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Article info:  Abstract 
Engineering materials and structures have crack-like defects leading to 
premature failures. The usage of fracture mechanics to assess the structural 
integrity requires knowledge on the type, location, shape, size, and 
orientation of the flaws. Tomographic reconstruction is one of the 
commonly used nondestructive testing methods for flaw characterization. 
The cross sectional image of the object being tested is obtained through the 
application of various reconstruction methods that are categorized as either 
analytical methods or iterative methods. In this work, an iterative algorithm 
that works on the principles of genetic algorithms is developed and used 
for the reconstruction. The results of simulation studies on the tomographic 
reconstructions using genetic algorithms for the identification of defects in 
isotropic materials are discussed in the paper. The solution methodology 
based on the use of genetic algorithms is applied to reconstruct the cross 
sections of test specimens with different flaw characteristics. Simulated 
time-of-flight data of ultrasound rays transmitted through the specimen 
under investigation is used as input to the algorithm. The time-of-flight data 
is simulated neglecting the bending of ultrasound rays and assuming 
straight ray paths. Numerical studies performed on several specimens with 
flaws of known materials but unknown location, size and shape are 
presented. The number of ultrasonic transmitters and receivers needed for 
complete scanning of the specimen’s cross section is analyzed and 
presented. The findings of the parametric analysis and sensitivity analysis 
in order to choose appropriate range of algorithm parameters for 
performance quality and robustness of the algorithm are presented. The 
performance of the present algorithm with noisy projection data is also 
discussed. 
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1. Introduction  

 
In many real world applications one needs to 
have an idea of the internal structure of a given 
object without ravaging the object. For example, 

medical personnel require diagnosing the health 
condition of the internal organs in a non-invasive 
manner. On similar lines, an aircraft needs to be 
thoroughly inspected for its structural integrity at 
regular intervals of time for being certified as 
flight worthy. This is not just a desirable feature 
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but a compulsion to get sanction from authorities 
like the safety and quality assurance [1]. As a 
matter of fact, all types of engineering materials 
and engineering structures have some form of 
defects or flaws which may eventually lead to 
catastrophic failures. In view of the above, 
engineers are interested in assessing the presence 
of internal defects in engineering materials and 
structures  through non-destructive evaluation 
(NDE) methods. Fracture mechanics helps the 
structural integrity assessment of engineering 
materials and structures considering the flaw 
characteristics like the type, location, shape, 
size, and orientation of the flaws. Computed 
tomography (CT) is widely used as a non-
invasive method with different reconstruction 
methodologies. In this work, an enhanced 
reconstruction procedure based on the 
application of genetic algorithms [2] is proposed 
and tested for various possibilities of flaws in 
engineering materials and structures prior to the 
recommendation of tomographic reconstruction 
with genetic algorithms.. The proposed 
methodology works on the collection of 
ultrasound time-of-flight (TOF) as the projection 
data and the application of genetic algorithms for 
detecting the presence of multiple inclusions of 
known physical properties in a given test 
specimen. Specifically the number, shape, size 
and location of inclusions can be acquired. 
The goal of tomography is to use projections in 
order to estimate the distribution of material 
densities across the cross-section of an object in 
a nondestructive manner. The projections are 
obtained from suitable energy interactions with 
the object and the material distribution is 
visualized as an image which mathematically is 
represented as a function f(x, y) [3]. The process 
is technically referred to as reconstruction. 
Tomography is thus an inverse problem and the 
process of solving this inverse problem is called 
image reconstruction. CT has been in utilization 
in medical settings since the 1970s and in recent 
times there is an ongoing interest in the industrial 
applications like NDE of fabricated steel 
structures, electronic circuit boards, multi phase 
fluid flows, homeland security, nuclear fuel 
assemblies, food packaging, and reinforced 
concrete structures [4-9]. The mathematical 
basis for tomographic imaging was laid down by 
Johann Radon in 1917, who showed that an exact 
representation of an object can be obtained from 
a complete set of its projections. This 
mathematical process called the Radon 

