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Article info: Abstract 

The present work deals with the effect of an external circumferential elliptical 

crack located at the thickness transition on a varied stepped diameter pipe. The 

purpose is the application of extended finite element method (XFEM) for the 

calculation of stress intensity factor (SIF) at the thickness transition region of 

the pipe considering internal pressure and comparing the effect of the crack 

between pipes straight and with thickness transition. To model a crack precisely, 

enrichment, enrichment functions are used to enrich the displacement 

approximation, the level set functions are calculated from the crack mesh, and 

the definition of the strategy of integration is performed. A comparative study 

is made on the SIF of the crack defect in straight pipe compared to one with 

thickness transition using XFEM for the variation of the crack and pipe 

geometrical parameters. The result shows that the XFEM is an effective and 

practical tool for elliptic crack modeling in a pipe with thickness transition 

because a crack is easily modeled through enrichment functions. The 

comparison of the SIF of a similar defect between pipes shows that a pressurized 

pipe with thickness transition is more sensitive to the used cracks. 
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1. Introduction

The stress intensity factor (SIF), K, is used in 

fracture mechanics to describe the stress state at 

a crack tip. The SIF is usually applied when 

elastic behavior is studied, and it helps to get the 

failure criterion for materials [1, 2]. There are 

theoretical methods applied to study fracture in 

different structures and materials. Several 

researchers [3-7] studied cracking in the 

piezoelectric half–plane as well as functionally 

graded materials (FGM). Numerical methods 

like the finite element method (FEM) are also 

used to solve the crack problem [8-10].  

In the field of pressurized equipment, 

Bergman [11] and Hariri [12] used the FEM to 

evaluate the SIF of a semi-elliptical crack in the 

cylindrical and spherical shells. The French 

commissariat for atomic energy and alternative 

energies (CEA) [13] developed the software for 

calculating finite element structures. Castem 

[14] and CEA [13,15] launched studies on

uniform thickness pipes containing internal and

external circumferential cracks.
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The FEM is usually applied to solve fracture 

problems; however, it has some limitations, for 

example; it requires large computer memory and 

high computational time to obtain intended 

results [15]. Also, it remains limited in terms of 

modeling crack growth, mainly due to the 

incremental remeshing of the crack. 

Different methods were developed to furnish an 

efficient alternative than FEM. Hence, the 

extended finite element method (XFEM), which 

was inspired by the partition of the unit finite 

element method (PUFEM) [16], was introduced 

by Belytschko et al. [17] to model the growth of 

elastic cracks. Sukumaret et al. [18] and Song et 

al. [19] extended the XFEM to the 3D domain, 

and Stolarskaet et al. [20] proposed the coupling 

between the Level set method (LSM) and XFEM 

to investigate the problem of cracks. 

In the XFEM, the presence of discontinuous 

functions in an element requires a specific 

integration strategy to describe the crack. The 

integration strategy, which consists of cutting 

the enriched elements into sub-

triangles, proposed by Moës et al. [21]. They 

applied it to the triangles, a standard integration 

scheme, which introduces a modification of the 

integration support for the element containing 

the crack. Samaniego et al [22] used this method 

in the case of a material with nonlinear behavior 

for shear band modeling. But this method does 

not ensure the conservation of energy around the 

crack tip. In order to maintain this energy Prabel 

et al. [23] proposed using the standard quadratic 

for the elements sufficiently far from the crack 

tip and the sub-quadrangles elements near the 

crack, for an effective advance of the crack. They 

defined the level set on a finer intermediate grid 

not connected to the mesh. This integration 

strategy and level set definition allow a good 

result convergence. 

In the field of pressurized equipment, X. Sun et 

al. [24] made an application of XFEM to study 

the fracture of a reactor pressure vessel exposed  

to thermal shock loading. K. Sharma et al. [25] 

used XFEM to evaluate the  SIFs  of semi-

elliptical cracks in a pipe and pipe bend. 

