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acted upon a thermo-mechanical load for simply supported (SS) conditions. 
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1. Introduction

Functionally graded materials (FGMs) are a 

future engineered material wherein material 

properties are continually varied through the 

thickness direction by mixing two different 

materials. As a result, internal boundaries does 

not occur and overcomes the stress concentration 

setup in composite laminates. 

FGMs find potential applications in high thermal 

environments when compared to  other 

engineering materials because of their superior 

heat-shielding properties. On the other hand, due 

to heterogeneity of these materials they also pose 

confronting problems in mechanics like 

analysing stress variation, free vibration 

behavior, buckling and  fracture response. Thus,  

FGMs analysis has to consider the mechanical  

and thermal load, because several applications 

such as heat shield of the space shuttle have to 

provide load carrying capability and protection 

against heat generated while re-entering into the 

Earth’s environment or the wall of a nuclear 

reactor.  



JCARME                                                     B. Sidda Reddy, et al.                                         Vol. 11, No. 1  

 

366 

 

The mathematical modeling of FGM is a great 

tool to understand the structural performance 

under thermo-mechanical loading.  

In the recent past Carrera et al. [1] analyzed the 

influence of stretching in the thickness direction 

in a single-layered and multilayered FG plates 

and shells. This theory preserves the transverse 

normal strain. The conclusion of this theory is to 

consider the influence of normal strain to get 

meaning for the inclusion of added inplane 

variables in the classical theories. Talha and 

Singh [2] developed a finite element method 

(FEM) formulations using HSDT to analyze the 

thermomechanical deformation responses of 

shear deformable FGM plates. 

 Mantari and Soares [3] considered thickness 

stretching HSDT with trigonometric shape 

function to investigate the static behavior of 

FGPs. However, considering the trigonometric 

function involves high computational effort. 

Sidda Reddy et al. [4] investigated the influence 

of aspect ratios, thickness ratios and modulus 

ratios and exponent on the natural frequencies of 

FGPs using HSDT. Mantari and Granados [5] 

used a novel first shear deformation theory 

(FSDT) to investigate FGPs. The equilibrium 

equations for static bending response are 

developed by utilizing the virtual work. The 

equilibrium equations are solved through 

Navier-type solutions. The FSDTs includes the 

influence of shear deformation in the transverse 

direction, however, this theory  demands a shear 

correction factor (SCF) to fulfil the nullity 

conditions at the lower and top side of the plate. 

This theory is not well-suited, because of 

complexity in estimating the accurate SCF. In 

order to alleviate these, HSDT was formulated 

with higher order terms in displacements 

through the thickness coordinate based on 

Taylors Series. ZhanZhao et al. [6] used the 

FEM to investigate the bending and vibration of 

trapezoidal plates made with functionally graded 

materials by reinforcing with graphene 

nanoplatelets (GPLs). TianK and Jiang [7] 

adopted hybrid numerical method to research the 

conduction of heat in FGPs by changing gradient 

parameters under the exponential heat source 

load.  Moit et al. [8] used the FEM formulations 

based on  HSDT to investigate the nonlinear 

static response of FGPs and FG shells.  
Mohammadi et al. [9] developed the HSDT, to 

analyse the incompressible rectangular FG thick 

plates. Further, the influence of 

incompressibility on the static, dynamic and 

stability behaviour is investigated. 

Kadkhodayan [10], Matsunaga [11-12], Xiang 

[13], Sidda Reddy et al. [14-15] and Suresh 

Kumar et al. [16] developed many HSDTs. Most 

of these theories neglect the stress in the 

transverse direction on the lower and top side of 

the plate and stretching influence in the thickness 

direction.  

Cho and Oden [17] employed Galerkin approach 

to examine the  thermo-elastic behaviour of 

FGMs and explained that the use of FGMs 

shows significant progress in thermal stress.  

Sun and Luo [18] considered the temperature 

responsive properties to study the propagation of 

wave and transient analysis of infinite length 

FGPs. Jafari Mehrabadi and Sobhani Aragh [19] 

used the third order plate theory to present 

thermo-elastic analysis of two dimensional FG 

cylindrical shells. The physical properties are 

assumed to vary with temperature as well as in 

axial and radial directions.  

