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Unsteady flow with magneto-hydrodynamics and heat generation through 

porous medium past an impulsively started vertical plate with constant wall 

temperature and mass diffusion is considered here. The effect studied is a 

combination of Hall current and chemical reaction. The motivation behind this 

study is the applications of such kind of problems in industry. In many industrial 

applications electrically conducting fluid is subjected to magnetic field. The 

fluid is passed through porous medium. The flow may be on a plate. There may 

be substance on the plate which may cause chemical reaction. The solution of 

flow model studied here is obtained by using Laplace transform method. The 

respective profiles have been drawn for velocity. The numerical data have been 

obtained using latest software techniques available.  The profiles have been 
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drag on plate have been tabulated for analysis. The findings have been 

summarized in conclusion section.  
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Nomenclature 
B0

' The magnetic field 

C 

C

Species conc. in the fluid 

The dimensionless conc. 

CP

Cw

C∞ 

Specific heat at constant pressure 

Species conc. at the plate 

The conc. in the fluid away from  

the plate 

D Mass diffusion 

E The electric field  

g Gravity acceleration 

θ 

Gm 

Gr 

J 

The dimensionless temp. 

Mass G. no. 

Th. Grashaf no. 

The current density 

k 

K 

Kc 

K0

KT  

The thermal conductivity 

Permeability of the medium 

Chemical reaction parameter 

The dimensionless chemical 

reaction parameter 

Thermal diffusion ratio 

L 

M 

m 

𝜔e

𝜏e

P 

A characteristic length of the 

system 

The magnetic parameter 

Here (m = ωeτe) The Hall current 

parameter   

Cyclotron freq. of electrons 

Electron collision time 

Pressure 
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Pr 

Sc 

T 

T∞ 

 

Tm  

Tw 

T 

V 

𝛽 

 
𝛽∗ 

υ 

𝜌 
  

e  
 
𝜔 

e  
Pe 

Prandtl number 

Schmidt number 

Temp. of the fluid 

The temp. on the fluid away from  

the plate 

The mean fluid temp. 

Temp. of the plate 

Time 

The fluid velocity 

Volum. Coeff. of thermal 

expansion 

Volum. Coeff. of conc. Expansion 

The kinematic viscosity 

The fluid density 

The coeff. of viscosity of the fluid 

The effec. viscosity in the porous 

medium 

Oscillating freq. of the plate 

The number of density of electrons 

The electron pressure 

Heat generation  parameter 

  

 

1. Introduction 

 
The study of magneto-hydrodynamics with heat 

generation effect on moving fluid is quite 

relevant due to its applications in the problems 

related to endothermic and exothermic chemical 

reactions in the fluid. Some related studies are 

mentioned here. Reddy and Sandeep [1] have 

studied transfer of heat and mass on magneto 

bio-convective flow. Seth et al [2] have 

discussed Hall effect on  magneto-hydrodynamic 

free convection flow of a heat absorbing fluid on 

an accelerated moving vertical plate. Further, 

effects of heat and mass transfer on magneto-

hydrodynamics free convection flow was studied 

by Siva and others [3]. Seddeek [4] has studied 

the effects of chemical reaction, thermophoresis 

and variable viscosity on steady flow over a flat 

plate.  

Attia et al. [5] studied the heat transfer effect in 

Couette flow under pressure gradient along with 

Hall current. Hossain, et al. [6] have analyzed 

flow of viscous incompressible fluid over a 

permeable wedge with uniform heat flux. 

Chemical reaction on unsteady magneto-

hydrodynamics was studied by Mythreye et al. 

[7]. They used perturbation technique to solve 

the governing equations. Cowling [8] studied 

Magnetohydrodynamics. Rajput and Kanaujia 

[9] have studied magneto-hydrodynamics with 

chemical reaction over a vertical plate. Reddy et 

al. [10] have worked on chemical reaction and 

thermal radiation effects on magneto-

hydrodynamics micro polar fluid. Further, 

Naramgari et al. [11] have analyzed magneto-

hydrodynamics nano fluid with heat source/sink.  