However the numerical modeling of elliptical 

cracks in the pipe with thickness transition using 

XFEM was not treated before. Using the 

FEM, CEA handled a study on cylinders with 

thickness transition [26]. These pipes correspond 

to a connection of two pipes of the same 

inner diameter, but with different thicknesses 

[27]. Those structures were subjected to 

circumferential cracks at the base of the 

thickness transition. Those defects were 

modeled as the cracks located in a pipe of 

uniform thickness. Using the FEM, P. Delliou 

[26] studied a pipe with thickness transition 

containing axi-symmetric crack subjected to 

tensile stress and/or thermal shock. A. Saffih and 

Hariri [27] extended the study to semi-elliptic 

crack considering bending moment and tensile 

stress. In [26, 27], it was shown that, for an 

elastic material, the transition zone is the 

weakest position of the whole pipe. However, 

comparing the effect of the crack between a 

straight pipe and the one with thickness 

transition was not treated Using XFEM. Also, 

taking account of internal pressure was required 

to complete the work in [26, 27].  

The purpose of the present study is the 

application of XFEM to evaluate the effect of an 

external elliptical crack on a varied stepped 

diameter pipe located at the thickness transition. 

A study with a numerical simulation software 

[14] is performed considering internal pressure. 

The SIF of an elliptical crack in the thickness 

transition is calculated using XFEM, then a 

comparative study of SIF is made between 

straight and with thickness transition pipes.  
 

2. Calculation of the SIF, (K) 
 

In the study of the elastic behavior 

of materials, the K is given by the following 

equation [28]: 

 

  𝐾 = ℬ𝜎√𝜋𝑎                                  (1)                                
 

where 𝑎 is the crack depth, σ is the tensile stress 

applied on the crack surfaces, and  ℬ is a 

dimensionless quantity that depends on the 

load, crack size, and geometry. 

Most of the cracked structures are evaluated by 

K, which can be calculated by various theoretical 

methods, for example, calculation of the K by G- 

theta method. This method was used in the 

Cast3M code [14] for calculation of energy 

restitution rate G which allows the computation 

of K by Eq. (2). 
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G=
(1−𝑣2 )𝐾2

𝐸
  mode I, in plane strain             (2)                                 

 

In this equation, G is the energy release rate, 

which presents the energy needed to advance the 

crack at a unit length. G is calculated by the 

following equation: 

    

G=∫ (−
1

2
𝑇𝑟[σε(u)]. 𝑑iv (θ) + Tr [(σε(u) +

𝛺

grad(θ))])dΩ                                                (3) 

 

where θ is a field of displacement parallel to the 

plane of the crack and normal to the front. It is a 

constant in an area 𝛤 surrounding the crack tip. 

𝛤 is a contour of the domain Ω which is called 

integration contour (Fig. 1), u is the 

displacement vector, and σ and ε are stress and 

strain, respectively. 

 

3. XFEM methodology 

3.1. XFEM formulation 
 

In XFEM, the standard finite element 

approximation is locally enriched to 

discontinuities modeling. At a particular node of 

interest 𝑥𝑖, the displacement approximation U 

can be written as [21]: 
 

U(x) =∑ 𝑁𝑖(𝑥)𝑢𝑖 +𝑖∈𝑁 ∑ 𝑁𝑖(𝑥)(𝐻(𝑥) −𝑖∈𝑁𝑑

𝐻(𝑥𝑖))𝑎𝑖+∑ [𝑁𝑖(𝑥)(∑ (𝛽𝛼(𝑥) −4
𝛼=1𝑖∈𝑁𝑝

𝛽𝛼(𝑥𝑖))𝑏𝑖
𝛼) ]                                                  (4) 

 

where: 

𝑁𝑖(𝑥): standard finite element (FE) function of 

node i, 

𝑢𝑖: unknown standard finite element (FE) part at 

node i,  

N: set of all nodes in the domain, and 

𝑁𝑑 ϲ N: a nodal subset of the enrichment  

Heaviside   function  H(x) , which is defined for 

those  elements which are entirely cut by the 

crack surface: 
                                                                    

H(x)=
1 𝑖𝑓   ӽ(𝑥)   > 0
−1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                    (5)                                   

 

where ӽ(𝑥) is the level set function. 

ai : unknown enrichment H(x) at node i, these 

nodes are surrounded by a square in Fig. 2. 

