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In this paper, the crack propagation and branching in the pre-cracked 

and notched samples have been modeled using nonlocal peridynamic 

theory. The bond-based peridynamic model has been numerically 

implemented which make it possible to simulate various features of 

dynamic brittle fracture such as crack propagation, asymmetries of crack 

paths and successive branching. The fracture simulation of thin plates 

made of a brittle material with different crack and notch patterns has 

been considered. The molecular dynamics open-source free LAMMPS 

code has been updated to implement the peridynamic theory based 

modeling tool for two-dimensional numerical analysis. The simulations 

show that, the simulation time significantly decreases which is the core 

and distracting deficiency of the peridynamic method. Moreover, the 

simulated results demonstrate the capability of peridynamic theory to 

precisely predict the crack propagation paths as well as crack branching 

during dynamic fracture process. The good agreement between 

simulation and experiments is achieved. 
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1. Introduction

The peridynamic theory has been developed to 
introduce a new framework that unites the 
modeling of continuous media and 
discontinuities within it. The mathematical 
description of a solid in classical continuum 
mechanics depends on partial differential 
equations (PDEs). The classical theory has  
provided a reasonable approximation to the 
response of materials in macro-scale. However, 
at smaller scales, micro-scales and even 
interatomic dimensions, it is essential to 

introduce a new description to include the 
modeling of discrete particles and to allow the 
explicit modeling of nonlocal forces known to 
effect the behavior of real materials [1]. Similar 
considerations should be applied to cracks and 
other discontinuities [2-4]. The PDEs of the 
classical continuum mechanics theory do not 
apply directly on a crack or dislocation because 
the deformation is discontinuous. In 
peridynamic theory, the PDEs of the classical 
theory of continuum mechanics has been 
replaced with integral or integro-differential 
equations [5]. These equations are based on a 
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model of internal forces in which material 
points interact with each other straightly over 
finite distances. The peridynamic theory 
evaluates the discontinuities according to the 
same field equations as for continuous 
deformation [6]. It also has the treats discrete 
particles according to the same field equations 
as for continuous media. The ability to treat 
both the nano-scale and the macro-scale within 
the same mathematical framework makes the 
peridynamic theory an interesting method to 
simulate the multi-scale real material. 
The peridynamic theory was first introduced by 
Silling [7] and Silling et al. [8]. They replaced 
the derivatives in classical mechanics with 
integral equations and reformulate the equation 
of motion. The governing equations in the 
proposed model are developed based on the 
concept of continuity within a finite distance, 
horizon, and an internal forces model in body, 
in which the material points (particles) directly 
exert force on each other. Ni et al. [9] using two 
new implicit solution algorithms have 
introduced the static analysis of crack 
propagation problems. They have discretized 
structures via an efficient coupled FEM-PD 
approach and compared the results with linear 
analysis. Silling and Askari [10] presented a 
meshless method based on peridynamics theory 
to find a numerical solution for dynamics 
problems. They also investigated the stability 
and accuracy of this method used to model the 
dynamic brittle crack growth. Kilic and 
Madenci [11] studied the failure and stability of 
structures using peridynamics theory. They 
examined rectangular columns and plates under 
pressure and temperature loading to determine 
the buckling properties of peridynamics 
problems. Ha and Bobaru [12-14] modeled the 
dynamic crack growth and found the 
characteristics of dynamic brittle fracture using 
peridynamics theory. They also examined the 
effective parameters involved in crack 
branching, secondary cracks and instability of 
crack paths. A new peridynamics approach has 
been proposed by Ren et al.  [15] which 
introduces a dual-horizon concept. In that 
framework, the new method to examine crack 
growth based on the dual-horizon peridynamics 
approach was introduced and the obtained 
results have been compared with the bond-
based peridynamics theory. The validity and 
stability of a peridynamic model is evaluated by 
Zhang et al. for fatigue cracking in 