Hayat et al. [12] have examined magneto-

hydrodynamics with Dufour and Soret effects.  

Chemical reaction and thermal diffusion on 

magneto-hydrodynamics flow on a porous plate 

was presented by Ibrahim and Suneetha [13]. A 

numerical analysis of magneto-hydrodynamics 

radiative flow over a rotating cone was done by 

Sulochanna et al. [14]. Abdulaziz et al. [15] have 

studied magneto-hydrodynamics flow and heat 

diffusion in a liquid film. Further, Ishak et al. 

[16] focused their work on magneto-

hydrodynamics flow and heat transfer.  

Earlier we [9] studied magneto-hydrodynamics 

with chemical reaction over a vertical plate. In 

the present paper, we  consider combined effect 

of chemical reaction and Hall current on 

magneto-hydrodynamics flow with heat 

generation past an impulsively started vertical 

plate. The effects have been observed with 

graphs and the drag has been tabulated. 

  

2. Mathematical formulation 

 

Let the flow be unsteady and electrically 

conducting. The medium considered is porous. 

The x' axis is along the motion with z' taken 

normal to it. The boundary layer is formed in the 

direction of y'. A uniform field B'
0 is applied 

transversely on the flow. At the start, it is 

assumed that the temperatures of the plate and 

the fluid are each T∞. Further, C∞ is the species 

concentration. After some time, the plate starts 

oscillating with frequency .  Then the temp of 

the plate and the concentration of the fluid, 

respectively, are raised to Tw and Cw. Using the 

relation 0 B  for the magnetic field 

                                                                                      

zyx B,B,BB 
   

                                                                                   
 

we get B'y' (say B'0) = constant, 

i.e.  B' = (0, B'0, 0), where B'0
 
is externally 

applied transverse magnetic field. The Geometry 

of the problem is given in Fig. 1. 
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Fig. 1. Geometry of the problem. 

 

Let q' be the velocity vector, and qx', qy', qz'
 are 

respectively the velocity components along x', y' 

and z' - directions. The governing equation of 

continuity is 
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Since there is no variation of flow in the y' - 

direction, therefore v' = 0 

The generalized ohm’s law including the effect 

of Hall current according to cowling [9] is given 

as: 
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The external electric field E = 0, since 

polarization of charges is negligible.

 Let J = (jx', jy', jz'). Here jx'  jy' and  jz' are the 

components  of current density  in the x', y', and 

z' directions, respectively. Using the above 

assumption, we get 
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The fluid model is as under: 
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The initial and b. c. are   

 

.y as ,CC ,TT 0,q 0,q

0,y at TT ,q ,tcosqq:0t

,y values all for CC ,TT ,q ,q:t

zx

wzxx

zx

0













0

000


   (5)  

 

Here qx'
 and qz' are the primary and the secondary 

velocities along x' and z' respectively.  

The non-dimensional quantities introduced to 

transform equations (1), (2), (3) and (4) are as 

follows: 
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The dimensionless flow model becomes 

,q
K)m(

)qmq(M
C Gm Gr

y

q

t

q
x

zxx'x


 












 1

1 22

2


  

(7)                                                                                                       
 
 

,q
K)m(

)qqm(M

y

q

t

q
z

zxzz


 












 1

1 22

2

             (8)                                                                                                                  

,CK
Scy

C

t

C
02

2 1










                                          (9)                                                                                                                          

 

 .Q
Pryt












 1
2

2

                                    (10)
            

                                                                                                             
 

 

  The corresponding b. c. become 
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 Removing the bars and combining eqs. (7  and 

8), we get
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Solving analytically using Laplace transform method, 

equations (12, 13 and 14) are changed to   
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where s is a parameter of Laplace transformation.  

On further solving, the solution obtained is as under: 
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3. Drag at the surface 

The drag at the plate y’= 0 is given by 
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Here τ(x’)  and τ(z’)  are drags at the plate in  
x' and z' directions.  
 

