Dynamic stress concentration in a hybrid composite laminate subjected to a sudden internal break

E. Mirshekaria, *, A. Rezab

a, b Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

Abstract
In this work, transient dynamic stress concentration in a hybrid composite laminate subjected to a sudden internal crack is examined. It is assumed that all fibers lie in one direction and the applied load acts along direction of fibers. Two types arrangements are considered for the fiber; square and hexagonal arrangement. Using shear lag model, equilibrium equations are deduced and upon proper application of initial and boundary conditions, the complete field equations are obtained using finite difference method. The results of dynamic effect of fiber breakage on stress concentration are well examined in presence of a second type fiber. These results are compared to those of their static values in both models. The effect of surface cracks on stress concentration, as a result of fiber breakage, is also examined. The values of dynamic stress concentrations is deduced and compared to those of a lamina. Also, the peak stress concentration during transition time for fibers to reach static equilibrium is calculated and compared with those of static values.

Keywords: Laminate, Crack, Transient Response, Dynamic Stress Concentration, Hybrid.

1. Introduction
Composites have been widely used in various kinds of structural applications. They can be subjected to many defects such cracks, holes or any other kind of discontinuities. Ignoring the effect of such defects may lead to serious problems in structural integrity of the whole body. Due to heterogeneous and nonisotropic properties of composite materials, it is very hard to investigate their mechanical behavior. To understand this behavior, the material has to be modeled properly. Many studies have been done in the field of micro and Nano mechanical modeling of composites [1-4]. One of the models available is the so-called shear lag model, wherein, all fibers are assumed to take axial load, while matrix sustains only shear. The mechanism of load transfer from any broken fiber to its adjacent filament is through shear stress developed in the matrix. It is shown that [5-8] shear-lag model gives relatively accurate results on normal stresses developed in composites with a low extensional stiffness in the matrix. Some authors have applied numerical methods to compare the results of shear-lag model with those of finite element analysis [9, 10]. By definition a

* Corresponding author
Email address: erfan.mirshekari@gmail.com
hybrid composites is one which is composed of more than one type of filament. The presence of the second type fiber complicates stress distribution within the material. Several authors have also tried to study stress distribution and fracture behavior of hybrid composites [11-13]. Transient response of stress distributions due to initiation of a crack in a lamina was first studied by Hedgepeth [5]. He used the conventional shear lag model to obtain equilibrium equations in a lamina with infinite dimensions and used laplace transforms to solve the equilibrium equations. Due to the complexity of the problem, he just used three broken fibers. Some other authors have used numerical approaches, namely finite difference method, to study the dynamic behavior of composites in practice [14, 15]. Reza et al. [16] investigated the dynamic stress concentration of a lamina using finite difference method and studied the effect of viscoelasticity of a polymer matrix on it. Souad et al. [17] investigated the stress concentration factor in a fibre reinforced composite material with ceramic matrix. Using finite element method, they calculated the stress concentration factor for crack growth in the ceramic matrix and fiber-matrix interface. Results showed that inclined crack at interface center has no more effect on stress intensity factors compared the crack at interface edge. Aboudi [18] presented a continuum model capable of generating the transient electro-elastic field in piezoelectric composites of periodic microstructure, caused by the sudden appearance of localized defects. Reza and Shishesaz [19] investigated the effect of viscoelasticity of polymeric matrix of composite materials on the transient stress concentration due to a sudden break in its fibers and used explicit finite difference method. In present work, transient distribution of stresses in a finite width hybrid composites laminate subjected to a sudden internal crack is studied. The hybridization effect, arrangement of fibers in the laminate, crack location as well size of the sudden crack on dynamic stress overshoot is well examined. The introduced transient time is defined as the time required for each fiber to reach its static equilibrium, once the crack is initiated.

2. Derivation of formulas

To derive the necessary field equations, it is assumed that all the fibers are aligned in parallel and can take only extensional load. Each matrix bay sustains only shear stress. This is a good assumption in most composites with a phenolic resin or weak in tension. Furthermore, it is assumed that that the laminate is subjected to a tensile load of magnitude P, applied at infinity.

To derive equilibrium equations, additional assumptions are made as follow:

- There is a perfect bound between each fiber and its neighboring matrix bays.
- All fibers behave as linear elastic up to the point of fracture.
- Fibers and matrix are assumed to be homogeneous.

In derivation of formulas, two types of fiber arrangement are postulated in the laminate. These arrangements will be discussed separately in the subsequent sections.

