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1. Introduction

Along with the strong development of the 

economy, the demand for infrastructures has also 

increased rapidly: roads, urban areas, industrial 

parks and commercial centres are being built in 

ever-increasing numbers. To meet this demand, 

there has been a rapid development in machinery 

for foundation work. One machine to which a 

great deal of attention has been paid is the 

hydraulic static-pile-pressing machine 

(hydraulic static-pile driver), which has many 

outstanding advantages [1]. However, studies of 

this machine have mainly focused on its work 

assembly, such as its mechanisms of pile 

clamping, pile pressing, moving, and the like. 

The above calculations mainly concern one of a 

number of specific machine assemblies: 

calculating and designing the hydraulic system 

[2–9]; and calculating and designing the detailed 

steel structure or the details of machine assembly 

[10–13] from the static point of view. There have 
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been many studies on the dynamics of 

construction machines and of cranes, especially 

boom cranes [14–21]. There are also works that 

only studied beams on an elastic foundation by 

Hamilton’s principle, but have not studied the 

whole machine [22–28]. 

During the process of equipment use, when the 

crane lifts and slews a pile, the pile will vibrate 

around the hanging point of the cable at the top 

of the boom crane with a certain trajectory in 

space. This oscillation of the pile will create a 

dynamic force in the cable, the vertical-motion 

cylinders and the steel structure. It is necessary 

to study the dynamic parameters (displacement, 

velocity, acceleration and force) in different 

working cases of the crane to determine the 

dynamic coefficient, optimise the design of the 

steel structure and calculate the fatigue strength 

and dynamic stability of the machine at work; to 

which an insufficient amount of attention has 

been paid by designers.  
This paper will present the results of a study on 
the dynamics of the machine using a six-degree-
of-freedom spatial-dynamic model for the 
typical working cases of the machine: pile 
lifting, pile slewing, and lifting and slewing at 
the same time. Details will be presented in the 
next sections. 
 

2. Pile-lifting and pile-slewing dynamics 
of the machine 
2.1. Introduction to the hydraulic static-pile-
pressing machine  
 
Hydraulic static-pile-pressing machines (Fig. 1) 
are commonly used to press round concrete 
piles, square piles, H-sections and prefabricated 
concrete piles with hard foundations in areas 
where noise and vibration are strictly regulated 
like around old buildings or in urban areas. The 
machine is capable of pile up. In addition, this 
machine is equipped with a hydraulic crane for 
lifting. 
First, the pile is supplied to the piling machine 
using a crane mounted on the machine, and then, 
it is inserted into the pressing frame and fixed by 
the hydraulic cylinders. Then, the pressing 
cylinders press the piles into the ground. To 
move, the footsteps of the machine will be 
controlled and co-ordinated by hydraulic 
cylinders along the vertical and horizontal 

footsteps such that the machine can move 
forwards or backwards or rotate with a small 
angle [1]. 
 
2.2. The study of the dynamics of the machine 
during simultaneous lifting and slewing of piles 
2.2.1. Model description 
 
In Fig. 2, the pile is suspended at a certain height, 
and the operator will set the lifting mechanism 
into rewind. The pile will then be lifted, and at 
the same time, the crane will be slewed to take 
the pile into the pressing frame. 

When the boom crane starts to lift and slew the 

pile, it should be mounted on the machine, 

making an initial angle  with the X-axis. The 

model does not take account of the deformation 

of the ground, the steel structure of the 

equipment or the boom of the crane. When the 

crane is working, because the chassis of the 

equipment and the counter-weight are very 

heavy, it is possible to consider the crane slewing 

mechanism attached to the chassis as fixed 

(without oscillation). When the lifting 

mechanism is working, the slewing mechanism 

of the crane co-operates simultaneously. Other 

mechanisms of the device (pile clamping, pile 

driving and moving) are not working.  

 

 
(a) 

 
(b) 

Fig. 1. A photograph (a) and sketch (b) of a hydraulic 
static-pile-pressing machine. 
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Fig. 2. Model of the dynamics where the machine lifts 
and slews a pile at the same time. 