transform has become the basis for X-ray 
tomography, that is also used in geophysics [10]. 
This latter application used stress wave 
velocities in solid materials, and accordingly can 
be additionally utilized as a part of the 
recognition of deformities in structural 
materials. With reference to NDE of engineering 
materials, tomography is a method for looking 
through an object in order to visualize the 
characteristics (shape, size and location) of 
defects inside the object. As the technique is 
non-invasive in nature, the cross-section images 
of an object can be obtained without causing any 
damage to the structural integrity of the object 
being investigated. To accomplish this, a 
specific physical property of the materials 
involved is estimated using projection data 
obtained by the interaction of one of the several 
forms of energy like ultrasound, x-rays and γ-
rays with the object under investigation. The 
specific physical phenomenon chosen depends 
on the character of the materials in the specimen 
being evaluated. Ultrasound tomography (UT) 
[11, 12] has been the choice for flaw detection in 
engineering materials since a long period. 
However, other NDE methods have become 
popular due to the characteristic property of 
bending of the ultrasound wave in heterogeneous 
media. Even then, UT has been shown to be a 
suitable, simple and economical procedure for 
prediction of various flaw characteristics, 
provided the properties of specimen material and 
defects are known to be approximately uniform 
(impedance mismatch is below ten percent) [3]. 
Acoustic wave attenuation and time-of-flight are 
the commonly acquired projection data used for 
reconstruction. With acoustic wave attenuation 
as the projection data, the reconstructed cross 
section is a visualization of the attenuation map. 
When the projection data is ultrasound time-of-
flight, the reconstructed cross section is the 
image of slowness distribution. Slowness is the 
reciprocal of phase velocity of the acoustic wave 
through the object being scanned. In this work, 
reconstructions are based on time-of-flight data. 
After the projection data is acquired through 
scanning the object, its radiating cross-section is 
treated as a function f(x, y) analogous to some 
characteristic material property of the object and 
is to be estimated using suitable procedures. The 
process is referred to as ’reconstruction‘ and the 
reconstructed cross-section is represented as an 
image. Mathematically computed tomography 
reconstruction can be expressed as: P=AF+E, in 
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which P is the acquired projection data vector 
that serves as input, A is the projection matrix, F 
is the unknown data vector to be reconstructed or 
found, and E is the reconstruction error vector. 
The objective of reconstruction is thus a problem 
of minimization of E [13] and several 
reconstruction procedures are in use with each of 
the methods having their pros and cons. Most 
tomographic reconstruction techniques in use 
can be categorized into one of the two major 
classes of reconstruction algorithms, the first 
being analytic or transform methods and the 
second class being iterative or expansion 
methods. 
The basis for analytic methods, also called direct 
or transform methods, is the projection slice 
theorem or the central slice theorem (CST). The 
CST establishes the relationship between the 2D 
Fourier transform of the cross-section of an 
object and the scanned projection data. The 
theorem states that the one-dimensional Fourier 
transform of a projection obtained at an angle is 
the same as the radial or central slice taken 
through the two-dimensional Fourier domain of 
the object at the same angle. Filtered back 
projection (FBP) and convolution back 
projection (CBP) algorithms are the most 
extensively used analytic reconstruction 
procedures. Widely used iterative methods 
include algebraic reconstruction technique 
(ART) and its variants, simultaneous iterative 
reconstruction technique (SIRT), simultaneous 
algebraic reconstruction technique (SART), 
multiplicative algebraic reconstruction 
technique (MART), and simultaneous 
multiplicative algebraic reconstruction 
technique (SMART). The principal steps that are 
common to all iterative techniques are: (i) 
starting with an initial image guess that will be 
improved in an iterative manner, (ii) calculation 
of corrections aimed at improving the current 
image, (iii) application of the calculated 
corrections to the current image, and (iv) 
checking for convergence to terminate the 
iterative process. Different algorithms stated 
above differ in the way corrections are calculated 
and applied [3, 13-16].  
Analytic procedures are very fast but are 
applicable only when complete projection data 
can be acquired along sets of straight ray paths. 
The disadvantage of iterative techniques being 
much slower is outshined by their  ability to 
handle irregular sampling geometries, 
accommodate for refraction effects on scanning 