2.1 Hybrid Square Arrangement

Fig. 1 shows the cross section of a laminate with a square arrangement. Here, "d" represents the spacing between any two adjacent fibers while x is measured along direction of filaments. Coordinate axes y and z are taken to be normal to fibers as shown.

![Fig.1. Cross section of a hybrid laminate with a square arrangement for fibers.](image-url)
According to Fig. 1, \(n \) represents the number of any fiber in any layer, ranging from 1 to \(N \). Moreover, \(m \) corresponds to the number of layers ranging from 1 to \(M \). For this type of fiber arrangement, each filament is influenced by four shear stresses from the neighboring fibers. The laminate edge can end in a LM or a HM fiber. It is assumed that the type of fibers in every other row is the same. Fibers with higher elastic modulus are labeled as high modulus (HM) fibers, while weaker fibers are considered to be as modulus (LM) fibers. The asterisk symbol (*) is used to highlight the properties associated with LM fibers. The crack can initiate at \(x = 0 \), within the \(f_{m} \)th layer, from the \(f_{n} \)th fiber, while \(r \) corresponds to the total number of broken fibers. Using linear elasticity equations, one can show that the force balance in any LM fiber (see Fig. 2) results into:

\[
\frac{\partial p_{m,n}}{\partial x} + \left\{ \tau_{m,(n,n+1)} - \tau_{m,(n-1,n)} + \tau_{(m,m+1),n} - \tau_{(m-1,m),n} \right\} h dx = (m^* dx) a_{m,n}^*
\]

In above equation, \(m^* \) is mass per unit length of a LM fiber while \(a_{m,n}^* \) is its corresponding acceleration value. Substituting shear stresses in terms of fiber displacement, differential-difference Eq. (1), may be written as:

\[
E_f A_f \frac{\partial^2 u_{m,n}^*}{\partial x^2} + \frac{Gh}{d} (u_{m,n+1}^* + u_{m,n+1}^* + u_{m+1,n}^* + u_{m-1,n}^* - 4u_{m,n}^*) = m^* \frac{\partial^2 u_{m,n}^*}{\partial t^2}
\]

A similar expression may be written for a HM as:

\[
E_f A_f \frac{\partial^2 u_{m,n}^*}{\partial x^2} + \frac{Gh}{h} (u_{m,n+1}^* + u_{m,n-1}^* + u_{m+1,n}^* + u_{m-1,n}^* - 4u_{m,n}^*) = m^* \frac{\partial^2 u_{m,n}^*}{\partial t^2}
\]

The equilibrium equations for the edge fibers may be written using the same procedure. In a matrix notation, the equilibrium equations for the whole laminate may be written as:

\[
eu'' - \frac{Gh}{d} L_u = m\ddot{u}
\]

Displacement vector \(u \) has the order of \(M \times N \) and is defined as in Eq. (5). Moreover, \(u'' \) and \(\ddot{u} \) correspond to the derivative of \(u \) with respect to \(x \) and time respectively.

\[
u' = [u_{1,1}^*, u_{1,2}^*, \ldots, u_{1,N}^*, u_{2,1}^*, u_{2,2}^*, \ldots, u_{2,N}^*, \ldots, u_{M,1}^*, \ldots, u_{M,N}^*]
\]

The coefficient matrices \(m, e \) and \(L_e \) are expressed as;
In Eq. (7), K is equal to M×N and I is the Nth order identity matrix. Moreover, matrices A_I and B_I are equal to:

\[
A_I = \begin{bmatrix}
-2 & 1 & 0 & \ldots & 0 & 0 & 0 \\
1 & -3 & 1 & \ldots & 0 & 0 & 0 \\
0 & 1 & -3 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & -3 & 1 & 0 \\
0 & 0 & 0 & \ldots & 1 & -3 & 1 \\
0 & 0 & 0 & \ldots & 0 & 1 & -2
\end{bmatrix}_{(N×N)},
\]

\[
B_I = \begin{bmatrix}
-3 & 1 & 0 & \ldots & 0 & 0 & 0 \\
1 & -4 & 1 & \ldots & 0 & 0 & 0 \\
0 & 1 & -4 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & -4 & 1 & 0 \\
0 & 0 & 0 & \ldots & 1 & -4 & 1 \\
0 & 0 & 0 & \ldots & 0 & 1 & -3
\end{bmatrix}_{(N×N)}.
\]