 
When the driver starts the engine to slew the 

crane, the lifting mechanism continues to work, 

and the suspended pile continues to be lifted with 

displacement q2. When the crane is slewing, the 

pile is considered to be suspended at the top of 

its boom (point B in Fig. 2). The pile and the 

crane rope swing in the vertical plane containing 

the hoist (X1O1Z1) at an angle of q3, swinging in 

a plane perpendicular to plane (Y1O1Z1) at an 

angle of q4. The displacement time of the 

rotation of the hydraulic-slewing motor is 

represented by q5, and the rotor has an angular 

displacement of q6. 
 

2.2.2. Formulation of the equations of motion 
 
To derive the differential equations of motion, 
the second-order Lagrange equations of the 
following form were used: 
 

    
− + + = 

    
i

i i i i

d T T U
Q

dt q q q q


, with i = 1–6.  

 (1) 
 

The positions of point masses m2, m3 and m4 are 

given by 

X2 = X0 + L2.cos(q6 + α) (2) 

Y2 = L2.sin(q6 + α) (3) 

Z2 = H2 (4) 

X3 = X0–L3.cos(q6 + α)  (5) 

Y3 = -L3.sin(q6 + α) (6) 

Z3 = H3 (7) 

and 

X4 = X0+(L+f0.sinq3.cosq4).cos(q6+α) 

        - f0.sinq4.sin(q6+α) (8) 

Y4 = (L+f0.sinq3.cosq4).sin(q6+α) 

        + f0.sinq4.cos(q6+α) (9) 

Z4 = H - f0.cosq3.cosq4   (10) 
 

respectively. 

The associated speeds are the time derivatives of 

the positions, and the absolute speeds are the 

vector sums of the x, y and z components: 
 

2 2 2 2= + +i i i iV X Y Z , i = 2,.,4  (11) 
2 2 2 2 2 2

2 2 2 2 2 6= + + =V X Y Z L .q

 

 (12)
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 (13) 

2 2 2 2 2 2 2
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2 2 2 2 2
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2
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2
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Q 2 4 Q 2

V =q +(f -q ) cos q .q +(f -q ) .q

      +[L +(f -q ) (sin q cos q +sin q )

      +2L(f -q )sinq cosq ].q

      -2Lsinq .q q -2(f -q ) cosq sinq cosq .q q

      +2(f -q )(Lcosq +(f -q )sin 3 4 6q ).q q

 

(14) 

 

The kinetic energy of the system is defined as 

follows. The total kinetic energy, T, must be 

expressed by means of generalised coordinates. 

It is the sum of the individual contributions from 

all mass elements: 
 

2 2 2 2 2 2

1 1 2 2 3 3 4 4 5 5 1 6

1 1 1 1 1 1

2 2 2 2 2 2
= + + + + + ZT q m V m V m V q q     

  (15) 
 

Substituting values V2, V3 and V4 into the 

kinetic-energy equation, we have 
 

2 2 2 2 2 2 2 2 2

1 1 2 2 6 3 3 6 4 2 Q 2 4 3

2 2 2 2 2 2 2

Q 2 4 Q 2 3 4 4

2

Q 2 3 4 6 4 2 6

2

Q 2 3 4 4 3 6

1 1 1 1
T= θ q + m L q + m L q + m {q +(f -q ) cos q .q

2 2 2 2

    +(f -q ) .q +[L +(f -q ) (sin q cos q +sin q )

    +2L(f -q )sinq cosq ].q -2Lsinq .q q

     -2(f -q ) cosq sinq cosq .q q

  2 2

Q 2 4 Q 2 3 4 6 5 5 Z1 6

1 1
  +2(f -q )(Lcosq +(f -q )sinq ).q q }+ θ q + θ q

2 2

  (16) 

The dissipation function of the system is given 

by 
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( )
22

1 2

1

2
= −a K Rq q    (17) 

 

The potential-energy function of the system is 

the sum of the contributions of the potential 

terms and is expressed in generalised 

coordinates as follows: 
 

( ) ( )
2 2

1 2 4 4

1 1
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( )5 2 6= −q i q

   

(22)

 

 

The extensive forces are given as 

 

( )

( )

1 1 2 3

4 5 1 6

0 0

0

= = =

= = = cq

Q M q ; Q ; Q ; 

Q ; Q M q ; Q M
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After rearranging the equation, the system of 

differential equations of motion of the study’s 

mathematical model was derived. This system 

can be represented in a matrix form as 
 

2

1 2 2 3 3 6 6 2+ + + + + + =i i i i i iMq K q K q q K q q K q q K q Sq f   

 (24) 
 

where the vector components are defined in the 

Appendix. Eq. (24) represents a system of six 

second-order non-linear differential equations. 