homogeneous and composite materials [16]. 
Peridynamics theory has also been used for 
modeling of delamination growth [17] and 
damage growth prediction in center-cracked 
fiber reinforced composite laminates [18]. 
Consequently, Yu et al. [19] modeled 
progressive damage, fracture and delamination 
in fiber reinforced composite laminates under a 
tensile load with a notch or open hole. Madenci 
et al. [20] have predicted the unguided crack 
paths propagation in isotropic materials under 
complex loads using peridynamics. Problems of 
crack growth in a 4-point shear specimen and a 
compact tension test with a sink and a miss-
hole with a pre-existing crack under mixed-
mode loading conditions are considered in their 
analysis. Littlewood et al. [21] applied modal 
analysis with state-based peridynamics to 
identify characteristic frequency shifts caused 
by structural damage evolution for a simply-
supported beam problem. They compared the 
results of peridynamics against the classical 
analytic solution for the first five structural 
modes. Qian et al. [22] introduced a damage 
analysis model based on a unified cubic lattice 
for peridynamics formulation of an I-beam 
under fixed and impact loads. They concluded 
that for materials containing defects e.g., cracks 
and pores, two key modeling parameters i.e., 
near-field region radius and m-value have a 
significant effect on the path and direction of 
crack propagation. Silling et al. [23] have 
proposed a condition for the appearance of a 
discontinuity in a loaded peridynamic solid 
leading to a material stability condition for the 
spontaneous nucleation of a crack. The stable 
crack growth process in an elastic plate under 
uniaxial tension was studied based on the strain 
energy density criterion. Dong and et al [24] 
presented a new model based on  material 
properties and bond-based peridynamic to 
predicted mode-I crack propagation. Rokkam et 
al. [25] presented a novel micro-chemically 
sensitive peridynamics approach to model 
corrosion damage, corrosion pitting, nucleation, 
crack propagation and branching phenomena 
under synergistic effects of corrosion and 
mechanical loading. Ni et al. [26] used a very 
efficient coupled FEM-OSB-PD (ordinary 
state-based peridynamics) method for modeling 
a complex 3D crack propagation problem in 
brittle materials. The method unifies both 
advantages of classical mechanics efficiency 
and peridynamics flexibility. The adaptive 
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dynamic relaxation approach is also used in 
their analysis as the numerical solution. 
In this research, it has been attempted to 
investigate the crack growth on thin plates with 
different crack patterns based on the 
peridynamic theory. The main goal of this study 
is to implement the bond-based peridynamic 
method in a molecular dynamic code to 
decrease the computational time. Therefore, the 
peridynamic method has been numerically 
implemented in the open source LAMMPS 
code. LAMMPS is a molecular dynamics code 
that has been developed by Sandia National 
Laboratories [27]. The bond based peridynamic 
model is widely used in literature to describe 
the fracture behavior of material. This model 
precisely predict the material behavior up to 
fracture especially for brittle material. The pre-
cracked and notched thin plates made of a 
brittle material were simulated in LAMMPS 
and the crack propagation and branching were 
considered during brittle fracture process. 
 
2. Peridynamic theory 

 
The peridynamic theory implemented the 
integration of nodal forces rather than the 
differential form of the equations of motion 
[28]. Therefore, problems like material 
discontinuities in the classical formulation are 
omitted. Naturally, peridynamics is a nonlocal 
formulation whose material points are 
distributed by a spatial distance interrelated 
with each other. The bond-based peridynamic 
formulation of the equation of motion at a point 
𝐱 and time 𝑡 is [10] 

(1) 

𝜌(𝐱)𝐮̈(𝐱. 𝑡) =  

∫ 𝐟( 𝐮(𝐱′. 𝑡) − 𝐮(𝐱. 𝑡). 𝐱′ − 𝐱)𝑑𝑉𝐱′
 

 ℋ𝑥 
+

𝐛(𝐱. 𝑡)  

 

where 𝐮̈ designates the acceleration vector, 𝐮 
denotes the displacement vector, 𝐛 is the 
applied body force, and 𝜌 is the density. In 
addition, 𝐟 is the pairwise force function which 
is the force per volume squared that the point 
𝐱′exerts on the point 𝐱. Points 𝐱 and 𝐱′  that are 
separated by a distance greater than certain 
distance 𝛿 which called the horizon, do not 
interact in the material model applied at either 
points. The horizon size generally is the 
characteristic size of the nonlocal interaction.  
Material within the horizon of 𝐱 is called the 

family of 𝐱, denoted  ℋ𝑥, in Fig. 1. The relative 
position vector in the reference configuration, 𝛏,  
is called a bond and the relative displacement 
vector is designated as 𝛈. 