2.2 Hybrid hexagonal arrangement

Fig. 3 depicts a hexagonal arrangement of fibers in the hybrid composite laminate. Each fiber is surrounded by six filaments. The coordinates m and n are as shown in the figure. Using shear lag model along with linear elasticity equations, the equilibrium equation in the n^{th} LM fiber in the m^{th} layer results into:

\[
\{\tau_{m,n+1} - \tau_{m,n-1} + \tau_{m+1,m,n} - \tau_{m-1,m,n} + \tau_{m+1,m+1,n} + \tau_{m+1,m-1,n} \} h dx + \frac{\partial p_{m,n}}{\partial x} dx = (m dx) a_{m,n}
\]

The above equation may be written in terms of fiber displacements as:

\[
E_f A_f \frac{\partial^2 u^*_{m,n}}{\partial x^2} + \frac{Gh}{d} (u^*_{m,n+1} + u^*_{m,n-1} + u^*_{m+1,n} + u^*_{m-1,n} + u^*_{m+1,n+1} + u^*_{m-1,n+1} - 6u^*_{m,n}) = m \frac{\partial^2 u^*_{m,n}}{\partial l^2}
\]
Fig. 3. Cross section of a hybrid laminate with hexagonal arrangement for fibers.

A similar equation may be written for HM fibers. Similar to that of square arrangement, equilibrium equations for the edge fibers may be written following the same procedure. In a matrix notation, the equilibrium equations for the whole laminate may be represented as:

$$\text{eu}^* - \frac{Gh}{d} L_2 \text{u}^* = \text{m}\ddot{\text{u}}$$

(11)

Where matrix L_2 is equal to:

$$L_2 = \begin{bmatrix}
[A_2] & [J]^T & [0] & \ldots & [0] & [0] & [0] \\
[0] & [J] & [B_2] & \ldots & [0] & [0] & [0] \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
[0] & [0] & [0] & \ldots & [B_2] & [J]^T & [0] \\
[0] & [0] & [0] & \ldots & [0] & [J]^T & [C] \\
\end{bmatrix}_{(K \times K)}$$

Parameter K is defined as before. Matrices A_2, B_2, C and J are equal to:

$$A_2 = \begin{bmatrix}
-2 & 1 & 0 & \ldots & 0 & 0 & 0 \\
1 & -4 & 1 & \ldots & 0 & 0 & 0 \\
0 & 1 & -4 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & -4 & 1 & 0 \\
0 & 0 & 0 & \ldots & 1 & -4 & 1 \\
0 & 0 & 0 & \ldots & 0 & 1 & -3 \\
\end{bmatrix}_{(N \times N)}$$

$$B_2 = \begin{bmatrix}
-4 & 1 & 0 & \ldots & 0 & 0 & 0 \\
1 & -6 & 1 & \ldots & 0 & 0 & 0 \\
0 & 1 & -6 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & -6 & 1 & 0 \\
0 & 0 & 0 & \ldots & 1 & -6 & 1 \\
0 & 0 & 0 & \ldots & 0 & 1 & -4 \\
\end{bmatrix}_{(N \times N)}$$

$$C = \begin{bmatrix}
-3 & 1 & 0 & \ldots & 0 & 0 & 0 \\
1 & -4 & 1 & \ldots & 0 & 0 & 0 \\
0 & 1 & -4 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & -4 & 1 & 0 \\
0 & 0 & 0 & \ldots & 1 & -4 & 1 \\
0 & 0 & 0 & \ldots & 0 & 1 & -2 \\
\end{bmatrix}_{(N \times N)}$$

$$J = \begin{bmatrix}
1 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & 1 & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 & 1 \\
0 & 0 & 0 & \ldots & 0 & 0 & 1 \\
\end{bmatrix}_{(N \times N)}$$
3. Initial and boundary conditions

Before any crack initiation, the normal load in any fiber is equal to its applied value at $x = \infty$. This means that,

$$p_{m,n}(x,0) = p \quad (14)$$

Moreover, at the moment of fiber and matrix breakage, instantaneous velocity of the cut fibers is equal to zero. This corresponds to;

$$\frac{\partial u_{m,n}}{\partial t}(x,0) = 0 \quad (15)$$

Due to symmetry (crack initiates at $x = 0$), the displacement in all intact fibers at any time may be written as;

$$u_{m,n}(0,t) = 0 \begin{cases} \text{if } (n < f \text{ or } n > r + f) \text{ and } (m = f_m) \\ \text{or } (1 \leq n \leq N) \text{ and } (m \neq f_m) \end{cases} \quad (16)$$

