Composite Materials
A. Ghaznavi; M. Shariyat
Abstract
Studying the behavior of sandwich panels is very important due to their widespread use in different industries. Therefore, over the past decades, various theories have been proposed to study the behavior of these panels. In this paper a higher order global-local theory with 3D equilibrium-based corrections ...
Read More
Studying the behavior of sandwich panels is very important due to their widespread use in different industries. Therefore, over the past decades, various theories have been proposed to study the behavior of these panels. In this paper a higher order global-local theory with 3D equilibrium-based corrections is presented to study behavior of thick and thin sandwich plate with flexible and auxetic core. In addition to correcting the results with 3D elasticity equations, another important advantage of the presented theory is the ability to consider the transverse core deformation of the sandwich panels. It should be mentioned that to study the behavior of thick sandwich panels, especially with soft core, the existence of this feature is very necessary and has a great effect on the accuracy of the obtained results. Comparison of the obtained results with those existing in valid references showed that the formulation of the provided finite element had a very good accuracy even for thick and thin sandwich plates. Finally, the effect of different material and geometrical parameters on the behavior of sandwich plates are carefully investigated using the presented theory.
Composite Materials
Aidin Ghaznavi; Mohammad Shariyat
Abstract
In the present article, the dynamic behavior of sandwich plates with embedded shape memory alloy (SMA) wires is evaluated for two cases wherein (i) the stress-strain curve of the superelastic behavior of the SMA wires is symmetric and (ii) the mentioned curve is non-symmetric. A modified version of Brinson’s ...
Read More
In the present article, the dynamic behavior of sandwich plates with embedded shape memory alloy (SMA) wires is evaluated for two cases wherein (i) the stress-strain curve of the superelastic behavior of the SMA wires is symmetric and (ii) the mentioned curve is non-symmetric. A modified version of Brinson’s constitutive model is proposed and used. The high non-linearity in the behavior stems from the SMA wires embedded in the sandwich plate. In this regard, in addition to the proposed advanced algorithm for the determination of the martensite volume fraction, a Picard iterative solution algorithm is used in conjunction with Newmark’s numerical time integration method for solving the resulting finite element equations. To improve the accuracy of the results, the variation of martensite volume fraction and material properties of individual points of the structure are updated continuously. Therefore, the kinetic equations of the phase transformation of the SMA are coupled with the motion equations, to accurately model the nonlinear behavior of the sandwich plate. For analysis of the thick sandwich plate, a higher-order global-local theory with novel 3D-equilibrium-based corrections is utilized. One of the features of this theory is the estimation capability of the nonlinear in-plane displacement components, and precise assessment of the transverse shear stresses through satisfying the continuity conditions of the shear stresses at the interfaces between layers. Another advantage of the proposed theory in comparison with the conventional approaches is the ability to simulate changes in the core thickness. This is especially important in cases where the core is relatively thick or soft.