Recently,  Wagih et al. [20] studied the effect of 

contact with an elastoplastic FG substrate and a 

rigid spherical indenture with the help of FEM. 

Slimane Merdaci and HakimaBelghoul [21] 

investigated rectangular porous thick FGPs by 

applying higher order theory for bending 

response.  

Attia et al. [22] researched the bending 

behaviour of temperature dependent FGPs. The 

FGP rests on an elastic foundation and acted 

upon a thermo mechanical load.  Fahsi et al. [23]  

presented a simple and 4 variable refined nth 

order theory considering the influence of shear 

deformity and analysed the mechanical 

responses and buckling behaviour under  

temperature of FG plates lying on elastic 

foundation. This contains the undetermined 

integral terms. Chikh et al. [24] analyzed the 

thermal buckling response of crossply composite 

plates applying a simple HSDT with four 

unknowns. This theory introduces undetermined 

integral terms.  El-Haina et al. [25] presented a 

simple sinusoidal theory considering the 

influence of shear deformation to investigate the 

FG thick sandwich for thermal buckling 

behaviour. 

https://www.sciencedirect.com/topics/engineering/deformation-theory
https://www.sciencedirect.com/topics/engineering/closed-form-solution
https://www.sciencedirect.com/science/article/pii/S026382231731783X#!
https://www.sciencedirect.com/topics/materials-science/graphene
https://www.sciencedirect.com/science/article/pii/S001793101734588X#!
https://www.sciencedirect.com/science/article/pii/S001793101734588X#!
https://www.sciencedirect.com/science/article/pii/S0263822318339059#!
https://www.sciencedirect.com/topics/engineering/static-analysis
https://www.sciencedirect.com/topics/materials-science/functionally-graded-material
https://www.sciencedirect.com/topics/engineering/shell-plate
https://www.sciencedirect.com/science/article/abs/pii/S0307904X18305894#!
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Menasria et al. [26] used a trigonometric based 

new displacement field which contains four 

variables for distributing the transverse shear 

stress. This displacement field includes 

undetermined integral terms and analysed the 

response of FG sandwich plates for thermal 

buckling. They also studied the impact of 

thickness and aspect ratios, exponent, loading 

type, and sandwich plate type. Beldjelili et al. 

[27] used RPT with 4 variables to research the 

hygro thermomechanical behaviour for bending 

of sigmoid FGP lying on elastic foundation. 

Boutaleb et al. [28]  investigated the 

fundamental frequencies of nanosize FGPs 

considering the quasi 3D theory including the 

thickness stretching. They also investigated the 

effect of nonlocal coefficient, the material index, 

the aspect ratio and the thickness upon length 

ratio on the dynamic properties of the FG 

nanoplates.  

Boukhlif et al. [29] used a simple quasi-3D 

higher order theory considering the shear 

deformation and stretching influence with only 

four unknowns to research the fundamental 

frequencies of FGPs resting on elastic 

foundation. Bouanati et al. [30] used an efficient 

quasi 3D theory with three unknowns to 

investigate the vibration analysis and wave 

propagation of triclinic and orthotropic plate. 

They divided the displacement in the transversal 

direction into two parts, i.e. bending and shear to 

show their effects on total vibration and wave 

propagation in anisotropic plates.  Ait Atmane et 

al. [31] used an efficient beam theory to research 

the bending, buckling and vibration of sandwich 

FG beams with porosity on two parameter elastic 

foundations considering the thickness stretching 

effects.  

Benahmed et al. [32]  provided a simple quasi 

three dimensional theory considering the 

hyperbolic function to research the bending and 

vibration analyses of FGPs rests on 2 parameter 

elastic foundation considering the thickness 

stretching influence. This theory involves only 5 

unknowns.  

Karami et al. [33] gave a quasi 3D theory for 

analysing the wave dispersion of nano FGPs 

resting on an elastic foundation under 

hygrothermal environment. They considered the 

thickness stretching influence and shear 

deformation and involved only five unknowns.  