rays, reconstruct even when complete projection 
data is not available, and make use of any 
available apriori information in the 
reconstruction process. With iterative methods 
the reconstruction problem is no more than an 
analytic one but is converted to a combinatorial 
format which makes it appropriate to use GAs 
for solving the problem. Iterative methods also 
suffer from ill-conditionality and multi-modality 
due to discretization and here lays another 
motivation for using genetic algorithms. GAs are 
appropriate in solving continuous as well as 
discrete problems and ensure global 
convergence as the search is population based. 
On the other hand, reconstruction techniques 
based on classical optimization procedures 
might get stuck in a local optimum as they work 
on the basis of iteratively improving a single 
initial solution guess. GAs are search and 
optimization procedures modeled on the basis of 
natural selection principles of biological 
evolution. Introduced by John Holland and later 
extended by Goldberg, GAs have been applied 
to solve a wide range of optimization problems 
with objective functions that are continuous, 
discontinuous, stochastic, etc. In recent times, 
GAs are increasingly finding applications in the 
field of computed tomography as well [17-23]. 
The principal steps in the implementation of 
GAs which are evolutionary algorithms are 
illustrated in Fig. 1. 
 
 

 
 
Fig. 1. Principal iterative steps in a genetic algorithm 
cycle. 

 
Ultrasonic tomography that implements genetic 
algorithms for reconstruction of an object cross-
section with an inclusion of known physical 
properties is discussed in [2]. A detailed 
description of various tomographic techniques 
including the mathematical basis and the 
applications of tomography is covered in [3]. A 
state-of-the-art one on various X-ray CT 
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technologies deployed in the manufacturing, 
food, electrical and electronic industry is 
provided in [5]. Also, it includes a brief overview 
of the technological advances as well as 
challenges to be addressed in industrial CT 
systems. Transmission tomography of isotropic 
materials (rubber, aluminium) using ultrasound 
TOF as the scanned data and the FBP algorithm 
for reconstruction is discussed in [6].  The 
application of X-ray CT for the assessment of the 
flexural behavior of the reinforced concrete is 
presented in [8]. The application of tomographic 
reconstruction for the inspection of nuclear fuel 
assemblies is discussed in [9]. The mathematics 
of ultrasound CT imaging using straight line 
reconstruction equations is presented in [10]. 
The basic principles of ultrasound tomography 
along with its applications, sensors technology 
and related software, that are key to its success 
are described in [12]. The mathematical concepts 
of popular reconstruction methods, the principal 
differences among each of them and their 
applications to different problems are detailed in 
[13-16]. The concepts and application of GAs 
for tomographic reconstructions are discussed in 
[17, 19-22]. 
Implementation of the proposed two stage 
ultrasound tomography process is detailed in the 
following sections. The first stage is concerned 
with the acquisition of the projection data (that 
in the present case is the simulated TOF data). 
The second stage is elucidated with the 
reconstruction of the object cross-section with 
GAs. The second stage of UT deals with a binary 
coded genetic algorithm reconstruction 
(BCGAR) procedure. The reconstruction results 
are obtained and conclusions are drawn for 
different test cases. 

2. Stage-1 of UT -  acquisition of projection 
data

Data acquisition is concerned with the collection 
of experimental or simulated projection data that 
serves as input to one of the reconstruction 
procedures employed for obtaining the cross- 
sectional image of the test specimen. In 
ultrasound tomography, the projection data is the 
attenuation of the wave energy and/or time-of-
flight of ultrasound interacting with the material. 
This study uses the time-of-flight data and is 
based on the fact that the time-of-flight through 
a specimen without any defect will be different 
from  the one when the specimen has a defect.  In 

Fig. 2 two representative signals detected by 
ultrasound receivers after transmitting through 
two test specimens, one without defect and the 
other having an inclusion of a different material, 
are shown. With reference to an ultrasound 
signal collected by a receiver transducer, the 
arrival time corresponding to the first peak of the 
signal is taken as the TOF between the 
transmitter and the receiver as shown in Fig. 2. 

Fig.  2. Ultrasound signal from an object with no 
defect versus an object with a defect. 