This system was solved numerically using the 

fourth-order Runge–Kutta method. A computer 

program was developed using MATLAB–

Simulink to solve these equations. 

 

2.2.3. Determination of the dynamic force acting 

on the footsteps (hydraulic cylinders) of the 

hydraulic static-pile-pressing machine when 

lifting and slewing piles. 

 

Consider the weight of the machine, which is 

distributed evenly over the four footsteps:  

 

4 2 2
= 

yx
j

MMG
R

b a
, (j = 1 – 4)

   

(25) 

m 2 3 QG G G G G= + + +
 

(26) 

 

The momentum on the OX2-axis is defined as  

 

2 2 6 3 3 6

6

= + − +

+ +

x

c

M G .L .sin( q ) G .L .sin( q )

        F .L.sin( q )

 



   

 

(27) 

and that on the OY2 axis is defined as  

 

2 2 6

3 3 6 6

= + +

− + + +

y lt

lt c lt

M G [L L .cos( q )]

       +G [L L .cos( q )]+F [L L.cos( q )]



 
 

 (28) 

 

Here, Gm is the weight of the machine, G2 is the 

weight of the boom crane, G3 is the weight of the 

counter-weight, GQ is the weight of the pile, and 

Fc is the tension in the cable (Fig. 3). 

Therefore, the force applied to each footstep is 

given by 

 

1 2

3 4

4 2 2 4 2 2

4 2 2 4 2 2

= + + = − +

= − − = + −

y yx x

y yx x

M MM MG G
R ; R ; 

.b .a .b .a

M MM MG G
R ; R

.b .a .b .a

 
(29)

  

 
Fig. 3. Model for determining the force acting on the 

footstep cylinders when the machine lifts and slews a 

pile at the same time. 

Xo

L3
L2

L



Y2

X=X2

Z

O

X1

X

Z1

m2

K

S1

O

Y

q6

O1

m3

O1

m2

m4

q6

O2

a a

b
b

(1)

(2)(3)

(4)
Llt

m3

G3

Gm GQ

Fc(t)

m4

G2

mm



JCARME                                     Research on the dynamics of . . .                                       Vol. 11, No. 1 

195 

 

When the mathematical model program is used 
to simulate simultaneous lifting and slewing of a 
pile followed by braking of the slewing 
mechanism, we obtain the results given below.  
The pile is cranked up when the cable (hoist) is 
stretched while being rotated at the same time. 
At the 20th second, lifting is halted and slewing 
commences. By the 30th second, slewing ceases. 
This program simulates 45 s of movement. After 
running the computer program, the results 
presented in  Figs. 4-17 are obtained. 
 

  
Fig. 4. The angular displacement of the hydraulic 

motor, q1 [rad]. 
 

 

Fig. 5. The rotating speed of the hydraulic motor, 1q  

 
Fig. 6. The displacement of the pile, q2. 

 
Fig. 7. Velocity of the pile, 2q  

 
Fig. 8. The shake angle of the pile in the vertical plane 

containing the hoist (X1O1Z1), q3. 

 
Fig. 9. The angular velocity of the pile in the vertical 

plane containing the hoist (X1O1Z1), 3q . 

 
Fig. 10. The shake angle of the pile in the plane 

perpendicular to that containing the hoist (Y1O1Z1), 

q4. 
 

 
Fig. 11. The angular velocity of the pile in the plane 

perpendicular to that containing the hoist (Y1O1Z1), 4q . 

 
Fig. 12. The angular displacement of the hydraulic 

motor, q5. 

 
Fig. 13. The rotating speed of the hydraulic motor, 5q . 

 
Fig. 14. The angular displacement of the slewing 

mechanism, q6. 



JCARME                                                  Vinh V. Nguyen, et al.                                           Vol. 11, No. 1  

 

196 

 

 
Fig. 15. The rotating speed of the slewing 

mechanism, 6q . 

 
Fig. 16. The dynamic force in the hoist when lifting 

and slewing the pile. 
 

 
Fig. 17. The forces on the footstep cylinder Rj (j = 1–
4) by the rotary angle of the rotor q6. 
 
Comment: 

During the lifting and slewing process, the 

mathematical model results above show that the 

dynamic parameters vary greatly at the 

beginning of the process and then stabilise to 

their mean values. 