Moreover, the load in broken fibers after the cut is;

$$p_{m,n}(0,t) = 0 \quad (m = f_m \text{ and } f \leq n \leq r + f) \quad (17)$$

Also, as x approaches infinity, the normal load in any fiber must approach to its applied value. This means that in presence of a crack;

$$(p_{m,n})_{x \to \infty} = p \quad (18)$$

4. Non- dimensional parameters

Differential Eqs. (4) and (11) may be written in a non-dimensional form, using the following non-dimensional parameters.

$$P_n = \frac{P_n}{p}, \quad P_n^* = \frac{p_n^*}{p}, \quad Q = \frac{m^*}{m}, \quad R = \frac{E_f^* A_f^*}{E_f A_f}, \quad 1 = \frac{d}{h} = \frac{V_m}{V_f} \quad (19)$$

$$U_n = \sqrt{\frac{E_f A_f G_h}{p^2 d}} u_n, \quad U_n^* = \sqrt{\frac{E_f A_f G_h}{p^2 d}} u_n^* \quad (19)$$

By definition, V_f and V_m are fiber and matrix volume fractions in the lamina respectively. In Eq. (19), G_h is the effective matrix shear stiffness and t is the transient time. Upon the application of these parameters, equilibrium Eqs. (4) and (11) may be written in a non-dimensional form as;

$$EU^* - \eta L_1 U = M \dot{U} \quad \text{(Square arrangement)} \quad (20)$$

$$EU^* - \eta L_2 U = M \dot{U} \quad \text{(Hexagonal arrangement)} \quad (21)$$

Matrices M and E correspond to the non-dimensional form of Eqs. (6) and (7). Furthermore, the initial boundary and boundness conditions in non-dimensional form reduce into;

$$\frac{\partial U_{m,n}}{\partial \tau} (\xi,0) = 0 \quad (22)$$
\[P_{m,n}(\xi,0) = \frac{\partial U_{m,n}(\xi,0)}{\partial \xi} = 1 \]
\[U_{m,n}(0,\tau) = 0 \]
\[P_{m,n}(0,\tau) = \frac{\partial U_{m,n}(0,\tau)}{\partial \xi} = 0 \]
\[(f \leq n \leq r + f \quad \text{and} \quad f_m \leq m \leq l + f_m) \]
\[(P_{m,n})_{\xi \to \infty} = 1 \]

5. Finite difference solution of equilibrium equations

Equilibrium Eqs. (20) and (21) are much alike except for the coefficient matrices \(L_1 \) and \(L_2 \). Hence, the solution method presented covers both cases. Moreover, these equations form a set of equations with two variables. Now, introducing \(v = N(m-1)+n \), one may write the elements of \(U \) matrix as:
\[U_{m,n} = \bar{U}_v \]

To solve equilibrium equations, it is assumed that each fiber has a finite length \(L \) that can be divided into equal segments with size \(\Delta \xi \) (See Fig. 4) such that,
\[L = S_{\xi} \Delta \xi \]

In Eq. (29), \(S_{\xi} \) corresponds to the number of divisions selected on each fiber. Labeling each segment by \(i \), one may write,
\[\xi_i = i \Delta \xi \]

Labeling each time step \(\Delta \tau \) by \(j \), we may write;
\[\tau_j = j \Delta \tau \]

Denoting \(S_t \) as the number of time segments between the state of crack initiation and that of static equilibrium, then, the total transient time is given by;
\[\tau_{\text{total}} = S_t \Delta \tau \]

Using central difference about point \(i \), each term in equilibrium Eq. (20) is written in a finite difference form as follow;
\[
\frac{\partial^2 U_{v}^{i,j}}{\partial \xi^2} = \frac{U_{v}^{i+1,j} - 2U_{v}^{i,j} + U_{v}^{i-1,j}}{(\Delta \xi)^2} - \frac{sE_{v,v}}{M_{v,v}} U_{v}^{i,j} + sE_{v,v} \frac{U_{v}^{i,j+1} - U_{v}^{i,j-1}}{(\Delta \tau)^2}
\]

(32)

Here, a term such as \(U_{v}^{i,j} \) corresponds to the displacement of \(n^{th} \) fiber in the \(m^{th} \) layer, (at a distance \(\xi = i \Delta \xi \) from the center of \(n^{th} \) fiber) at time \(\tau = j \Delta \tau \), after the crack initiation. Similarly, the partial derivative of \(U_{v}^{i,j} \) with respect to the time may be written as;

\[
\frac{\partial^2 U_{v}^{i,j}}{\partial \tau^2} = \frac{U_{v}^{i,j+1} - 2U_{v}^{i,j} + U_{v}^{i,j-1}}{(\Delta \tau)^2}
\]