Np ϲ N: nodal subset of the enrichment 𝛽𝛼(𝑥) 

defined for those elements which are partly cut 

by the crack front, four enrichment functions are 

used [29]: 

     

{𝛽𝛼(r ,θ)}={𝛽1,𝛽2,𝛽3,𝛽4}={√𝑟sin(θ/2),√𝑟cos (

θ/2),√𝑟sin(θ/2)sin(θ),√𝑟cos (θ/2)sin(θ)}                                                                     

(6) 

 

bi: unknown enrichment 𝛽𝛼(𝑥) at node i; these 

nodes are surrounded by a circle in Fig. 2. 
 

3.2. Numerical integration 
 

For an accurate integration, the most 

used approach in industrial calculation codes, 

including Castem [14], is to split the initial 

element into several sub-elements, each 

containing several Gauss points. For example, 

for a quadrangle element in 2 dimensions, the 

element must be sub-cutted into (4 × 4) sub-

elements, each contains 4 Gauss points, as 

illustrated in the Fig. 3. 

 

 
Fig. 1. Example of θ field in 2 dimensions. 

 

 
Fig. 2. Description of the enrichment strategy. 
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Fig. 3. Regular sub-division of a quadrangle 

element. 

 

 

 

 

Note 1: 

This method allows to have a good precision, 

nevertheless, it is expensive in terms of time 

because it does pass the number of Gauss points 

from 4 to (4 × 4 × 4 = 64) for a 2 dimensions 

quadrangle and from 8 to (8 × 8 × 8 = 512) for 

the integration of the 3 dimensions cubes.  

 

3.3. Level sets definition 

 

In the present paper, the definition of the level 

sets is performed by calculating their 

values from the crack mesh that is to say from a 

crack mesh.                                  
 

 

 

 

 

 
Fig. 4. (a) Representation of a crack with level sets; and (b) normal (φ) and (c) tangential (ψ) level sets. 
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Fig. 5. (a) Cracked half–pipe with thickness transition and (b) meshing of elliptical crack. 

 

The normal level set and tangential level set are 

defined from the crack front and crack lip (see 

black bow in Fig. 5(b)), respectively. The 

normal level set φ gives the distance of a point 𝑥 

to the surface of the crack, and the tangential 

level set ψ gives the distance of a point 𝑥 to the 

crack tip. These level functions define the crack 

as follows (Fig. 4): 
 

                             x𝜖crack⇒
φ(x) = 0  

ψ(x) ≤ 0 
with(|∇ψ|=|∇φ|=1)         (7) 

 

Note 2: 

- This technique models the entire crack 

independently of the mesh. 

- In FEM modeling, the works [12, 15, 27] are 

based on a block of a semi-elliptical crack with a 

complex geometry, whereas in XFEM 

modeling, the crack is easily modeled due to 

enrichment functions. 

The pipe is symmetric, and in order to minimize 

the computation times, only a half-pipe with 

thickness transition is modeled (Fig. 5). The 

meshing contains 2350 XFEM XC8R elements 

with 512 Gauss points in block crack; the size 

of the element in the crack is 0.15. For the rest of 

the mesh, 14950 elements, standard CUB8 with 

8 nodes are used (Fig. 5(a)). 

The pipe thickness variations are generally 

located at the outlet of reservoirs (valves). For 

the boundary conditions, the translation and the 

rotation according to the axes 𝑢𝑦 and 𝑢𝑧 are  

blocked at the  end  of the thicker  part of the pipe  

and in the places of symmetry (red zone 

Fig.5(a)). 

 
4. Geometry and loading 
 

In the present study, the elastic behavior of the 

material, P265GH steel which is especially used 

in pressure equipment, is considered. Some 
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properties of this steel are summarized in Table 

1. The study deals with straight pipe (t) and pipe

with thickness transition (t, t2) (Fig. 6).

Pressurized pipe with thickness transition is a

connection between pipes of thickness t

assembled to another pipe of thickness t2 (t2 > t)

where the transition length respects the

following equation:

𝑙 ≤0.2√(2 ∗ 𝑅𝑖 + 𝑡2))   (8)                                                   

where: 

t2: thickness of the thick part of the pipe (Fig. 6 
a), 

t: thickness of the straight pipe (thin side of the  

pipe with thickness transition) (Fig. 6). 

𝑙: transition length. 

Ri: inner radius for both the pipe straight and 
with a thickness transition. 