Figs. 4 and 5 show that the rotation speed of the 

hydraulic-lifting motor varies from 0 rad/s to a 

stabilisation value of 52.6 rad/s in about 4 s. By 

the 20th second, we start to brake the hydraulic-

lifting motor, and its rotation speed tends 

towards zero. 

In Fig. 6, the pile is vertically displaced from 0 

to 3.5 m over 20 s. As shown in Fig. 7, the 

velocity of the pile oscillates for 5 s as the pile 

begins to lift to a maximum height of 0.279 m/s 

and then oscillates around the stabilisation value 

of 0.162 m/s. From 20 s onwards, the pile 

velocity tends towards 0 m/s. 

From Figs. 8 and 9, it can be seen that the shake 

angle of the pile in the XOZ plane oscillates 

around the value 0 rad and that the maximum 

angular-amplitude value is 0.052 rad at 15 s. The 

angular rotation of the pile in the YOZ plane 

oscillates around 0 rad, and the maximum 

angular amplitude is 0.042 rad at 27 s (Figs. 10 

and 11). 

The rotation speed of the hydraulic-lifting motor 

oscillates around an average of 51 rad/s, and its 

maximum value is 57.3 rad/s at 0.4 s (Figs. 12 

and 13). 

From Figs. 14 and 15, the rotation speed of the 

slewing mechanism oscillates around an average 

of 51 rad/s, with a maximum of 57.3 rad/s at 0.4s. 
The dynamic force in the hoist also varies 
tremendously in 5 s (Fig. 16), since the pile is 
lifted up and slewed simultaneously. The 
maximum dynamic force at the starting time is 
9,353 N; then, the value stabilises at 7,848 N. 
In Fig. 17, when starting pile lifting and slewing, 

the values R1, R2, R3, and R4 fluctuate around 

their averages. At the start of slewing from 0° to 

60°, the R1 and R4 values increase, whereas R2 

and R3 decrease. When slewing from 60° to 

120°, the reaction values R1 and R2 decrease, 

whereas R3 and R4 increase. When slewing from 

120° to 180°, R1 and R4 decrease, whereas R2 and 

R3 increase. The variable-force values are shown 

in Table 1. 

 

3. The measurements 

 
The purpose of these measurements is to 
determine the dynamic parameters of the 
hydraulic static-pile-pressing machine in the 
field. The results of these measurements are used 
to calculate the dynamics of the machine for 
comparison with the mathematical model 
results, and to draw conclusions about the 
accuracy and reliability of the dynamic model. 
 

 

Table 1. Forces acting on the footstep cylinders for various slewing angles of the pile. 

Forces acting on the 

footstep cylinders 

Angular displacement 

q6 (0 to 60) q6 (60 to 120) q6 (120 to 180) 

R1 (N) (1.89–1.92)×106 (1.92–1.82)×106 (1.82–1.74)×106 

R2 (N) (1.89–1.73)×106 (1.73–1.66)×106 (1.64–1.74)×106 

R3 (N) (1.35–1.33)×106 (1.33–1.40)×106 (1.40–1.51)×106 

R4 (N) (1.35–1.49)×106 (1.49–1.55)×106 (1.55–1.51)×106 
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To achieve this goal, the experimental protocol 

is as follows: 

• determine the basic parameters for 

calculating the dynamics of lifting and 

slewing piles; 

• compare the empirically measured 

parameters with theoretical calculations to 

draw conclusions about the validity of the 

dynamical model. 

To achieve the above aims, the experimental 

measurement should determine the working 

parameters of the hydraulic static-pile-pressing 

machine as follows: 

• determine the dynamic force in the crane 

rope during lifting and slewing of the pile; 

• determine the dynamic pressure in the 

footstep cylinders during lifting and slewing 

of the pile. 
The load cell (Bongshin, Korea-DSCK20T) 
measures the dynamic force in the crane rope and 
the installation position between the pile and the 
hook of the crane. The pressure sensor (Huba 
Control, Switzerland-520.954S) measures the 
pressure in the footstep cylinders (Figs. 18 and 
19). This sensor is attached to the oil pump for 
the high-pressure chamber of the footstep 
cylinders. 

 
 

 
Fig. 18. The layout of the measurement 

equipment used on the machine when lifting and 

slewing piles. 