 
Fig. 1. The deformation of a point and its family 
based on peridynamic concept. 

 
The balance of the linear momentum and 
angular momentum in the bond-based 
peridynamic would be defined as the following 
relations  

(2) 
f(ξ,η) = − f(−ξ,-η), ∀ξ,η  
(ξ+η) × f(ξ,η) = 0, ∀ξ,η  

 
According to Eq. (2), the forces that two points 
exert on each other are identical in norm with 
opposite direction. Furthermore, these forces 
coincide with the relative position vector in the 
current configuration. For a micro-elastic 
material introduced by Silling [7], the pairwise 
force function is derived from a scalar-valued 
function called the micro-elastic potential 
function: 

(3) 𝐟(𝛏,𝛈) =
∂𝑤(𝛏,𝛈)

∂𝛈
  

 

Silling and Askari [10] suggested a prototype 
microelastic brittle (PMB) material with the 
following pairwise force function: 

(4) 𝐟(𝛏,𝛈) = 𝑐(𝛏)𝑠(𝛏,𝛈)
𝛏+𝛈

‖𝛏+𝛈‖
  

 

where 𝑐 is the bond stiffness called the 
micromodulus and 𝑠 is the relative elongation 
of a bond defined as 

(5) 𝑠(𝛏,𝛈) =
‖𝛏+𝛈‖−‖𝛏‖

‖𝛏‖
  

 
The relation between the micromodulus and the 
isotropic elastic constants is determined by the 
comparison between the strain energy density 
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obtained from the peridynamic theory and the 
strain energy density obtained from the classical 
theory of elasticity for the same loading 
condition. For a microelastic material, the strain 
energy density at a point is the integral of the 
micropotential over its horizon. For a point with 
a horizon located far from surfaces or 
interfaces, the strain energy is defined as [10]: 

(6) 𝑊 =
1

2
∫ 𝑤(𝛏,𝛈)

ℋ𝐱′
𝑑𝑉𝐱′  

 

For the prototype microelastic brittle (PMB) 
material the micropotential function is: 

(7) 𝑤(𝛏,𝛈) =
1

2
𝑐𝑠2‖𝛏‖  

Equaling the density of strain energy in 
peridynamic formulation with the classical 
continuum one under the plane stress condition, 
the micro-modulus is achieved as: 

(8) 𝑐 =
6𝐸

𝜋𝛿3(1−𝑣)
  

where 𝐸 is the classical elastic Young’s 
modulus and 𝑣 is the Poisson ratio. In the bond-
based formulation of peridynamics theory, the 
Poisson ratio is constant for all materials and is 
1/4 for an isotropic and linear micro-elastic 
material. 
The micro-moduli is estimated for material 
points inside the body far from the boundary, at 
least equivalents to a horizon. The micro-
modulus for points closes to boundary is greater 
than other places. It is because the integration is 
done over a reduced domain. In this paper, the 
micro-modulus for the points adjacent to the 
boundary is assumed to be equal to that for 
points inside the body. This makes a ‘softer’ 
material near the boundary which is called the 
peridynamic ‘skin effect’. However, with 
decreasing the size of horizon, the skin effect 
becomes negligible. 
In the bond-based formulation of peridynamics 
theory, it is assumed that the material points are 
connected through bonds and each bond could 
endure a special elongation value, 𝑠0. A bond 
disrupts when its elongation is greater than this 
critical value. This special value is usually 
termed the critical relative elongation parameter 
in literature. Once a bond disrupts, it remains 
broken forever. Based on this idea, the 
deformation of a microelastic material in 
peridynamic formulation is generally history-

dependent. The ’critical relative elongation 
parameter ‘may be calculated using the 
concepts of fracture mechanics. 
Rupture of a body into two portions across a 
fracture plane includes breaking all the bonds 
that linked points in the opposite surfaces. The 
energy per unit fracture length for the rapture of 
the body into two portions is the fracture 
energy, 𝐺0. In 2D, the relation between the 
’critical relative elongation ‘and the critical 
fracture energy is [29]: 