Elliptical cracks are considered to be located at 

the base of the transition in the thin part of the 

pipe (Figs. 6 and 8). A pipe with a slope of 30° 

and a fraction (𝑡2 / t) = 1.5 (Fig. 6), presents the 
gravest case of pipe encountered in the industry 

[27]. 

Table 1. Properties of P265GH steel. 

E 

( GPa) 

σ

(MPa) 
v 

σu

( MPa) 

f 
(MPa) 

200 320 0.3 470 148 

Fig. 6. The geometry of pipes: (a) pipe with thickness 

transition and (b) straight pipe. 

The geometries of the pipes considered are 

defined by  dimensionless  parameters: 

- The fraction of thickness t on the inner radius

of the pipe: (t/Ri).

- Shape parameter defining elongation of the

elliptical crack: (a/c).

- The depth of the defect standardized by the

thickness of the tube: (a/t).

In the present work, the thickness of the pipe is t

= 35 mm, the t value must respect the

range12 𝑚𝑚 ≤ 𝑡 ≤ 80 𝑚𝑚[30]. Three types of

pipes are modeled:

- Thick pipe, in which t/Ri=1/2 with 24 𝑚𝑚 ≤
Ri ≤ 160 𝑚𝑚.

- Pipe with average thickness, in which

t/Ri=1/10 with120 𝑚𝑚 ≤ Ri ≤ 800 𝑚𝑚.

- Thin pipe, in which t/Ri=1/100

with 1200 𝑚𝑚 ≤ Ri ≤ 8000 𝑚𝑚.

The parameter a/c takes values 1, 1/2, 1/4, and

1/8. The parameter a/t takes values 0.1, 0.2, 0.4,

0.6 and 0.8.

The above considerations give a set of 60

geometries.

The construction of pressurized equipment is

subjected to the code for the construction

of unfired pressure vessels (CODAP) [31]. This

is a French construction code, translated into

English.

Pipes are subjected to an internal pressure P (Fig.

7). To compare the SIF of the elliptical crack

defect in the straight pipe compared to one with

thickness transition, internal pressure is

calculated on the thin side   (thickness t) of the

pipe (Fig 6(a)), P is calculated according to

CODAP (C2.1.4.2) [31] by the following

equation:

𝑃=
2 𝑓×𝑡 ×𝑧

𝐷𝑚
       (9)    

where : 

z: welding coefficient, for an exceptional 

situation of service or resistance test, z = 1. 

𝐷𝑚 =  Re +  Ri: inner diameter of the pipe.

Ri and Re are respectively inner and outer radius

of thin pipe where Re= t+Ri; so, the Eq. (9)

becomes: 

P (Ri/t)= 
2 𝑓

2(
𝑅𝑖
𝑡

)+1
with  Ri/t={2,10,100}.  (10)

Elliptical 

crack 

Elliptical 

crack 
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The pressure, therefore, decreases with the 

reduction of the parameter (t / Ri). In order to

compare the SIF between the different pipes, the 

internal pressure must be single and calculated in 

the thin pipe (t / Ri = 1/100); so P=1.4MPa. This

internal pressure value for three types of pipes 

respects the CODAP recommendations [31] and 

does not cause plastic behavior. 

To model the defect in an infinite structure and 

in order for the boundary conditions at the level 

of the crack not to create any effect or the 

disturbance, the half-length (
𝐿

2
) must be 

respected as the following equation [15]: 

𝐿

2
≥ max (4√(𝑡 × 𝑅𝑚)

, 10t)        (11) 

with   𝑅𝑚 =
(𝑅𝑒+𝑅𝑖)

2

Considering the value of L equals to the pipe 

perimeter value (Eq. 12), L is sufficiently large 

to ensure crack modeling in an infinite structure 

(Fig. 8): 

𝐿

2
=π𝑅𝑒 with   𝑅𝑒=𝑅𝑖+t       (12) 

5. Results and discussion 
5.1. Castem presentation

Cast3M (Castem) [14] is a numerical simulation 

software used in structural mechanics and 

developed by the Department of Modeling 

Systems and Structures of the French 

Commissariat for Atomic Energy and 

Alternative Energies (CEA) [13]. It uses the 

FEM to solve different types of scientific 

problems. The calculation in Castem is done as 

follows: 

1) Choice of the geometry and the mesh:

definition of the points, lines, surfaces… and

choice of the type of mesh.