(33)

Using Eqs. (32) and (33), the differential – difference Eq. (21) may be written in a finite difference form as;

\[
\bar{U}_{v}^{i,j+1} = \frac{(\Delta \tau)^2}{M_{v,v}} \sum_{k=1}^{M \times N} \eta L_{k} \bar{U}_{v}^{i,j} - 2 \left(1 - \frac{sE_{v,v}}{M_{v,v}} \right) U_{v}^{i,j} + \frac{sE_{v,v}}{M_{v,v}} \frac{U_{v}^{i,j+1} - U_{v}^{i,j-1}}{\Delta \tau}
\]

(34)

Where;

\[
s = \left(\frac{\Delta \tau}{\Delta \xi} \right)^2
\]

Equation (34) expresses the displacement of \(i^{th} \) portion of \((m,n)^{th}\) fiber at the \((j+1)^{th}\) time step. Due to the presence of the terms \(U_{v}^{i,j} \) and \(U_{v}^{i,j-1} \), it is necessary to calculate the displacement of the corresponding portions of the fiber at the first two time steps \((j=1 \text{ and } j=2)\), using initial conditions [20].

Application of first forward difference to Eq. (23) leads into;

\[
P_{v}(\xi,0) = \frac{\partial U_{v}^{i,j}}{\partial \xi}(\xi,0) = \frac{U_{v}^{i+1,j} - U_{v}^{i-1,j}}{2 \Delta \xi} - 1
\]

(36)

Taking the advantage of symmetry in the laminate, the mid center displacement of all fibers at the first time step \((i=1)\) is equal to zero. This means that \(U_{v}^{(i,1)} = 0 \). Using this concept along with Eq. (36), displacements in all portions of fibers at the first time step \((j=1)\) are equal to;

\[
U_{v}^{(2,1)} = \Delta \xi \text{, } U_{v}^{(3,1)} = 2 \Delta \xi \text{, } \ldots \text{, } U_{v}^{(S_{v},1)} = (S_{v} - 1) \Delta \xi
\]

(37)

At the next time step, where crack initiation starts, displacements in other portions of each fiber may be obtained using Eq. (22). Using first forward difference, we have;

\[
\frac{\partial U_{v}^{(i,j)}}{\partial \tau}(\xi, \Delta \tau) = \frac{U_{v}^{(i+1,j)} - U_{v}^{(i,j)}}{\Delta \tau} = 0
\]

(38)

Hence, the displacement at the second time step \((j=2)\) may be written as;

\[
U_{v}^{(i,2)} = U_{v}^{(i,1)} \quad 1 \leq v \leq M \times N \quad , \quad 1 \leq i \leq S_{v}
\]

(39)

Using boundary condition (24), displacement in all intact fibers, at \(\xi=0 \), may be written as;

\[
U_{v}^{0,j} = 0 \quad (3 \leq j) \quad \text{&} \quad \left\{ \begin{array}{ll}
(n < f & n > r + f) \quad \text{&} \quad (f_{m} \leq m \leq l + f_{m}) \\
(1 \leq n \leq N) \quad \text{&} \quad (m < f_{m} \text{ or } m > l + f_{m})
\end{array} \right.
\]

(40)

Displacement of any broken fiber at any time \(\tau \), may be obtained using boundary condition (27). To write the first order derivative of \(U_{v,n} \) with respect to \(\xi \) at point \(i=1 \), the central difference is used instead.
This results into a truncation error with the order of \((\Delta \xi)^2\) as opposed to that of \((\Delta \xi)\) for the former. Hence, displacement in the second time step \((j = 2)\) is obtained as follows;

\[
P_v(0, \tau) = \frac{\partial \tilde{U}_v}{\partial \xi}(0, \tau) = \frac{\tilde{U}_v^{(2, j)} - \tilde{U}_v^{(0, j)}}{2\Delta \xi} = 0 \quad (3 \leq j) \quad \text{and} \quad (f \leq n \leq f + r \quad \text{and} \quad m = f_m)
\]