4. Comparison of the mathematical model 

and measurement results 

 

After conducting the measurement, we 

compared the mathematical model and the 

experimental results of the dynamic forces in the 

crane rope in Figs. 20-21. 

 

   

  
Fig. 19. The installation position of the load cell and 

the pressure sensors on the machine.  

 

 
Fig. 20. Dynamic force in the rope when starting to 

lift and slew the pile simultaneously (from 0 to 10 s). 
 

 
Fig. 21. Dynamic force in the rope when braking the 
slewing mechanism while slewing the pile (from 30 
to 40 s). 

 

Table 2. Dynamic-force coefficients in the process of lifting and slewing a pile. 

Working process of 

machine  

Theory Experiment 

Fmax (N) Ftb (N) ksi Fmax (N) Ftb (N) kex 

Starting lifting pile 9354.8 7848.0 1.19 9224.7 7848.6 1.18 

Braking slewing pile 8106.0 7848.0 1.03 8080.7 7848.3 1.03 

 

 

Tension 

and load 

cell 

Pressure 

sensor 

 

Pressure 

sensor 

 

Pressure 

sensor 

 

Computer 

Pressure 
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A/D converter 

Load  
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Pressure 
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Table 3. Comparison between the mathematical model and measurement deviation in the case of lifting and 

slewing a pile. 

Type of data Symbol Starting lifting pile Braking slewing pile 

Theory 

max ( )capF N  9354.8 8106.0 

( )tb

capF N  7848.0 7848.0 

lt  1506.8 258.0 

Experiment 

max ( )capF N  9224.7 8080.7 

( )tb

capF N  7848.6 7848.3 

tn  1376.1 232.4 

Deviation 100%lt tn

lt


 − 

= 


 8.64% 9.76% 

 

Comment 

 

From Fig. 20 and Table 2, we see that, when the 

operation of the crane commences, the simulated 

dynamic force in the crane rope increases for 

about 0.5 s and then fluctuates around an average 

value of Fcab = 7,848 N. The simulated dynamic 

coefficient is ksi = 1.19. Similarly, in the 

experiment, the frequency of fluctuation is 

smaller, but longer and oscillates around the 

average value Fcab = 7,848.6 N. The 

experimental dynamic coefficient is kex = 1.18. 

In terms of shape, the simulated curves are 

relatively consistent with the experimental ones.  

In the progress of braking the slewing 

mechanism (Fig. 21 and Table 2), the simulated 

dynamic-force oscillation decreases and then 

fluctuates around an average value of Fcab = 

7,848 N; the simulated dynamic coefficient is ksi 

= 1.03. Similarly, in the experimental case, the 

frequency of fluctuation is smaller but longer, 

and oscillation occurs around the average value 

Fcab = 7,848.3 N. The experimental dynamic 

coefficient is kex = 1.03. 

The simulated dynamic coefficient is greater 

than the experimental dynamic coefficient, and 

the dynamic coefficient when lifting is larger 

than that when braking or slewing the pile 

(Tables 2 and 3). 

The mathematical model and measured results of 

forces on the footsteps of the machine are 

compared in Figs. 22-25. 

 

 

 

 

 

 
Fig. 22. Force on the 1st footstep cylinder of the 

machine when lifting and slewing a pile. 

 
Fig. 23. Force on the 2nd footstep cylinder of the 

machine when lifting and slewing a pile. 

 
Fig. 24. Force on the 3rd footstep cylinder of the 

machine when lifting and slewing a pile. 
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Fig. 25. Force on the 4th footstep cylinders of the 

machine when lifting and slewing a pile. 

 
Comment 
From Figs. 22–25, it can be seen that, when 
starting the crane and slewing, the values of R1, 
R2, R3 and R4 vary depending on the rotational 
angle of the slewing mechanism. At the start of 
slewing from 0° to 60°, the reaction-force values 
R1 and R4 will increase, whereas R2 and R3 will 
decrease. When the pile rotates from 60° to 120°, 
the reaction-force values R1 and R2 will 
decrease, whereas R3 and R4 will increase. When 
turning from 120° to 180°, the reaction-force 
values R1 and R4 will decrease, whereas R2 and 
R3 rise. The changes in these values are shown 
in the table below (Table 4). 
From Figs.  20-25, it can be seen that the graphs 
of the cable dynamic force and the force acting 
on the footsteps are the same between the 
mathematical model and the experiment, 
confirming the correctness of the model and 
input value when the calculation is performed 
according to the theory. 
 