2) Definition of the mathematical and physical

model: data characterizing the model, material

properties, boundary conditions, initial

conditions.

3) Resolution of the problem: computation of

stiffness and mass matrices, assembly,

application of the loadings, and resolution.

4) Analysis and post-processing of the results.

5.2.  Calculation of the K in pipes straight and 

with thickness transition: XFEM model 

verification 

The Castem2016 software [14] is used for 

modeling and calculation. It uses G_theta 

method for calculating the integral J (G in 

elasticity) along the crack front (Eqs. 2 and 3). 

The position of a point P on the crack front is 

defined by the angle 𝜑(°) (Fig. 9). 𝜑  takes the 

value of 90° at the deepest point (D) and 0° at the 

surface point (S). 

Fig. 7. Pipe with thickness transition: (a) subjected to 

internal pressure and (b) Vonmises stress. 

Fig. 8. Cracked pipe with thickness transition 

(elliptical circumferential crack). 
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Fig. 9. Definition of angle 𝝋 (°). 

The semi-elliptical crack is characterized by two 

particular points: the deepest and the surface 

points (Fig. 9). In general, the evaluation of K at 

these two points is enough to judge the severity 

of the defect. The average value of K at these 

points [15] is given by Eqs.13 and 14 (Fig. 10): 

 

 𝐾𝑎𝑣𝑒𝑟𝑎𝑔𝑒=
1

5
 (4 𝐾𝑝𝑜𝑖𝑛𝑡 2  +𝐾𝑝𝑜𝑖𝑛𝑡 3)   

 in surface                                                   (13) 

  𝐾𝑎𝑣𝑒𝑟𝑎𝑔𝑒= 
1

6
 ( 𝐾𝑝𝑜𝑖𝑛𝑡 4 +4 𝐾𝑝𝑜𝑖𝑛𝑡 5+𝐾𝑝𝑜𝑖𝑛𝑡 6)  

in depth                                                       (14)     

 

Eqs. (13 and 14) result from the oscillations 

obtained by the finite element calculation when 

quadratic elements are used. The value of the 

weighting coefficients comes from the 

integration of the interpolation functions 

associated with each node of the quadratic 

segment. The point (1) on the surface presents an 

additional difficulty of calculation of K. This 

problem could come from the difficulty of 

defining the field of virtual displacement 𝜃 on 

the surface for calculating the energy release rate 

G (Eq. 3). Also the important gradient of stress 

at a point 1 gives divergent results. For more 

security, this point is not taken into account [15]. 

 

 

 
Fig. 10. Definition of average values on the element 

[15]. 

The Commissariat for Atomic Energy and 

Alternative Energies (CEA) [13] has launched 

studies on uniform thickness pipes containing 

external circumferential cracks, based on the 

FAM. CEA [13, 15] calculates the influence 

factor i0: 

 

i0=
K

PRi
2

(Re
2−Ri

2)
√πa

   for an external circumferential 

crack                                                               (15) 

 

where P is the calculation pressure and K is the 

SIF calculated by the G – Theta method. 

Influence function (i0) is evaluated for an 

elliptical crack in a straight pipe, the verification 

of the model is made by the comparison of the 

values of i0 with the literature [11, 15]. 

i0 is calculated by XFEM for all the fractions of 

t / 𝑅𝑖, a / c and a / t at S and D points (Fig. 9). 

Tables 2 and 3 show a sample of the comparison 

of the results of i0 at S and D points calculated 

by XFEM and i0 calculated by Bergman and 

CEA [11, 15]. The relative error is calculated 

according to the Eqs. (16 and 17): 

 

  e1=100×|
(𝑖0𝐶𝐸𝐴–𝑖0𝑋𝐹𝐸𝑀 )

𝑖0𝐶𝐸𝐴
|                             (16)                                                      

  e2= 100× |
(𝑖0𝐵𝑒𝑟𝑔𝑚𝑎𝑛–𝑖0𝑋𝐹𝐸𝑀 )

𝑖0𝐵𝑒𝑟𝑔𝑚𝑎𝑛
|                   (17)         

                                           