Zaoui et al. [34] used new shape function to 

analyse the fundamental frequencies of FGPs 

resting on elastic foundations using quasi-3D 

theory. This theory considers the effects of 

transverse shear as well as through the thickness 

stretching. Bouhadra et al [35] developed an 

improved higher order theory considering the 

effect of thickness stretching in FGPs. This 

theory considers the undetermined integral terms 

in inplane and transverse displacements varies 

parabolically in the thickness. Younsi et al. [36] 

proposed 2D and quasi 3D hyperbolic HSDT 

with undetermined integrals to investigate the 

bending and vibration of FGPs considering the 

thickness stretching influence.  

Abualnour et al. [37] proposed a new SDT with 

five unknowns. This theory considers the 

stretching influence to analyse the vibration of 

the SS FG plates and involves only five 

unknowns. The displacement field introduced 

contains undetermined integral variables.  
The goal of the present research is to study the 

thermomechanical behavior of SS FGPs 

considering higher order theories considering the 

non-nullity conditions for transverse stresses  at 

the upper and lower sides of the plate.  

The present theory includes the extensibility in 

the transverse direction to account for the 

transverse influence. Thus the SCF is omitted. 

The material properties are graded in the 

thickness of the plate. The equilibrium relations 

and boundary conditions of the FGPs are 

obtained by adopting the virtual work. Navier’s 

solution is attained for FGPs by applying 

sinusoidal variation of temperature for SS 

conditions. The findings are compared to other 

higher order theories available in the open 

literature to authenticate the exactness of the 

present theory in estimating the  deformations 

and stresses of FGPs. 
 

2. Theoretical formulation 
 

Fig. 1 represents a FG plate having physical 

dimensions. The upper side of the plate is made 

of ceramic and graded to the lower side that 

contains the metal. The mid plane is considered 

as the reference. 

The FGP properties are considered to vary with 

the volume fraction (VF) of materials 

constituents.  
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Fig. 1. Representation of FG rectangular plate. 

 

The relation between the physical property of the 

material and the z coordinate is given as: 

 

( ) bbt  +5.0/)-( =(z) 
n

hz +        (1) 

 

where   denotes the effective property of the 

material, t , and b  denotes the physical 

property respectively on the upper and lower 

side of the plate and n is the material property 

change parameter. The effective properties of the 

plate material, such as  constant of Elasticity E, 

density ρ, and constant of rigidity G, change 

according to Eq. (1); and poisson’s ratio (υ) is 

considered as constant. 

 

2.1. Displacement field 

 

U1, U2 and U3 denote the displacements at any 

location along x,y and z directions respectively; 

in the FG plate are expanded in the thickness 

coordinate using the Taylor’s series to obtain the 

following set of equations. A higher order shear 

deferomation for FGPs used by Sidda Reddy et 

al [4] are extended to research the 

thermomechanical behavior of FGPs under 

simply supported boundary conditions. The 

displacement functions is expressed as:  
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In Eq. (2), the parameters um, vm are the inplane 

displacements and wm is the displacement in the 

transverse direction at the median plane.  

x , y  are rotations about y-axis and x–axis, 

respectively about median plane.  
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2.2. Strain-Displacement Equations 
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2.3. Constitutive Relations 

 
The constitutive relations depend on the 

assumption of εz≠0, that is thickness stretching is 

considered. In this case the 3-D model is used. 

For FGPs the constitutive relations can be 

expressed as: 

 

11σ = 11Q ( T−11ε )+ 12Q ( T−+ 233ε22ε ) 

22
σ = 11Q ( T−22ε )+ 12Q ( T−+ 2εε 3311 ) 

33σ = 11Q ( T−33ε )+ 12Q ( T−+ 2εε 2211 ) 

12τ = 44Q 12γ  

23τ = 44Q 23γ  

13τ = 44Q
13γ

                                                       

(5) 

 

where ( 11, 22, z, 12, 23, 13)
t and  ( 11,  22, 


33

 , 12, 23, 13)
t are respectively the stresses 

and strains with reference to the axes, Qij’s are 

the elasticity coefficients along the axes of the 

plate and change along the thickness,  as: 
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where Eceramic and Emetal are the elastic constants 

of the ceramic and  metallic phase respectively, 

 is thermal expansion co-efficient. T is the  

temperature raise from a reference. The 

superscript t denotes the transpose of a matrix. 