In this study, the TOF data is simulated 
following the procedure described in this 
section. In view of the availability of only finite 
amount of projection data that equals total 
number of ultrasound transmitter-receiver pairs, 
the tomographic reconstruction problem is 
solved by discretizing the specimen in the form 
of a grid of square cells with each cell assumed 
to represent the slowness value corresponding to 
specific materials. With a discretized model, the 
property being reconstructed can no longer be 
represented in a functional form and hence there 
is a need for representing the cross-section as an 
image. 
In this application of Gas, referred to as binary 
coded genetic algorithm reconstruction 
(BCGAR) methodology, the specimen is 
assumed to have a maximum of three 
homogeneous materials known priori with one 
of the materials forming the objects mass and the 
other two distributed as inclusions. The TOF of 
ultrasound rays is simulated by representing the 
cross-section of specimen under consideration as 
a grid of integer values corresponding to 
different slowness values that characterize 
different materials. In this study, the base or 
parent material is represented by 0 (zero) while 
two different inclusion materials are represented 
as 1 (one) and 2 (two). Thus, programmatically 
any cross-section of the specimen is simply a 
square matrix of integers 0s (zeroes), 1s (ones), 
and 2s (twos). The size of this matrix is the 
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resolution of the image with each of the different 
materials distinguished by different colors.  
Fig. 3(a and c) show how the cross-section of a 
representative specimen is stored as grids of 
integers while the corresponding display of the 
cross sections as images are illustrated in Fig. 
3(b and d). It should be  noted that this type of 
coding is slightly different from the conventional 
binary coding followed in a GA. While in the 
conventional binary GA all variables are coded 
as a string of binary digits, in the present 
problem, since priori information on the number 
of different types of materials that can be present 
is assumed to be known, each material type is 
distinguished from the other by assigning a 
different integer value. The integer value itself 
doe not change during the GA process as it 
represents the known slowness value of the 
corresponding material. Despite the differences 
the approach presented, it can be categorized as 
a binary GA based methodology in view of the 
functions of the GA operator’s viz. the selection, 
crossover and mutation operators. 
 
 

(a)  (c)  
 

(b)  (d)  

 
Fig. 3. Representations of specimens in the proposed 
algorithm; (a) & (c) representation in the program, 
and (b) & (d) visual display of the corresponding 
specimens. 

 
Next, the TOF data is acquired by positioning a 
number of ultrasound transmitters and receivers 
(labeled as A, B, C, D) around the specimen in 
different configurations such that the maximum 
area could be covered by the rays and also 
sufficient and reliable data could be obtained. In 
this study, the transmitters and receivers are 
positioned following the modified cross-hole 

geometry having the advantage of acquiring 
more number of projections from the same 
number of transducers in addition to having 
symmetry in data acquisition and better angular 
coverage. Fig. 4 illustrates this feature. 
Thus the ultrasound transducers (transmitters 
and receivers) can be arranged in six different 
ways referred to as config1, config2, config3, 
config4, config5 and config6 following the 
modified cross-hole geometry for collection of 
TOF data as illustrated in Fig. 5. Observe that in 
config1 arrangement the transmitters are on the 
left edge whereas the receivers are on the top 
edge of the specimen cross-section and the 
number of rays is equal to the number of 

transmitters (T ) multiplied by the number of 

receivers  ( R ). With the transducers arranged in 

different configurations     (C ) the total number 

of rays is equal to the number of rays in each 
configuration multiplied by the number of 
configurations in which the transducers are 
arranged. Thus, the input to the algorithm is the 
TOF values of all the rays from all the 
configurations put together. For example, 

considering 3T = transmitters, 3R =

receivers and 6C = configurations, we get 
54T R C  =  TOF readings, which are the 

input to the reconstruction algorithm. This is six 
times more than when the transducers are 
arranged following the simple cross-hole 
geometry shown in Fig. 4(a). It is evident that the 
ray density (number of rays in a grid cell) and 
resulting area of specimen covered increases 
immensely with an increase in the number of 
transducers per configuration. Though an 
increased coverage results in reconstructed 
images of better accuracy and higher resolution, 
with the resulting increase in volume of 
projection data acquired the reconstruction time 
of chosen algorithm also increases. This implies 
that one should carefully choose the number of 
transducers such that a balance is struck between 
the cost of transducers and the accuracy of 
reconstructions. 
 