The comparison of the values shows that the 

relative errors e1is between 0 % and 0.7% and e2 

is between 0 % and 1.3%, so there is a good 

concordance between results and the value 

reported in Refs. [11] and [15].  
Figs. 11-16 show the comparison results of 𝑖0 

respectively at D and S points calculated by 

XFEM  and  𝑖0 calculated by CEA [15], for all   

fractions of (a/t) ,(a/c), and (t/𝑅𝑖). 𝑖0 is also 

calculated along the crack front for all fractions 

of (a/t), (t/𝑅𝑖) and (a/c), and some comparison 

results are evaluated in Fig. 17. 
The relative error between the XFEM results and  

literature is between 0.09% and 0.7%. There is a 

good concordance between the results and the 

value reported by Refs. [11] and [15]. This gives 

a confirmation for using the numerical 

simulation based on XFEM to investigate the 

SIF at a thickness transition of pressurized pipe. 

D (Deepest point) 

S (Surface point) 
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Table 2. Comparisons of 𝐢𝟎 in the present study with the literature, Refs. [11] and [15], for different   a/t, a/c,
and t/Ri at the D point.

a / t a/c t/Ri i0 _Bergman [11] i0 CEA[15] i0_XFEM e1(%) e2 (%)

0,2 1 1/5 0,661 0,657 0,656 0,8 0,2 

0,8 1 1/5 0,69 0,69 0,688 0,3 0,3 

0,4 1/2 1/5 0,972 0,97 0,97 0,2 0,0 

0,8 1/2 1/5 1,133 1,142 1,14 0,6 0,2 

0,2 1/4 1/5 1,078 1,076 1,075 0,3 0,1 

0,6 1/4 1/5 1,502 1,5 1,5 0,1 0,0 

0,2 1/8 1/5 1,186 1,183 1,184 0,2 0,1 

0,2 1/2 0,1 0,903 0,901 0,902 0,1 0,1 

0,2 1/4 0,1 1,073 1,071 1,071 0,2 0,0 

0,6 1/8 0,1 1,949 1,94 1,95 0,1 0,5 

0,8 1 0,1 0,695 0,694 0,69 0,7 0,6 

Table 3. Comparisons of i0 in the present study with the literature, Refs. [11] and [15], for different a/t, a/c, and 

t/𝑅𝑖 at the S point.

Fig. 11. Comparisons of 𝐢𝟎 calculated by XFEM in the present study with the literature, Ref. [15], at the S point,

t/𝐑𝐢=0.5.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

i0 (a/c =1 ,t/Ri=0,5) i0 CEA(a/c =1 ,t/Ri=0,5)
i0 (a/c =0,5 ,t/Ri=0,5) i0 CEA (a/c =0,5 ,t/Ri=0,5)
i0 (a/c =0,25 ,t/Ri=0,5) i0 CEA (a/c =0,25 ,t/Ri=0,5)
i0 (a/c =0,125 ,t/Ri=0,5) i0  CEA(a/c =0,125 ,t/Ri=0,5)

a/t

i0

a / t a/c t/Ri i0 _Bergman [11] i0_CEA[15] i0_XFEM e1 (%) e2 (%)

0,2 1  1/5 0,746 0,75 0,745 0,1 0,7 

0,8 1  1/5 0,876 0,881 0,88 0,5 0,1 

0,4  1/2  1/5 0,768 0,771 0,77 0,3 0,1 

0,8  1/2  1/5 0,944 0,956 0,945 0,2 1,2 

0,2  1/4  1/5 0,598 0,597 0,6 0,3 0,5 

0,6  1/4  1/5 0,737 0,735 0,74 0,4 0,7 

0,2  1/8  1/5 0,447 0,456 0,45 0,7 1,3 

0,2  1/2 0,1 0,719 0,722 0,72 0,1 0,3 

0,2  1/4 0,1 0,602 0,601 0,6 0,3 0,2 

0,6  1/8 0,1 0,568 0,593 0,57 0,4 3,9 

0,8 1 0,1 0,89 0,897 0,893 0,3 0,4 
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Fig. 12. Comparisons of 𝐢𝟎 calculated by XFEM in the present study with the literature, Ref. [15], at the D point, 

t/𝐑𝐢=0.5. 
 

 
Fig. 13. Comparisons of 𝐢𝟎 calculated by XFEM in the present study with the literature, Ref. [15], at the S point, 

t/𝐑𝐢=0.1. 