If ε33=0, then the plane-stress case is used 
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2.4.  Equilibrium Equations 

  
The equilibrium equations are obtained by 

considering the Hamilton’s  theory and can be 

given as:   

dtVU
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h

wm  ++  is  

the deformation in the transverse direction at any 

location at the upper side of the plate and q is the 

double sinusoidal load applied at the upper side 

of the plate. 

By substituting Eq. (10-11) in Eq. (9) and 

integrating in the thickness direction and 

employing the integration by parts and grouping 

the coefficients of: 
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where the force and moment resultants are 

expressed as: 
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Resultants of thermal forces are given by: 
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3. Analysis of FGPs 

 
We are concernedabout the analytical solutions 

of the Eq. (13-15) for SS FGPs.  The following 

are the expressions to satisfy the SS conditions: 
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where 𝑥 ∈ 0, 𝑎 & 𝑦 ∈ 0, 𝑏; 
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Substituting Eq. (16) in to Eq. (12), and grouping 

the coefficients, the following  matrix in  terms 

of the unknown variables U11, V11, W11, X11, Y11, 

Z11 *

11

*

11

*

11

*

11

*

11

*

11 ,,,,, ZYXWVU
 
are obtained.  

 

[X]12×12[Δ] 12×1=[F] 12×1 

 

Where [X] represents stiffness matrix and Δ is 

the unknown variables and [F] indicates the 

force matrix. 

 

4. Results and discussion 

 

In this part some examples are considered and 

compared with the published studies in the 

literature to verify the exactness of the present 

HSDT in estimating the deformations and 

stresses. The distributions of the deformations 

and stress of SS FGPs subjected to mechanical, 

thermal/thermomechanical load are investigated 

in detail. The properties of the FGPs are  

 

Emetal= 70×109 Pa,  

Eceramic= 380×109 Pa, , and  υ= 0.3 

 

The displacement u and shear stress τxz are 

evaluated at (0, b/2), while displacement v and 

shear stress τyz are evaluated at (a/2, 0), and the 

shear stress τxy is evaluated at (0, 0). The normal 

stresses σx, σy, σz and the displacement w are 

evaluated at (a/2, b/2). 

For the mechanical/thermal loadings, the plates 

are subjected to the bisiusoidal normal 

pressure/temperature of amplitude 
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on the upper side. 

The transverse displacements 3U  and the 

transverse shear stress τ13 for mechanical loading 

are shown in the non-dimensionalized quantities 

as: 
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All the numerical results for thermal loading are 

given in the nondimensionalized form as 

follows: 
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For the thermo-mechanical loadings, the plates 

are subjected to bisinusoidal temperature as well 

as the pressure on the upper side.  

All the numerical results for thermo-mechanical 

loadings are shown in the nondimensionalized 

quantities as follows: 
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Example 1: In this example, SS FG material 

plates made of Al/Al2O3 are considered. The 

FGP is acted upon a bisinusoidal pressure load 

applied at the upper side of the plate. The results 

predicted by the present HSDT for transverse 

displacements w and τxz considering 033 = and 

033   are reported in Table 1. The present 

theory evaluations are compared to the 

evaluations of Matsunaga [12] who considered 

033  . 

The displacements w and transverse shear stress 

τxz predicted by present HSDT with 033  are 

well agreed with the results of Matsunaga [12]. 

From the present theory it can be noticed that the 

values of transverse displacements and shear 

stress τ13 considering 033 = are larger than 

those considering 033  and  the differences 

decrease with the decrease of thickness of the 

plane. This is due to the fact that the thick FG 

plates stretch more along the thickness. 

Comparing with the results of Matsunaga [12], 

the difference is ranged from 0.003279% to 

0.362138% for transverse displacements and 

0.017872 to 7.8246% for transverse shear stress 

τxz when 0z is considered. 