 
Fig. 4. Comparison of ray coverage; (a) cross-hole 
geometry and (b) modified cross-hole geometry. 

(a) (b) 
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Fig. 5. Six different arrangements of ultrasound 
transmitters and ultrasound receivers, each one is 
referred to as a configuration; (a) config1, (b) 
config2, (c) config3, (d) config4, (e) config5 and (f) 
config6. 
 

The effect of increasing the number of 
transducers on the ray density is shown in Fig. 6 
for the case of a 5x5 grid with one, two, and three 
transducers per edge arranged according to the 
modified cross-hole geometry. Observe that for 
a specific grid size the number of rays through 
the cross-section is higher with higher number of 
transducers; and also note that for each grid size, 
there are minimum transducers to ensure passing 
of at least one ray through every grid cell. Thus, 
to ensure that the full cross-section is scanned 
during the data acquisition a study on the 
required number of transducers must be 
performed. 
In the present study the TOF of ultrasound wave 
is simulated assuming that the ultrasound ray 
from a transmitter to a receiver follows straight 
paths without undergoing any bending. It is 
important to keep in mind that the assumption of 
straight rays is reasonably acceptable only when 
the variation in impedance within the specimen 
is small (less than 10%). In each configuration 
the transmitters are actuated in sequence one by 

one and the path taken by ultrasound rays from 
each of the transmitters to each of the receivers 
is traced. 
For any given ray shown in Fig. 7 the simulated 
TOF is estimated using Eq. (1): 
 

1

N

i ij j

j

TOF D S
=

=
                      (1) 

 
Here, 𝑇𝑂𝐹𝑖 is the time-of-flight of the 𝑖th  ray; 𝐷𝑖𝑗 

is the distance travelled by the 𝑖th  ray in the 𝑗th 
pixel; 𝑆𝑗 is the slowness value of the wave in the 

𝑗th pixel in the direction of the ray path and N is 
the total number of pixels through which the 𝑖th  

ray passes. 
 
3. Stage-2 of UT - binary coded genetic 
algorithm reconstruction (BCGAR) 
procedure 

 
A good number of reconstruction algorithms are 
available which differ primarily in the way the 
problem is formulated, and the solution is 
obtained. In the binary GA algorithm, the 
variables are coded as a string of binary digits 
and selection, crossover; and mutation operators 
are applied repeatedly until convergence on the 
population of binary strings takes place. In the 
present algorithm the cross-section is an array of 
integer values corresponding to slowness values 
(variable) represented as an image as illustrated 
in Fig. 3. The various GA operators are 
repeatedly applied on a population of such 
randomly generated arrays of integers till the 
cross-section of the object closely matches with 
the input projection data. 
The salient features of the present reconstruction 
algorithm are given in the flowchart as shown in 
Fig. 8. Starting with a population of randomly 
generated solutions (cross-section of object), 
each member of the population is assigned a 
fitness value given by Eq. (2).  
 

( ) 2

1 1 1

( ) ( _ ( , , ) _ ( , , ))
C T R

i

l j k

i TOF Pop l j k TOF Specimen l j k
= = =

= −

                                                       (2) 

Here, 𝜙(𝑖) represents the fitness of the 𝑖th 
member of GA population, 𝑇 is the number of 
ultrasound sources or transmitters, 𝑅 is the 
number of ultrasound receivers or detectors and 
𝐶 corresponds to the number of configurations or 
arrangements of transmitters and receivers. 

(a) (b) 

(c) (d)

(e) (f)
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(a)  

 (b)   

(c)  
 

Fig. 6. Increase in ray density with an increase in the 
number of transducers per edge; (a) one transducer 
per edge (b) two transducers per edge, and (c) three 

transducers per edge. 

 
Fig. 7. Estimation of time-of-flight of a ray. 