 
Fig. 14. Comparisons of 𝐢𝟎 calculated by XFEM in the present study with the literature, Ref. [15], at the D point, 

t/𝐑𝐢=0.1.  

0.00

1.00

2.00

3.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

i0 (a/c =1 ,t/Ri=0,5) i0 CEA (a/c =1 ,t/Ri=0,5)
i0 (a/c =0,5 ,t/Ri=0,5) i0 CEA (a/c =0,5 ,t/Ri=0,5)
i0 (a/c =0,25 ,t/Ri=0,5) i0 CEA (a/c =0,25 ,t/Ri=0,5)

a/t

i0

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

i0  (a/c =1 ,t/Ri=0,1) i0  CEA (a/c =1 ,t/Ri=0,1)
i0  (a/c =0,5 ,t/Ri=0,1) i0  CEA(a/c =0,5 ,t/Ri=0,1)
i0   (a/c =0,25 ,t/Ri=0,1) i0  CEA (a/c =0,25 ,t/Ri=0,1)
i0   (a/c =0,125 ,t/Ri=0,1) i0  CEA(a/c =0,125 ,t/Ri=0,1)

a/t

i0

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

i0 (a/c =1 ,t/Ri=0,1) i0 CEA (a/c =1 ,t/Ri=0,1)

i0 (a/c =0,5 ,t/Ri=0,1) i0 CEA(a/c =0,5 ,t/Ri=0,1)

i0 (a/c =0,25 ,t/Ri=0,1) i0 CEA (a/c =0,25 ,t/Ri=0,1)

i0

a/t



JCARME                                              Numerical modeling and . . .                               Vol. 10, No. 1 

239 

 

 
Fig. 15. Comparisons of 𝐢𝟎 calculated by XFEM in the present study with the literature, Ref. [15], at the D point, 

t/𝐑𝐢=0.01.  

 
Fig. 16. Comparisons of 𝐢𝟎 calculated by XFEM in the present study with the literature, Ref. [15], at the S point, 

t/𝐑𝐢=0.01. 

 
Fig. 17. Comparisons of 𝐢𝟎 calculated by XFEM in the present study with literature [15], along the crack front. 
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In order to ascertain the validity of the XFEM 

model in pipe with thickness transition ,the same 

inputs of A. Saffih and Hariri [27] studies are 

used, and the same results are obtained as 

presented in Fig. 18. 𝐾𝑋𝐹𝐸𝑀value calculated

using XFEM in the present study is in agreement 

with the K_S calculated using the FEM 

by Saffih and Hariri [27]. 

As a result, as can be observed from these figures 

and tables, an excellent conformance exists 

between the XFEM simulation in the present 

study and those of Bergman [11], CEA [15] and 

A. Saffih and Hariri [27] which certifies XFEM

modeling results accuracy.

The result shows that the XFEM is a practical

and accurate tool for the crack problem in the

pipe with thickness transition, but the use of

XFEM is not interesting when the crack

propagation path is known, the crack problem

could be easily solved using cohesive elements.

The importance of XFEM is when the extension

of crack path is not previously known.

Fig. 18. Comparison of K values in the present study 

with the K values calculated by A.Saffih and Hariri 

[27] at the (a) D and (b) S points.

5.2. Limitations of XFEM 

In the case when the internal pressure 𝑃2 is

greater than the calculated pressure in Eq. 10, 

material behavior changes from elasticity to 

elasto-plasticity. In the elasto-plastic case, the 

results of J integral are divergent and the 

enrichment base at the crack tip used in the 

theory (Eq. (6)) is no longer effective at 

describing the crack tip. 

5.3. Comparison between K of the pipe with 

uniform thickness and thickness transition 

subjected to internal pressure 

Considering the internal pressure, the present 

study compares the values of  the SIF of an 

elliptical crack defect in the straight pipe 

compared to one with thickness transition using 

the XFEM. The comparison is done by defining 

a parameter 𝛿 = 
𝐾𝑇

𝐾𝑐
.

In this equation: 

𝐾𝐶:  is SIF calculated for the straight pipe.

𝐾𝑇: is SIF calculated for the pipe with thickness

transition. 

𝛿 > 1 means that the pipe with transition 

thickness presents more risk than a straight pipe. 