𝐺0 =  

2 ∫ ∫ ∫ (
𝑐𝑠0

2‖𝛏‖

2
) ‖𝛏‖ 𝑑θ 𝑑‖𝛏‖𝑧

𝑐𝑜𝑠−1 𝑧

‖𝛏‖

0

𝛿

z

𝛿

0
      (9) 

For the constant micromodulus, Eq. (8), it can 
be calculated: 

(10) 𝑠0 = √
4𝜋𝐺0

9𝐸𝛿
  

implementing a constant ’critical relative 
elongation ‘causes weaker material in places 
where previously disruption occurred. This is 
completely similar to the skin effect whose 
integration to compute 𝐺0, Eq. (9) is done on a 
smaller area in the broken region or near the 
boundary. If the same 𝐺0 is implemented 
everywhere, that would make a larger ’critical 
relative elongation ‘for points in the broken 
region or near the boundary. Without any 
modification of ’critical relative elongation , the 
material becomes weaker in front of the crack-
tip than other parts of the material. In this paper 
the modification proposed by Silling and Askari 
[10] is applied on ’critical relative elongation. 
According to this modification, the critical 
relative elongation is defined as: 
 

(11) 
𝑠0 = 𝑠00 − 𝛼𝑠𝑚𝑖𝑛 , 

𝑠𝑚𝑖𝑛 = 𝑚𝑖𝑛 {
‖𝛏+𝛈‖−‖𝛏‖

‖𝛏‖
}  

 

Where 𝑠00 and 𝛼 are constants, with 𝛼 typically 
on the order of 1/4. In Eq. (11), the critical 
relative elongation depends on 𝑠𝑚𝑖𝑛, the current 
minimum stretch among all bonds are 
connected to a given material point. 
 
3. Simulation procedure and results 
 
Numerical simulations are effective tools for 
understanding physical phenomena as well as 
laboratory experiments. One of the effective 
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methods to simulate the material behavior in the 
micro and nano scales is molecular dynamics.  
The free open source LAMMPS software is one 
of the more accurate molecular dynamics 
program from Sandia National Laboratories. 
LAMMPS is generally a classical molecular 
dynamics code focusing on materials behavior 
modeling. LAMMPS has potential to simulate 
the solid-state materials, soft matter and coarse-
grained or mesoscopic systems. It can be used 
to model atoms or, more generically, as a 
parallel particle simulator at the atomic, meso, 
or continuum scale. In this software, each point 
of the peridynamic model is assumed to be an 
atom. At first, a regular pattern of points based 
on the geometry of component is established 
and the neighborhood of each point is 
determined. Then, between each point and other 
point in its family, a bond is defined. After 
defining the location of each point, the initial 
velocity and displacement of each point is 
applied and the solution is divided to finite time 
steps. After calculating the interaction force 
between each point in terms of potential 
functions and applying simulation conditions, 
based on the integral form of equation of 
motion the new location and velocity of points 
are estimated in each step. This loop is repeated 
for all time steps, and consequently the 
obtained values are saved in the code outputs. 
As mentioned before, force between each point 
is obtained from potential function. Definition 
of the potential function is the main part of the 
simulation. This function is defined for 
interactions between 𝑁 points as follows: 

∅(𝑟) = ∑ ∅1(𝑟𝑖) + ∑ ∑ ∅2(𝑟𝑖. 𝑟𝑗)𝑗>𝑖𝑖𝑖   (12) 