 

The fitness is taken as the sum of the squares of 
the deviation between the projected data (TOF) 
recorded from the specimen and the projected 
data of the population member being evaluated 
for the corresponding transmitter-receiver pair.  
Observe that the initial population of solutions is 
randomly generated with a coarser starting grid 
size (SGS) and the grids are made finer and finer 
in steps during the reconstruction process of 

achieving the final solution. The best possible 
solution in the current step with a relatively 
coarser grid size is used as a reference or seed 
solution to randomly generate the population of 
solutions with a finer grid that is two times the 
previous grid size. 
 

 
 

Fig. 8. The binary coded genetic algorithm 
reconstruction procedure (sgs: starting grid size). 

 
The grid refinement process is repeated until the 
best possible solution with the final grid size is 
obtained. Thus, the possible location of the 
inclusions is identified quickly during the initial 
steps using coarser grids and later on the focus is 
shifted to the identification of the shape and the 
boundaries of those inclusions. The following 
sections give a detailed description of each of 
these steps. 
The next step is the GA selection operation 
which ensures that better population members in 
the current population of solutions go into the 
mating pool using which child population is 
created by applying crossover and mutation 
operations. It is observed that the performance of 

Freeze 

operation

on 

 (a) 

Solution= best pop 

mwmember 

Selection 
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Elitism 
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tournament selection is better when compared 
with the roulette wheel selection. 
Following the selection operation, the 
population members in the mating pool are 
subjected to crossover operations resulting in the 
creation of new solutions. Three different 
crossover procedures viz., row crossover, 
column crossover, and block crossover operators 
are defined and applied on selected population 
members of mating pool. In the block crossover 
operation new solutions (children) are created by 
interchanging respective portions of the grids of 
the two identified mating pool members 
(parents). In the row crossover operation, 
corresponding rows of parents are interchanged 
to create child solutions. In the case of column 
crossover operation, respective columns of the 
chosen parents are interchanged to create child 
solutions. The parents from mating pool, the 
location and the size of corresponding portions 
to be interchanged in the chosen parents are all 
picked randomly. The row crossover, column 
crossover, and block crossover operations are 
illustrated in Fig. 9. It is observed that the 
performance of block crossover operator is 
better than the other two crossover strategies. In 
view of this, all results reported in this paper are 
those obtained by applying the block crossover 
operation. 
Next, mutation operations are performed on a 
few randomly chosen individual child 
population members formed after crossover. 
Two different procedures of mutation operation 
viz., bitwise-mutation and block-mutation are 
defined and applied. In the bitwise-mutation 
operation chosen cells of the selected population 
member are randomly assigned a value that is 
different from the current value. In the block-
mutation operation block of nine cells around the 
randomly chosen cell is updated with the cell 
value appearing most number of times in the 
block. The bitwise-mutation operation and 
block-mutation operation are illustrated in 
Fig.10 (a and b) respectively. 
It is important at this stage that the good 
solutions resulting from crossover and mutation 
operations are carried forward through the 
following generations. Towards ensuring this, 
the concept of elite preservation is introduced 
into the algorithm. 
For this the child population after mutation is 
merged with the initial (parent) population and 
few best population members amongst the 
merged population are picked which are referred 

to as elites. The elites thus picked are ensured to 
propagate through subsequent generations until 
a member superior to the elite in terms of fitness 
is generated. The best elite amongst the set of 
elites having the least fitness is saved as the 
solution with the current grid-size. In case the 
current grid-size equals the final grid-size, the 
solution obtained is reported as the final solution 
of the reconstruction process and the process 
terminated else current solution is refined as 
described in the following sections; and all 
previous steps applied repeatedly till the solution 
with required final grid-size is achieved. 
 
 

 
Fig. 9. Different crossover strategies; (a) row 
crossover (b) column crossover and (c) block 
crossover. 

(a) 

(b) 

(c) 
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The resulting solution having a relatively coarser 
grid-size that is less than the final grid-size is 
now refined to a finer grid (larger grid-size), say 
double the current grid-size. This refinement is 
achieved by splitting each cell in the current 
solution into four cells and assigning each of 
these cells with the same value as in the parent 
cell being refined. Subsequent to the refining 
step certain cells are identified which need not 
be considered as variables in the next steps and 
all these are frozen applying a freeze operator. 
To accomplish this, the value of each cell in the 
refined solution is compared with the values in 
its surrounding eight cells. When there is a 
perfect match the value in the cell under 
consideration is frozen. The refining and 
freezing operations are as illustrated in Figs. 11 
and 12 respectively. 
 