Example 2: In this example, the sinusoidal 

variation of the temperature is applied on the 

upper side of the simply supported FGPs. The 

results predicted by the present HSDT for 

inplane displacement u and normal stress σz 
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considering 033 = and 033  is presented in 

Table 2. The present theory evaluations are 

compared to the  evaluations of Matsunaga [12]. 

It is noticed that, the present results for u and 

stress σz are in good agreement with Matsnaga 

[12] under thermal loading as well. Table 3 

shows the comparison of solutions of isotropic 

plates subjected to thermal loading. The 

considered thickness ratios a/h are 2, 5, 10, 20 

and 100. The u and σz results are evaluated using 

zero and non-zero z  strain and are compared 

with the solutions of Matsunaga [12]. The results 

showed good agreement when 033  is 

considered.  

This research concludes that the influence of 

stretching has a great influence on the bending 

behavior of FGPs under both mechanical and 

thermal loading as 033   gives very close 

agreement with the published studies in the 

literature. 

 

4.1. Behavior of FGM plate with thermal load 

 

Functionally graded material structures find 

potential applications in high thermal 

environments due to high endurance to 

temperature gradients, ability to survive to high 

loads and temperature. In this problem, the 

response of FGM plate with thermal load is 

investigated using higher order theory.  

Figs. 2-3 show the distribution of û  and ŵ  

respectively of SS square FGP made with 

Al/Al2O3 against exponent for several values of 

a/h under thermal load. From the figures it is 

observed that, the plate is upward deflection 

since the thermal load acts at the top surface of 

the plate. The absolute values of inplane 

displacement increase as exponent(n) increase, 

while transverse displacement increases within 

the range of n=0 to n=2 and then decreases. This 

is due to the reason that, the magnitude of the 

three dimensional elastic constants Qij increases 

up to n=2 and then decreases. Also noted that, 

the increase of a/h decreases the bending 

stiffness and results in an increase of û . 

The distribution of nondimensionalized inplane 

and transverse displacements û and ŵ  along the 

thickness using a present HSDT of SS square 

Al/Al2O3 FGPs under sinusoidal temperature for 

different values of exponent n and a/h=10 are 

shown in Figs. 4-5. The variation of 

dimensionless normal and shear stresses across 

the thickness direction for different values of 

exponent n and a/h=10 are shown in Figs. 6-11. 

From the figures, it is noted that the 

nondimensionalized normal stresses 
x̂ and 

ŷ  

are tensile at the top and bottom surface of the 

plate when n=10 and compressive throughout 

the plate when n=0, 0.5 and 1. However, at n=4, 

the stresses are tensile at the upper surface of the 

plate and compressive at the lower surface of the 

plate under sinusoidal temperature. The 

nondimensionalized normal stress ẑ is tensile 

for n=0, 1, 4, 10 and compressive for n=0. 5 at 

the lower and upper side of the plate. It is also 

noteworthy to observe that the normal stresses

x̂ , 
ŷ  and ẑ  are the same at different points 

above and below the mid-plane when n=10. As 

exhibited in Fig. 9, the 
xŷ  is compressive 

throughout the plate for all values of exponent n. 

But in Fig. 10 it is seen that the transverse shear 

stress
yẑ is tensile at the upper surface of the 

plate and compressive at the lower side of the 

plate for n=0, 1, 4 and at n=0.5 and 10 it is 

tensile. 
 

 
Fig. 2. Influence of exponent on nondimensionalized 

in-plane displacement ( û ) for SS FGPs (a/h=2, 5, 

10, 20, 50) under thermal load. 