Upon proper substitution of the results from Eqs. (40) and (41) into Eq. (34), displacement in the intact and broken fibers at \(\xi_i = \Delta \xi\) may be written as;

\[
\tilde{U}_v^{1,j+1} = \frac{(\Delta \tau)^2 M_{v,v}}{1} \sum_{k=1}^{M_{v,v}} \frac{E_{v,k}}{M_{v,v}} \tilde{U}_k^{1,j} - 2 \left(1 - \frac{sE_{v,v}}{2M_{v,v}}\right) \tilde{U}_v^{1,j} + \frac{sE_{v,v}}{M_{v,v}} U_v^{2,j} - U_v^{1,j+1}
\]

\[
\left\{ \begin{align*}
(n < f \quad n > r + f) & \quad (f_m \leq m \leq l + f_m) \\
(1 \leq n \leq N) & \quad (m < f_m \quad m > l + f_m)
\end{align*} \right.
\]

\[
\tilde{U}_v^{1,j+1} = \frac{(\Delta \tau)^2 M_{v,v}}{1} \sum_{k=1}^{M_{v,v}} \frac{E_{v,k}}{M_{v,v}} \tilde{U}_k^{1,j} - 2 \left(1 - \frac{sE_{v,v}}{2M_{v,v}}\right) \tilde{U}_v^{1,j} + \frac{sE_{v,v}}{M_{v,v}} U_v^{2,j} - U_v^{1,j+1}
\]

\[
(f \leq n \leq f + r \quad f_m \leq m \leq l + f_m)
\]

Once displacements at the first two time steps \((j = 1, 2)\) are determined from Eqs. (38) and (39), from the third time step on, their magnitudes at any other point (except for the points in y-z plane of symmetry perpendicular to the direction of fibers, see Fig. 1), can be obtained using Eq. (37). The corresponding displacements in the mid layer are obtained from Eqs. (462) and (43).

By definition, stress concentration factor \(K_r\), is the ratio of the local load to that applied at infinity. Using this definition, along with the non-dimensional form of the applied load described in Eq. (24), one may solve for the instantaneous stress concentration in the laminate using the following equation.

\[
K_r = \frac{\partial U_m(f + r + 1)}{\partial \xi}(0, \tau) = \frac{U_m^{(2,j)}(f + r + 1) - U_m^{(1,j)}}{\Delta \xi}
\]

The maximum value of \(K_r\) for any crack size is called dynamic stress concentration \(K_d\). The ratio of \(K_d\) to that of its static value \((K_s)\) is called dynamic overshoot \(\eta_r\). Similar procedure may be adapted to solve Eq. (21).

6. Results and discussion

Using MATLAB programming language, displacement fields in each fiber, at the onset of fiber breaks is obtained at each time step. This process is continued till static equilibrium is reached within each filament. The mechanical properties of each lamina use in analysis are given in Table 1.

<table>
<thead>
<tr>
<th>Material</th>
<th>(E_f) (GPa)</th>
<th>Density, (\rho) (kg/m(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphite fiber (HM)</td>
<td>250</td>
<td>13.8</td>
</tr>
<tr>
<td>Glass fiber type S (LM)</td>
<td>86</td>
<td>24.4</td>
</tr>
</tbody>
</table>

6.1 Single type fiber laminate

To deduce the results on a non-hybrid composite (a laminate with a single type fiber), the ratio of LM to HM stiffness, namely \(R\), as well as \(Q\) (or the ratio of mass per unit length), is set equal to 1. To check the accuracy of the results based on present work, M or the total number of layers was set equal to 1. The deduced results for a non-hybrid composite lamina are then compared to those presented by Hedgepeth in...
Ref. [5]. Fig. 5 shows the effect of crack size (number of broken fibers) on dynamic stress concentration in the lamina at the transient time. The total number of fibers in the lamina is assumed to be 25. Here, crack emanates from center fiber and is normal to the filaments. The results in Ref. [5] are only presented for \(r \) (total number of broken fibers) up to 3. A close match is observed between the two cases.

![Figure 5](image)

Fig. 5. The effect of crack size on dynamic stress concentration in the first intact fiber bonding the crack tip in lamina.

To further expand the results to a laminate with 21 layers, it is assumed each layer is composed of 25 filaments. Furthermore, a square arrangement is postulated for the fibers while it is assumed the crack emanates in the mid layer and moves symmetrically toward the edges. According to Fig. 6, for a sudden crack with \(r = 5 \), maximum dynamic stress concentration occurs in the intact fiber embedded in the first intact layer (on the top or bottom of the cracked layer), within a fiber next to the center of the crack. This value reads to be \(K_d = 1.53 \). Simultaneously, the dynamic stress concentration at the first intact fiber bounding the crack tip happens to be \(K_d = 1.30 \). Compared to static stress concentration, this shows 18\% and 7.5\% increase (\(K_s = 1.30 \) and \(K_s = 1.21 \) for the two named fibers).