 

 

5. Conclusions 

 
In this paper, the mathematical model of the 
hydraulic static-pile-pressing machine during 
pile-lifting and pile-slewing motion with five 
mass elements and six degrees of freedom is 
presented. Three point masses and two inertial 
masses are used, enabling a realistic 
mathematical description of the actual behaviour 
of the machine. Lagrange equations were used to 
derive the equations of motion, and a computer 
program was developed by MATLAB–Simulink 
to solve these equations. The non-linear 
mathematical model has no restrictions in term 
of small angles of the pile sway, making it 
possible to study the behavior of the machine-
mounted crane   under real working conditions. 
To validate the reliability and correctness of the 
model, the authors conducted experimental 
measurements on an actual machine at a 
construction site. Then, the results of the 
empirical measurement were compared with 
those of the mathematical model. The deviation 
between the two results is in the range of 8–10% 
because of the assumptions made to simplify the 
dynamic model. 
From the mathematical model, it is possible to 
survey the factors affecting the mechanical 
stability of the machine during the process of 
lifting and slewing of a pile. Our results can be 
used to calculate and optimise the steel structure 
of the crane in terms of the fatigue and longevity 
of the machine. 
The mathematical model can be further 
developed to study the dynamics of other types 
of hydraulic static-pile-pressing machines. 
 
 

Table 4. The values of forces on the footstep cylinders for various rotary angles of the pile. 

Theorical 0 to 60 60 to 120 120 to 180 

R1 (N) (1.89–1.92)×106 (1.92–1.82)×106 (1.82–1.74)×106 

R2 (N) (1.89–1.73)×106 (1.73–1.66)×106 (1.64–1.74)×106 

R3 (N) (1.35–1.33)×106 (1.33–1.40)×106 (1.40–1.51)×106 

R4 (N) (1.35–1.49)×106 (1.49–1.55)×106 (1.55–1.51)×106 

Measurement 0 to 60 60 to 120 120 to 180 

R1 (N) (1.86–1.94)×106 (1.94–1.81)×106 (1.81–1.72)×106 

R2 (N) (1.88–1.75)×106 (1.75–1.73)×106 (1.73–1.75)×106 

R3 (N) (1.36–1.37)×106 (1.37–1.41)×106 (1.41–1.49)×106 

R4 (N) (1.37–1.46)×106 (1.46–1.54)×106 (1.54–1.55)×106 
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Appendix 
 
The ZYJ860B machine is used for measurement 
and simulation. The input values of the ZYJ860B 
machine used in Eq. (24) are as follows: 

1  = 0,051 kg.m2; 
5  = 0,11 kg.m2; 

1Z  = 8 kg.m2; 

i1 = 6,54; i2 = 500; g = 9,81 m/s2; a = 6; R = 
0,00176; m2 = 5000 kg; m3 = 5510 kg; m4 = 4800 
kg; S1 = 1090581 N/m; S2 = 50 Nm/rad; K = 2400 
Ns/m; fQ = 12 m; L = 6 m; L2 = 2,8 m; L3 = 2 m; 

0 ;= o
6( ). . (q ) N.m= − +cq d QM G G sign .  

The vector components of Eq. (24) are as 
follows: 

 

( )

( )
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4 2 4 4 2 4
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4 2 2 2 3 4
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2 2 3 3
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− − −
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2

Q Q 3 4

Q 4 Q Q

Q 3 4 4 Q Q 4

m m L.sin q

m ( f q ) cos q m ( f q ) cosq sin q cosq

m ( f q ) m ( f q ). ( f q )sin q L cos q
Mq

m L m L

m L sin q m ( f q ) .cosq sin q cosq m ( f q ) ( f q )sin q Lcosq





1

2

3

4

2

1 5

2
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2 2

4 2 4

 
 
   
   
   
   
   
   
   + +
   
   + + − +  
 
 + − 

Q

Q

q
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Q Q 3 4 Q
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K q
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1
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22
62 3 4 2 4

0 0 0 0 0 0

0 0 0 0

   
   
   
   
   
   
   
   
   − −   4 Q 4 4 Q

q

q

q
.

q)

q

qm ( f q ) sin q sin q cosq -m ( f q )L.sin q
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