 
Fig. 10. Illustration of mutation operations; (a) bit 
mutation and (b) block mutation. 
 

 

Fig. 11. Solutions; (a) before refine (b) after refine. 

 

 
 
Fig. 12. Solutions; (a) before freeze and (b) after 
freeze. 

 
The new finer grid solution obtained after 
refinement and freezing, is used as a reference or 
seed to create new initial population of solutions 
having the finer grid (grid-size of the seed 
solution). The initial population is updated with 
each member solution created by assigning 
random values to the unfrozen cells 
corresponding to the seed solution while leaving 
the values in the corresponding frozen cells 
unaltered. The various steps in GA procedure 
described are repeatedly applied until the final 
solution of required resolution (grid-size) is 
obtained. The maximum number of generations 
per step and the best misfit in a population being 
less than a certain specified value are used as the 
termination criterion for the reconstruction 
algorithm. For larger resolutions estimated time 
for reconstruction could also be used as the 
termination criteria. 
 
4. Results and Discussion 
4.1. Simulation of TOF data 
  
Before proceeding to apply the present algorithm 
for the reconstruction of different cross-sections, 
it is necessary to estimate the minimum number 
of transducers required for simulating the 
projection data. All ray traces are performed 
neglecting the bending effects; and to justify this 
maximum contrast between the slowness of the 
three materials assumed is taken to be less than 
10%. The slowness is nothing, but the inverse of 
wave propagation velocity which can be 
determined using the relation is given by Eq. (3). 
 

l

E
c


=

                                (3)

 

 

Here, lc = wave propagation velocity in m/s, 𝐸 

= Young’s modulus in GPa and 𝜌 = density in 

kg/m3. 

(b) (a) 

(b) 

(b) 
(a) 

(a) 



JCARME                                               Shyam Prasad Kodali, et al.                                    Vol. 11, No. 1  

 

236 

 

Table 1 lists the properties of the materials used 

for simulating the projection data in the present 

study. Keeping in view of the assumption of 

straight rays, the three materials assumed to be 

present are either from one of the two groups: the 

first group consists of brass, copper and zinc and 

the second group consists of aluminum, iron, 

nickel and steel ensuring that the contrast in the 

slowness values is not more than 10 %. 

Fig. 13 illustrates the ray coverage for two grid 

resolutions 5x5 and 10x10 for different number 

of transducers locations. The basis for deciding 

on the minimum number of transducers required 

is that at least one ray passes through each cell in 

the discretized model. This is because of the fact 

that each cell has one variable to be determined 

and every ray passing through the cell 

contributes to the calculation of that misfit 

function during the reconstruction process. 

Observe that the ray coverage of the grid 

increases with the increase in the number of 

transducers locations. A careful scrutiny of the 

ray tracings reveals that for a 5x5 grid with only 

one transducer per side no ray passes through the 

grid cells in the corner. With an additional 

transducer, i.e. two transducers on each side, all 

grid cells are covered. For the case of 10x10 grid 

configuration, in addition to the corner grid cells 

there exist eighty grid cells through which no ray 

is traced. 

 
Table 1. Properties of materials  (viz., Young’s 

modulus, E (GPa); density, 𝜌 (kg/m3); Poisson’s ratio,

 ; and wave propagation velocity, lc  (m/s)). 

Mate-rial E 𝜌 μ lc  

Brass 100 8400 0.36 3400 

Copper 125 8900 0.35 3750 

Zinc 100 7140 0.25 3700 

Aluminium 72 2700 0.34 5160 

Iron 210 7800 0.31 5180 

Nickel 200 8860 0.31 4800 

Steel 200 7800 0.30 5060 

  

(a)  (b)  

(c)  (d)  

(e)  (f)  

 

Fig. 13. Ray coverage as a function of number of 

transducers per side; (a), (b), (c) one, two, and three 

transducers for a 5x5 grid and (d), (e), (f) one, two, 

and three transducers for a 10x10 grid. 