4. Sherwood number 
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5. Nusselt number  
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Fig. 2. Gr versus xq  . 
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Fig. 3. Gm versus xq  . 

 

 
Fig. 4. Q versus xq  . 

 

 

Fig. 5. m versus xq  . 

 

 

Fig. 6. K versus xq  . 

 

Fig. 7. t versus xq  . 
 

 

Fig. 8. M versus xq  . 

Fig. 9. Sc versus xq  . 
 

Fig. 10. Pr versus xq  . 
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Fig. 11. K0 versus xq  . 

 

 

Fig. 12. ωt versus xq  . 

 

 

Fig. 13. Gr versus zq  . 
 

Fig. 14. Gm  versus zq  . 

 

 

Fig. 15. M versus zq  . 

 

 

Fig. 16. t versus zq  . 

 

Fig 

Fig. 17. Q versus zq  . 

 

Fig. 18. K versus 'zq . 
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Fig. 19. m versus 'zq . 

 

Fig. 20. Sc versus zq  . 

 

 

Fig. 21. Pr versus zq  . 

 

 

Fig. 22. K0 versus zq  . 

 

 

Fig. 23.  ωt versus zq  . 

 
Fig. 24. Sc versus C. 

 

 

 
Fig. 25. K0versus C. 

 

 
Fig. 26. t versus C. 
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Fig. 27. Q versus θ. 

 

 
 

Fig. 28. t versus θ. 

 
Fig. 29. Pr versus θ.

Table 1. Drag for different parameters. 

M  m Pr Sc Gm Gr Q K0 K t 
t  

(in degree) 
 x

  z 
 

3 1.0 0.71 2.01 10 10 1.0 1.0 0.2 0.2 30 1.9414 0.3862 

5 1.0 0.71 2.01 10 10 1.0 1.0 0.2 0.2 30 1.6660 0.6075 

2 1.5 0.71 2.01 10 10 1.0 1.0 0.2 0.2 30 2.1849 0.2502 

2 2.0 0.71 2.01 10 10 1.0 1.0 0.2 0.2 30 2.2452 0.2196 

2 10 3.00 2.01 10 10 1.0 1.0 0.2 0.2 30 1.4412 0.2327 

2 1.0 5.00 2.01 10 10 1.0 1.0 0.2 0.2 30 1.2122 0.2242 

2 1.0 0.71 5.00 10 10 1.0 1.0 0.2 0.2 30 1.6801 0.2497 

2 1.0 0.71 7.00 10 10 1.0 1.0 0.2 0.2 30 1.5415 0.2454 

2 1.0 0.71 2.01 5.0 10 1.0 1.0 0.2 0.2 30 1.2117 0.2468 

2 1.0 0.71 2.01 15 10 1.0 1.0 0.2 0.2 30 2.9499 0.2834 

2 1.0 0.71 2.01 10 20 1.0 1.0 0.2 0.2 30 4.4124 0.3299 

2 1.0 0.71 2.01 10 30 1.0 1.0 0.2 0.2 30 6.7441 0.3947 

2 1.0 0.71 2.01 10 10 5.0 1.0 0.2 0.2 30 2.4193 0.2770 

2 1.0 0.71 2.01 10 10 10 1.0 0.2 0.2 30 3.0597 0.2985 

2 1.0 0.71 2.01 10 10 1.0 10 0.2 0.2 30 1.6801 0.2538 

2 1.0 0.71 2.01 10 10 1.0 20 0.2 0.2 30 1.4438 0.2470 

2 1.0 0.71 2.01 10 10 1.0 1.0 0.1 0.2 30 0.9180 0.2054 

2 1.0 0.71 2.01 10 10 1.0 1.0 0.3 0.2 30 2.5439 0.2925 

2 1.0 0.71 2.01 10 10 1.0 1.0 0.2 0.1 30 1.0604 0.1806 

2 1.0 0.71 2.01 10 10 1.0 1.0 0.2 0.3 30 2.6484 0.3283 

2 1.0 0.71 2.01 10 10 1.0 1.0 0.2 0.2 45 2.7210 0.2465 

2 1.0 0.71 2.01 10 10 1.0 1.0 0.2 0.2 60 5.4080 0.1602 
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   Table 2. Sherwood number.               Table 3.  Nusselt number. 