Where r is the location vector from the center 
of points and ∅1 is the effect of external field 
and ∅2is the interaction between a pair  of 
points. In the peridynamic model, the distance 
between neighborhood points and the size of 
horizon, 𝛿 , should be determined. In this work, 
the distance between each pair of points 
assumes ∆𝑥 = 0.0005 𝑚 and the size of 
horizon is 𝛿 ≅ 4∆𝑥. When the horizon set 
δ≅4∆x, the sufficient particles locate in the 
horizon, more than 32 particles in 2D 
simulation. The values of parameters ( 
𝑐 . 𝑠. 𝛿 𝑎𝑛𝑑 𝛼 ) can be calculated based on the 
mechanical properties of the material. 𝑠 and  
𝛼 are used as a bond breaking criteria, and in 
this work 𝛼 is assumed to be 0.02 which is 

proposed by Silling and Askari [10]. In each 
time step, the elongation of every bonds are 
calculated and compared with the critical value. 
If the elongation of bonds excesses the critical 
values, then the bond would be assumed broken 
and permanently deleted from the model. The 
flowchart of the simulation procedure is 
presented in Fig. 2. 
In the present study, the propagation of crack in 
four sample plates containing pre-crack has 
been investigated. Duran 50 glass, a brittle 
material, used in simulations. DURAN is a 
brand name for the borosilicate glass 3.3 (DIN 
ISO 3585) manufactured by the German 
company DURAN Group [30]. 

 
Fig. 2. Schematic diagram for parallel 
implementations PMB Peridynamics model. 
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Because of its high resistance to heat and 
temperature variations, as well as its high 
mechanical strength and low coefficient of 
expansion, DURAN is used for laboratory 
devices, cathode ray tubes, transmitting tubes, 
and speculums. The mechanical properties of 
this material are presented in Table. 1. 
Where 𝐸 is Young's modulus, 𝜈 is the Poisson 
ratio, 𝜌 is density and 𝐺0 is the critical energy 
release rate. In the bond-based peridynamic, the 
Poisson ratio is a constant value equals 0.25. 
For the brittle materials this value is reasonable 
but for ductile ones the other type of 
peridynamic models should be implemented.  
The first sample plate is a rectangular plate with 
single edge long crack in tension, Fig. 3.  The 
uniform normal stress is applied to the two 
edges of the plate perpendicular to the crack. In 
the simulations, the effect of the applied force 
on the crack propagation behavior is 
considered. Initially, the horizon size is set 
0.002m and uniform tensile stress σ=12 MPa is 
applied. In comparison with plate geometries, 
the horizon size is set 0.002m to guarantee the 
convergence of the results. For horizon size 
smaller than 0.002m the results do not change. 
Moreover, the applied load is selected to ensure 
that the fracture occurs.   
Peridynamic simulation predicts a symmetrical 
crack path with simple branching, Fig. 4(a).  As 
it can be seen in Fig. 4(b), this result coincides 
with the experiments reported by Ha and 
Bobaru [31]. The results were captured at 32μs. 
These results demonstrate that the peridynamic 
method could precisely predict the material 
behavior up to fracture. 
With increasing the applied force, the 
probability of severe crack branching is 
enhanced.  In Fig. 5, the applied load on the 
first sample plate is increased up to 𝜎 =
24 𝑀𝑃a. As it can be seen, increasing the 
applied load causes secondary crack branching. 
This result is confirmed by experiments. In the 
simulation, the secondary crack branching is 
symmetric, but the experimental results show 
different results.  The discrepancy between 
simulation and experiments come from the 
microscale anisotropy and heterogeneous 
behavior of the material. In this work, the 
material behavior is assumed to be 
homogeneous and isotropic. Further 
investigations on secondary crack branching 
will be conducted in the future work. 