 
Fig. 3. Influence of exponent on nondimensionalized 

transverse displacement ( ŵ ) for SS FGPs (a/h=5, 10, 

20, 50) under thermal load. 
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Table 1. Comparison of solutions of FG plates under sinusoidal pressures. 

a/h n  
Presen 033 =

(1)
 

Present 033   
(2)

 
Matsunaga [12] 

(3) 

%Error between 

(1) & (3) 

%Error between  

(2) & (3) 

5 

0 ŵ  21.4575 20.9866 20.98 2.225329 0.031449 

 xẑ  1.18735 1.1869 1.186 0.113699 0.075828 

0.5 ŵ  32.3549 31.9001 31.8 1.715042 0.313792 

 xẑ  1.21301 1.21335 1.217 0.32893 0.30082 

1 ŵ  41.816 41.3951 41.39 1.018749 0.01232 

 xẑ  1.18719 1.18848 1.184 0.268702 0.376952 

4 ŵ  65.2529 65.013 65.0 0.387569 0.019996 

 xẑ  1.0005 1.00507 1.073 7.24638 6.75873 

10 ŵ  76.7671 76.2425 76.24 0.686622 0.003279 

 xẑ  1.07547 1.08084 1.078 0.23525 0.262759 

10 

0 ŵ  296.058 294.254 294.3 0.593803 0.01563 

 xẑ  2.38413 2.38398 2.383 0.047397 0.041108 

0.5 ŵ  453.716 452.037 450.4 0.730854 0.362138 

 xẑ  2.43518 2.43545 2.435 0.007392 0.018477 

1 ŵ  589.03 587.536 587.5 0.259749 0.006127 

 xẑ  2.38405 2.38482 2.383 0.044043 0.076316 

4 ŵ  882.341 881.67 881.7 0.072648 0.0034 

 xẑ  2.01285 2.01531 2.173 7.95638 7.8246 

10 ŵ  1008.92 1007.18 1007 0.190303 0.017872 

 xẑ  2.16235 2.16514 2.166 0.1688 0.03972 

Table 2. Comparison of solutions of FG plates subjected to temperature. 
  Source Power law index (n) 

a/h   0 0.5 1 4 10 

5 u  033 =  -1.0345 -1.7451 -2.1249 -2.774 -2.9478 

033   -1.00194 -1.69596 -2.06859 -2.68538 -2.83659 

Matsunaga [12] -1.003 -1.696 -2.069 -2.689 -2.840 

z  0z  -0.00184 -0.00819 -0.00276 0.0262 0.0727 

Matsunaga [12] -0.002227 0.1439 0.1518 0.1277 0.1016 

10 u  033 =  -2.069 -3.4948 -4.2499 -5.5287 -5.8751 

033   -2.05218 -3.46939 -4.22056 -5.48239 -5.81735 

Matsunaga [12] -2.052 -3.469 -4.221 -5.483 -5.818 

z  033   -0.000117 -0.008447 -0.000346 0.0326621 0.078631 

Matsunaga [12] -0.0001435 0.03647 0.03835 0.03233 0.02689 

Table 3. Comparison of solutions of isotropic plates subjected to thermal load. 
a/h û  ẑ  

 033 =  033   Matsunaga [12] 033   Matsunaga [12] 

2 -0.413803 -0.350716 -0.3595 -0.0612457 -0.06993 

5 -1.03451 -1.00194 -1.003 -0.00184404 -0.002229 

10 -2.06902 -2.05218 -2.052 -0.000117656 -0.0001435 

20 -4.13803 -4.12955 -4.130 -7.39065×10-6 -0.000009037 

100 -20.6902 -20.6885 -20.69 -1.1844×10-8 -1.449×10-6 
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Fig. 4. Distribution of û along the thickness (z/h) of 

SS FGM plates subjected to sinusoidal temperature 

(a/h=10). 

 

Fig. 5. Distribution of ŵ  along the z/h of SS FGPs 

acted upon a sinusoidal temperature (a/h=10). 

 
Fig. 6. Distribution of 

x̂  along z/h of SS FGM 

plates acted upon a sinusoidal temperature (a/h=10). 

 

Fig. 7. Distribution of ŷ  along z/h of SS FGM 

plates acted upon a sinusoidal temperature (a/h=10). 

 

Fig. 8. Distribution of 
ẑ  along z/h of SS FGM 

plates acted upon a sinusoidal temperature (a/h=10). 

 
Fig. 9. Distribution of 

xŷ  along z/h of SS FGM 

plates subjected to sinusoidal temperature for 

different values of exponent (a/h=10). 