Sc K0 t Sh 

0.16 1.0 0.2 -0.21346 

3.0 1.0 0.2 -0.26078 

5.0 1.0 0.2 -3.3665

2.01 10 0.2 -2.1346

2.01 20 0.2 -4.5193

2.01 1.0 0.1 -2.7780

2.01 1.0 0.3 -1.8776

6. Results and discussion

The values computed for velocity, drag, 

Sherwood number and Nusselt number for 

different parameters have been ploted. 

Table 4: Different value of parameters. 

Symbols  Values 

m 1.0 1.5     2.0 

M 1.0 3.0     5.0 

Gm 5.0 10     15 

Sc 2.0 5.0     7.0 

Pr 2.0 3.0     5.0 

t 30 45    
60

K 0.1 0.2     0.3 

K0 10 10     30 

Q 1.0 5.0     10 

t 0.1 0.2     0.3 

It has been observed from Figs. 2-7 that 'xq

increases when Gr, Gm, Q, m, K, and t are 

increased respectively one at a time. In each case 

only one parameter changes with others keeping 

constant. We imply the same interpretation in 

our further discussion.  Figs. 8, 9, 10, 11 and 12 

show that xq  decreases, when M, Sc, Pr, K0 and

t are increased. Almost similar pattern is 

observed for 'zq . Figs. 13, 14, 15, 16, 17 and 18 

show that the zq  increases when Gr, Gm, M, t, 

Q and K are increased. However, Figs. 19-23 

show that zq  decreases when m, Sc, Pr, K0 and 

t are increased. This implies that the Hall 

parameter slows down the transverse velocity.

 Figs. 24, and 25 show that concentration 

decreases when Sc and K0 are increased. 

However, Figs. 26 shows that concentration 

increases when t is increased. Figs. 27 and 28 

show that the temperature increases when Q and 

t are increased. Fig. 29 shows that it decreases 

when Pr is increased.  

Table 1 shows that drag along x’ axis  decreases 

with increase in Sc, Pr, K0 and M; and it 

increases with Gr, Gm, m, t, Q, K and t . On 

the other hand, drag along z’ axis increases with 

increase in Gr, Gm, t, Q, K and M; and it 

decreases with Pr, m, Sc, K0 and t . Table 2 

shows that Sherwood number decreases with 

increase in Sc, and t. However, Sherwood 

number increases with increase in K0. Further, 

Table 3 shows that Nusselt number decreases 

with increase in Pr. However, it increases with 

increase in t and Q. The main parameters are in 

Table 4. The findings are concluded in the next 

section.    

7. Conclusions

It has been observed that 'xq increases with heat

generation, permeability of the medium and Hall 

parameter. However it decreases with chemical 

reaction parameter. Further, 'zq increases when

heat generation parameter, and permeability of 

the medium are increased. But it decreases with 

Hall parameter and chemical reaction parameter. 

Pr Q t Nu 

0.71 1.0 0.2 -0.8430 

7.0 1.0 0.2 -2.6470 

13.0 1.0 0.2 -3.6073 

0.71 5.0 0.2 0.2206 

0.71 10 0.2 2.1991 

0.71 1.0 0.1 -1.3504 

0.71 1.0 0.3 -0.5937 
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As far as drag is concerned,  'x  increases with

heat generation parameter, permeability of the 

medium and Hall parameter; and it decreases 

with chemical reaction parameter. The 

Sherwood number decreases with increase in 

Schmidt number, and time. Further, the Nusselt 

number increases with increase in time and heat 

generation parameter.  The results obtained are 

as per expectation for real flow. 
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