The second sample plate is a rectangular center- 
cracked plate. The geometry of this plate is 
depicted in Fig. 6. The uniform stress is applied 
to the two edges of the plate perpendicular to 
the crack direction. 
In the simulation, the applied stress is 1.45 
Mpa. Fig. 7 shows the crack propagation paths. 
The crack path is perpendicular to the applied 
load direction and no crack branching is 
observed inside the plate. However, the 
branching phenomena occurs near the edges. 
The crack propagates symmetrically in the path 
parallel to the initial crack direction. Moreover, 
the branching near the edges happens 
symmetrically. 
The third sample plate is a rectangular plate 
containing a circular hole subjected to uniform 
remote stress. No pre-cracked is defined in this 
model. The configuration of this plate is 
illustrated in Fig. 8. 
 

Table 1. Values of the model parameters. 

Material 𝜌 E(GPa) 𝜈 𝐺0(J/𝑚2) 

Duran 50 glass 2235 65 0.2 204 

 

 
Fig. 3. Configuration of the first sample plate. 
 

 

(a) 

 
(b) 

 
 

Fig. 4. (a) Crack propagation in the first sample 
plate with the horizon size and applied stress equal 
0.002m and σ=12 MPa, respectively; (b) 
Experimental result. 
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(a) 

(b) 

Fig. 5. (a) Crack propagation in the first sample 
plate with the horizon size and applied stress equal 
0.002m and σ=24 MPa, respectively; (b) 
Experimental result. 

Fig. 6. Geometry of the second sample plate. 

(a) 

(b) 

(c) 

Fig. 7. Crack paths in second plate sample (a) at 
t=6μs, (b) at t=13μs and (c) at  t=28μs. 

Fig. 8. Configuration of the third sample plate. 

(a) 

(b) 

(c) 

Fig. 9. Crack paths in third plate sample  at (a) 𝑡 =
10𝜇𝑠, (b) 𝑡 = 40𝜇𝑠, and (c) 𝑡 = 90𝜇𝑠. 
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The purpose of this simulation is to examine the 

effect of the stress concentration on the crack 

growth path. The external load equals σ=10.5 

Mpa is applied to the two edges of the plate. As 

it can be seen in Fig. 9, the crack initiates from 

the hole and grows symmetrically to the edges.  
 

 
Fig. 10. Geometry of a fourth sample plate. 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 11. Crack paths in fourth plate sample (a) t=34, 
(b) t= 42 𝜇𝑠, (c) t= 60 𝜇𝑠. 

It is predictable that the crack initiation occurs 

near a location with the maximum stress due to 

the stress concentration. In this sample plate, 

the crack propagates without branching. The 

fourth, and the last sample plate is a rectangular 

plate containing a circular hole and a single 

edge crack subjected to uniform remote stress. 

The shape of this plate is shown in Fig. 10. 

This simulation examines the effect of the stress 

concentration on the crack growth path when a 

pre-crack exists. The external load is σ=25.5 

Mpa. The length of the crack is chosen in such 

a way that the stress around the crack and hole 

does not influence each other. As it can be seen 

in Fig. 11, cracks initiate from the hole and 

concurrently the edge crack grows into the 

plate. All cracks propagate in the path 

perpendicular to the loading direction. Finally, 

the cracks join together and divide the plate into 

two parts. In the fourth sample plate, the crack 

also propagates without branching. 
 
4. Conclusions 

 
In this paper the fracture analysis and crack 

propagation in the pre-cracked and notched thin 

plates using bond-based peridynamic theory 

have been considered. The method has been 

numerically implemented in the open source 

LAAMPS code. LAMMPS is a molecular 

dynamics code. In this work, the LAMMPS 

code has been updated to implement the 

peridynamic method. This significantly 

decreases the simulations time which is the core 

deficiency of the peridynamic method. The pre-

cracked and notched thin plate made of a brittle 

material were simulated in LAMMPS and the 

crack propagation and branching considered 

during the brittle fracture process . 

The simulated results show that the 

peridynamic theory is a powerful method to 

simulate the fracture processes. The simulation 

of the four sample plates with different crack 

and notch patterns confirms that this nonlocal 

method could precisely predict the crack 

propagation path as well as crack branching. It 

should be mentioned that the disadvantage of 

the peridynamic method which is the 

computational time consuming is depressed. 
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