Fig. 19 show the variations of δ according to a/t 

at the D and S points for pipes where parameters 

of t/𝑅𝑖 equal to 0.5, 0.1, and 0.01. The general

characteristic of the figures does not change 

when t / 𝑅𝑖 changes.

 For the surface point (S):

- The value of δ does not depend on a/c 

parameter.

- The value of δ decreases with the increase of

a/t parameter, but it stay always greater than 1

for all parameters of a/c, a/t, and t/𝑅𝑖.

- The value of δ is maximum in the shallow

crack, where 𝐾𝑇 value is 2 times more elevated

than 𝐾𝑐 value. This means that a crack in the pipe

with thickness transition presents a double risk

at the surface point in comparison with a similar

defect in the straight pipe.
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 For the deepest point (D): 

 

- The value of δ is sensitive to a/c fraction. 

- The value of δ is greater than 1 for a/t ≤ 0.6; 

𝐾𝑇 value is higher 6 to 7 times as 𝐾𝑐 value in a 

shallow crack. 

Therefore, a defect in thickness transition 

presents  more risk compared to one similar in 

the straight pipe at  S point    and  at  D point only  

for  cracks  with a parameter a/𝑡 ≤ 0.6. 

In previous results, the value of δ becomes below 

unity at the deepest point for a/t greater than 0. 6 

for all parameters of t/Ri and a/c. In order to 

more show this result, the variation of the SIF   

according to a/t is performed at the D and the S 

points for the pipes straight and with thickness 

transition for all value of t/Ri and a/c. 

Fig. 20 represents a sample K calculation in the 

straight and with thickness transition pipes at the 

D and S points for t/Ri =0.1 for all value of a/c 

and a/t. Fig. 20(a-d) shows that the K increases 

according to a/t. The K at D point is higher than 

K at S point because of the internal pressure 

applied on the inner walls of the pipe. The 

internal pressure causes the circumferential 

stresses. The stresses are maximum inner the 

pipe and tend to decrease when going to the outer 

surface of the pipe. Therefore, the value of the 

SIF at the D point is greater than the value of the 

SIF at the S point. At the S point, the value of K 

is higher in the pipe with thickness transition for 

all  parameters of t/Ri, a/t, and a/c, but at the D 

point for a/t  greater  than 0.6. The K for the 

straight pipe becomes higher than that for the 

pipe with thickness transition.  
 

 

 

 
Fig. 19. Evolution of values of δ according to a/c and a/t at the D and the S points in case of internal pressure   for: 

(a) t/𝑹𝒊 = 0.5, (b)  t/𝑹𝒊 = 0.1; and (c) t/𝑹𝒊 = 0.01. 
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Fig. 20. K values at the D and S points for internal 

pressure (t/𝑅𝑖 =0.1).

Those previous results can be justified by the 

thickness transition effect as explained below: 

The transition reacts as an amplifier of stress. It 

magnifies the stress close to the surface, so the 

value of K is higher in the pipe with thickness 

transition for the S and D points for shallow 

cracks (a/t ≤0.6). 

When the depth of crack increases (a/t greater 

than 0.6), the concentration of the stress 

decreases at the D point because at this point, the 

thickness  transition  impact  noticeably  reduces 

and the normal stress decreases until it becomes 

less than the constant stress on the straight 

pipe. Therefore, the value of K at the D point 

becomes smaller compared to the value of K in 

the straight pipe. 

6. Conclusions

The present work deals with the effect of an 

external elliptical crack located at the thickness 

transition of a pipe. The comparison between   

the SIF (K) in the straight pipe and that in the 

pipe with the thickness transition shows that a 

pipe with the thickness transition is sensitive to 

the used cracks. 

This study highlightes the application of the 

XFEM for the calculation of SIF in  the thickness 

transition region of a pressurized pipe exposed 

to the internal pressure which have not been 

treated previously. 

In XFEM, a strategy of integration and the 

definition of the level sets are performed for the 

simulation of a three-dimensional crack.  

A crack is easily modeled by enrichment 

functions into standard finite element 

approximation. 

In elastic behavior, the result shows that the 

extended finite element method (XFEM) is an 

effective and practical tool for problem defect in 

a pipe with the thickness transition. 
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