![Figure 6](image)

Fig. 6. Dynamic stress concentration in the intact layers bonding the crack for a square arrangement of fibers.
The effect of crack location on dynamic overshoot is shown in Fig. 7. It is observed that cracks in the first layer (top or bottom) can increase the dynamic stress concentration by almost 7%. Cracks further away from these two layers have no effect on K_d.

Fig. 8 represents the effect of crack sizes on maximum dynamic stress concentration in the laminate. According to this figure, as r increases, the dynamic overshoot reaches a steady value of 1.17. Fig. 9 shows similar behavior for a hexagonal arrangement of fibers as crack size increases. Except that for small cracks, the dynamic overshoot seems to be smaller. As the number of broken fibers (crack size) increases, the dynamic overshoot reaches a steady value of 1.17.
Fig. 9. The effect of crack size on dynamic stress concentration in the intact fiber adjacent to the middle broken fiber (hexagonal arrangement of fibers).

Table 2 compares the results obtained on dynamic and static stress concentration within a lamina, and that of a laminate with both hexagonal and square arrangements. Here it is assumed that M=20 and N= 25. It is realized that for the same crack size, the peak dynamic stress in a lamina is more that predicted within a laminate. For example, for r=3, the value of dynamic stress concentration within a lamina is almost 1.5 times larger than that of a laminate. Examining the results on this table reveals that except for r=1, the magnitudes of dynamic stress concentrations for moderate crack sizes are higher in a hexagonal arrangement, as compared to those of square arrangement. For large crack sizes, the results seem to be the same.

Table 2. Comparisons of the dynamic and static stress concentration factor in a lamina and a single type composite Laminate.

<table>
<thead>
<tr>
<th>r</th>
<th>Lamina</th>
<th>Square array laminate</th>
<th>Hexagonal array laminate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_d</td>
<td>K_s</td>
<td>K_d</td>
</tr>
<tr>
<td>1</td>
<td>1.53</td>
<td>1.33</td>
<td>1.26</td>
</tr>
<tr>
<td>2</td>
<td>1.91</td>
<td>1.60</td>
<td>1.35</td>
</tr>
<tr>
<td>3</td>
<td>2.2</td>
<td>1.83</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>2.03</td>
<td>1.50</td>
</tr>
<tr>
<td>5</td>
<td>2.70</td>
<td>2.22</td>
<td>1.53</td>
</tr>
<tr>
<td>6</td>
<td>2.94</td>
<td>2.39</td>
<td>1.53</td>
</tr>
<tr>
<td>7</td>
<td>3.15</td>
<td>2.55</td>
<td>1.54</td>
</tr>
<tr>
<td>8</td>
<td>3.35</td>
<td>2.70</td>
<td>1.54</td>
</tr>
</tbody>
</table>

6.2 Hybrid laminate
To obtain the effect of a sudden crack on dynamic stress concentration in a hybrid composite laminate, the following properties on table 1 were used for the fibers. For the hybrid laminate, "R", or the ratio of LM to HM fiber extensional stiffnesses is set equal to 0.33. This assumption holds true for a hybrid composite with intermingled glass (as LM) and graphite (as HM) fibers.

6.2.1 Square arrangement of fibers
To deduce the results presented on Figs. 10 and 11, it has been assumed that M=20 and N=25. The crack cuts through one layer and emanates from a HM fiber at the center while bonded by a HM fiber at its tips.
For a square arrangement, this means that a LM fiber experiences the peak stress concentration which takes place in middle of the layer above the crack. According to Fig. 10, for breaks more than 3 fibers, there appears to be no change in peak dynamic stress concentration.

![Fig. 10. The effect of crack size on dynamic stress concentration at the crack tip due to a sudden crack in hybrid laminate with square arrangement.](image)

According to Fig. 11, for the same crack sizes, the peak dynamic stress concentration in the top layer adjacent to the crack is much higher than that at the crack tip. This behavior was also observed in a laminate with single type fiber. The peak dynamic overshoot in LM fibers, as compared to that of a single type fiber, increases as the laminate is hybridized. For example, according to table 1, for \(r = 5 \), the peak dynamic stress concentration in the first top layer (adjacent to the crack) is 1.52, while Fig. 11 shows a value of 2.14. This corresponds to 29% increase in \(K_d \).