 
Fig. 10. Distribution of yẑ  along z/h of SS FGM 

plates subjected to sinusoidal temperature for 

different values of exponent (a/h=10). 

 
Fig. 11. Distribution of 

xẑ  along z/h of simply 

supported FGM plates subjected to sinusoidal 

temperature for different values of exponent 

(a/h=10).    
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Fig. 12. Influence of n on nondimensionalized in-

plane displacement ( û ) for SS FGPs (a/h=2, 5, 10, 

20, 50) under thermo-mechanical load. 

  
Fig. 13. Influence of n on nondimensionalized 

transverse displacement ( ŵ ) for SS FGPs (a/h=2, 5, 

10, 20, 50) under thermo-mechanical load. 

 
Fig. 14. Distribution of û  along z/h of SS FGM 

plates subjected to thermo-mechanical load (a/h=10). 

 

4.2. Behavior of FG plate with thermo-
mechanical load 

 
The displacements and stress distributions of SS 
FG plates under thermomechanical loading is 
shown through Figs. 12-20. The plate is exposed 
to a temperature Tmn at the top surface =3000C 
and the mechanical load qmn =1N/mm2. Figs. 12-
13 plots the distribution of nondimensionalized 
inplane and transverse displacements against 
exponent for various a/h values. The absolute 
values of inplane displacement increase with the 
increase of n, while transverse displacement 
increases within the range of n=0 to n=2 and then 
decreases when a/h is less than 50. At a/h 50, the 

transverse displacements decrease within the 
range n=0 to n=0. 5 and then increase.  

The distribution of û and ŵ  along the thickness 

direction using a present HSDT of simply 
supported square Al/Al2O3 FG plates under 
thermo-mechanical load for several values of n 
and a/h=10 is shown in Figs. 14-15. The 
distribution of nondimensionalized normal and 
shear stresses along thickness direction for 
several values of n and a/h=10 is  depicted in 
Figs. 16-20. From the Figs. 16-17, it is noted that 

the nondimensionalized normal stresses 
x̂ and 

ŷ  are tensile at the upper face of the plate and 

compressive at the lower side of the plate when 
n=4  and 10 and compressive throughout the 
plate when n=0, 0.5 1 and 4. The 

nondimensionalized normal stress 
ẑ is tensile 

throughout the plate for n=0, 1, 4, 10 and 
compressive throughout at n=0.5 as seen in Fig. 
18. From Fig. 19, it is seen that the 

xŷ  is 

compressive throughout the plate for all values 
n. But in Fig. 20 it can be noticed that the 
transverse shear stress

yẑ  shows both tensile and 

compressive behavior for all values of n. 

 
Fig. 16. Distribution of 

x̂  along z/h of SS FGM 

plates subjected to thermo-mechanical load for 

several values of exponent (a/h=10). 

 
Fig. 17. Distribution of 

ŷ  along z/h of SS FGM 

plates subjected to thermo-mechanical load for 

several values of exponent (a/h=10). 
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Fig. 18. Variation of nondimensionalized normal 

stress (
ẑ )along z/h of SS FGM plates subjected to 

thermo-mechanical load (a/h=10). 

 

Fig. 19. Distribution of xŷ  along z/h of SS FGM 

plates subjected to thermo-mechanical load (a/h=10). 

 

Fig. 20. Distribution of yẑ along z/h of SS FGPs 

acted upon a thermo-mechanical load (a/h=10). 

 

5. Conclusions 

 

A thickness stretching HSDT has been 

developed with nonzero transverse stress on the 

lower face and top face of the SS FG plates to 

estimate deformations and stress acted upon  

thermal/ thermomechanical loads. 

The numerical results estimated by this theory 

were compared to published studies in the 

literature. The results considered with 033 

are well-agreed with the published results in the 

literature.  

The distributions of the properties of the material 

along z/h influence the deformations and stresses 

in FGPs acted upon a thermal and thermo-

mechanical load. The FGPs behavior are not 

necessarily among those at the corresponding 

points in isotropic plates. 
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