Manufacturing Processes
Sachin Ghalme; Yogesh Bhalerao; Kamlesh Phapale
Abstract
Composite materials have proven their applicability for various structural components. Excellent properties of glass fiber reinforced plastic (GFRP) composite materials have presented GFRP composites for potential applications in aerospace and automobile-related industries. Drilling is an important operation ...
Read More
Composite materials have proven their applicability for various structural components. Excellent properties of glass fiber reinforced plastic (GFRP) composite materials have presented GFRP composites for potential applications in aerospace and automobile-related industries. Drilling is an important operation for composite structures during final assembly. This paper investigates the factors affecting delamination in GFRP composite during the drilling process. Drill speed and feed rate are selected two parameters affecting delamination during the drilling process. The response surface methodology approach has been used for experimental design and analysis of variance. Delamination was evaluated at the entry, middle, and exit positions of the hole. An attempt has been made to optimize the speed and feed rate for minimization of delamination at the three positions using grey relational analysis. The results of this work will help in selecting an optimum level of speed and feed rate to minimize delamination at the entry, middle, and exit positions of the hole to improve quality of the drilled hole.
Manufacturing Processes
R. Arokiadass*; K. Palaniradja; N. Alagumoorthi
Abstract
Metal matrix composites have been widely used in industries, especially aerospace industries, due to their excellent engineering properties. However, it is difficult to machine them because of the hardness and abrasive nature of reinforcement elements like silicon carbide particles (SiCp).In the present ...
Read More
Metal matrix composites have been widely used in industries, especially aerospace industries, due to their excellent engineering properties. However, it is difficult to machine them because of the hardness and abrasive nature of reinforcement elements like silicon carbide particles (SiCp).In the present study, an attempt has been made to investigate the influence of spindle speed (N), feed rate (f), depth of cut (d) and various %wt. of silicon carbide (S) manufactured through stir cast route on tool flank wear and surface roughness during end milling of LM25 Al-SiCp metal matrix composites. Statistical models based on second order polynomial equations were developed for the different responses. Analysis of variance (ANOVA) was carried out to identify the significant factors affecting the tool flank wear and surface roughness. The contour plots were generated to study the effect of process parameters as well as their interactions. The process parameters are optimized using desirability-based approach response surface methodology.