard PC equipped with a 3.1 GHz processor 
and 16 GB RAM in the previous DSBFEM. But 

in the new version of DSBFEM, the time 
required for computing G is 582 s (9 min and 
42 s) in a similar PC. 
 

 
Fig. 14. Plot of G versus   with lengths of 

0.001a   for showing the divergence of the 
proposed technique in the third example. 
 
8. Conclusions 

 
In this research, a modification of the novel 
semi-analytical method, based on the scaled 
boundary finite element method that is called as 
DSBFEM, was studied. The procedure of the 
modeling and solution of the 2D fracture 
mechanics problems are similar to the 
DSBFEM. The difference in the proposed 
approach is that the boundary of the domain 
which was discretized by new higher-order sub-
parametric elements with Lagrange polynomials 
as mapping functions, and the control points 
which were Gauss-Lobatto-Legendre points, 
and also, using Gauss-Lobatto-Legendre 
quadrature the coefficient matrices of equations 
system became diagonal. This led to a system 
of decoupled governing equations for the entire 
system. Some examples were successfully 
analyzed using the newly proposed technique. 
In these examples, various crack problems and 
various loading types were selected to display 
the generality and applicability of the present 
approach in the fracture mechanics issues. It 
should be mentioned that all the examples were 
successfully modeled with a very small number 
of DOFs and less complexity, preserving very 
high accuracy compared to the available 
analytical and numerical solutions. By 
implementing the novel modifications, the most 
remarkable advantage of the proposed method 
again DSBFEM was its low totally 
computational efforts. 
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