![Fig. 11. The effect of crack size on peak dynamic stress concentration on the crack top layer due to a sudden crack in the hybrid laminate with square arrangement.](image)

We now consider a case in which crack emanates in a LM layer. In this case, the top and bottom layers are composed of HM fibers. The results for this case are shown in Figs. 12 and 13. The results on Fig. 12,
correspond to peak dynamic overshoot value of 1.33 at the crack tip, while according to Fig. 13, a value of 1.22 is obtained the top or bottom layer. This shows an increase of 8.3% in dynamic stress concentration. Hence, hybridization effect tends to even out peak dynamic overshoot within the laminate. According to Fig. 14 an increase in volume fractions ratio \(V_m/V_f \) only advances the occurrence of peak \(K_r \) without changing its magnitude. Also, for cracks emanating at the first top layer, the peak value of \(K_r \) shows a higher value compared to that of an inner crack. For example, according to Fig. 15, for a square arrangement, for a surface crack with \(r = 1 \) (crack at the first top layer), the peak value of \(K_r \) is 1.35 while for inner cracks (cracks at the second or any other inner layer) a constant peak value of 1.26 is obtained.

![Fig. 12. The effect of crack size on dynamic overshoot in the first intact LM fiber at the crack tip for a hybrid composite laminate.](image12)

![Fig. 13. The effect of crack size on dynamic overshoot in the intact HM fibers in the top layer adjacent to the crack in the hybrid composite laminate.](image13)
Fig. 14. The effect of volume fractions ratio on dynamic stress distribution.

6.2.2 Hexagonal arrangement of fibers

According to Figs. 15-18, similar behavior is observed for hexagonal arrangement of fibers. Figs. 15 and 16 show the dynamic stress concentration at the crack tip and the top layer adjacent to the crack respectively. Here, the crack initiates from a HM layer. Comparison of the results in Figs. 15 and 10 reveals that the dynamic stress concentration at the crack tip is less for hexagonal arrangement of fibers. This reduction is almost 7.5% at \(r=5 \). Also, a close comparison of Figs. 16 and 11 reveals that this behavior occurs for smaller cracks.

Figs. 17 and 18 show similar behavior where the cracked layer is composed of LM fibers. Fig. 17 shows the dynamic stress concentration at the crack tip while in Fig. 18, the deduced values correspond to those at the top layer adjacent to the cracked layer.

Fig. 15. The effect of crack size on dynamic stress concentration in HM fibers at the crack tip due to a sudden crack in hybrid laminate with hexagonal arrangement.
Fig. 16. The effect of crack size on dynamic stress concentration in the top layer adjacent to the crack due to a sudden break in the HM layer with hexagonal arrangement of fibers.

Fig. 17. The effect of crack size on dynamic stress concentration in LM fibers at the crack tip due to a sudden break in hybrid laminate with hexagonal arrangement.
7. Conclusion

The effect of a sudden crack initiation both in a single type and hybrid unidirectional laminate was studied in this research. The values of dynamic stress concentrations were deduced and compared to those of a lamina. Also, the peak stress concentration during transition time for fibers to reach static equilibrium was calculated and compared with those of static values. The effect of fiber arrangement on dynamic overshoot as well as edge effect is also examined. According to the results, for similar crack sizes, the values of static stress concentrations in a lamina are much below those obtained in a laminate. For example, for three broken fibers, the dynamic stress concentration has a value of $K_d = 2.2$ in the lamina, while for a laminate a value of $K_d = 1.47$ is obtained. Moreover, for small cracks, a laminate (with 20 layers and 25 fiber in each layer), with square arrangement of fibers results into higher values of dynamic stress concentration. For larger crack sizes, the results obtained for the two arrangement of fibers seems to be the same. Furthermore, the peak stress concentration during transient time is higher (50%, for $r = 3$) in a lamina as compared to those of a laminate. Results show that for a single type fiber, the peak static and dynamic stress concentrations within a laminate, with an inside crack, occur at the top or bottom layer bounding the cracked layer. For a laminate with a surface crack (crack at the top or bottom layer) the dynamic stress concentration is increased (for $r = 1$, the increase is about 18%). Moreover, any increase in the ratio of volume fraction V_m/V_f only advances the occurrence peak values of K_r. As a single type laminate is hybridized, the layers with LM fibers bounding the cracked layer, experience more stress concentrations. The opposite is true, if the cracked layer is composed of HM fibers. Here, hybridization tends to even out the dynamic stress concentration within the laminate. For a crack initiating in a LM layer, the peak dynamic overshoot occurs at the crack tip. Due to size of the resulting crack, the peak stress concentration can either take place in the layer adjacent to crack or at the crack tip.

Acknowledgment

“The authors wish to thank the Ahvaz Branch, Islamic Azad University for the financial support. The authors would like to thank all the editors and reviewers for their comments in the development and improvement of this paper.”
References