 

A similar observation for the case of a 10x10 

grid reveals that three transducers on each side 

ensure that  all the grid cells are intercepted by at 

least one ray. A careful observation of the ray 

coverage illustrations in Fig.13(f) reveals that 

the rays from each of the transmitters in the mid 

side to the receivers in the middle of 

corresponding sides are coincident with the 

central grid lines. The TOF of such rays cannot 

be evaluated using the procedure outlined in 

section 2 as the rays do not pass through the 

inside of the grid cell but travel along the 

boundaries of the inclusion materials in the 

specimen. As a result, a conflict arises in 

choosing which slowness value is to be used. 

Thus, the minimum number of transducers 

required per side must be chosen not only based  

on the ray coverage but also only after ensuring 

that no ray coincides with the grid lines. 

When one or more rays are found to coincide 

with the grid lines, the problem can be addressed 

in two ways; the first being relocating the 

transducers by a small offset on either side of the 

grid line and the second being to find the next 

minimum number of transducers that satisfy 

both the conditions of ray coverage through all 

grid cells and no ray coincides with the grid 

lines.  

Thus, the minimum number of transducers 

required for simulating is two per side for a 5x5 

grid and it is either three per side with the central 

transducer offset by a small value or four per side 
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for 10x10 grids. Thus, a detailed ray trace study 

must be performed before deciding on the 

minimum number of transducers for simulating 

the TOF data.  Following the procedure, Table 2 

gives the minimum number of transducers 

required such that every grid cell is intercepted 

by at least one ray for of 5x5, 8x8, 10x10, 16x16, 

20x20, and 32x32 grids. 

Table 3 presents a sample of complete simulated 

projection data for the case of a central offset 

square defect illustrated in Fig. 14(a). The 

slowness of the parent material and the inclusion 

is corresponding to that of nickel and steel 

respectively. With three transmitters and 

receivers located on each side following the 

modified cross-hole geometry, there is a total of 

fifty-four (54) rays each giving us one time of 

flight projection data. Table 3 shows the 

simulated TOF of first nine rays traced with 

transducers located as shown in Fig. 5(a). 

 

4.2. Reconstructions of cross-sections 

 

To demonstrate the efficacy of the present 

methodology, it is applied to reconstruct cross-

sections of a number of specimens. The 

specimens have been chosen so as to 

demonstrate the capability of the algorithm in 

handling different grid resolutions, shapes of 

inclusions, and locations of inclusions, different 

inclusion materials, and contrast in the property 

being reconstructed. Results showcasing the 

variations are illustrated in Fig. 14. As outlined 

in Section 2, the specimens considered in the 

study are assumed to have at most three different 

materials whose slowness is known priori. In the 

representation of cross-sectional images, the 

three materials are shown in different 

colors/grey shades. The images in Fig. 14(a, b, c, 

e, f, g) correspond to specimens with only two 

different materials whereas the images in Fig. 

14(d, h, i) correspond to specimens with three 

materials. While the images in Fig. 14(e), Fig. 

10(f), and Fig. 10(j) correspond to 

configurations with a single inclusion located 

centrally, the images in Figs. 14(a) and Fig. 

10(b) correspond to configurations with the 

inclusion located at some offset. The images in 

Fig. 14(c, d, h, i) represent the case of multiply 

located inclusions. 

 

Table 2. Minimum number of transducers required 

per side for each of the grid resolutions. 

Grid 

reso-

lution 

Min.  

transduce

rs reqd. 

Remarks 

5x5 2 Acceptable 

8x8 

3 

Some rays coincident with grid 

lines, to avoid the condition 

offset the transducers or use 

four transducers per side. 10x10 

16x16 

7 

Some rays coincident with grid 

lines, to avoid the condition 

offset the transducers or use 

eight transducers per side. 20x20 

32x32 14 Acceptable 

 
Table 3. Simulated time-of-flight for the specimen in 

Fig. 14(a) with three transducers on each side 

arranged as shown in Fig. 5(a). 

Config. 
Ray 

no. 
Ray from 

transmitter 
Ray to 

receiver 
Simulated 

tof (ms) 

1 

1 
T1 

R1 1.6467 
2 R2 1.8834 
3 R3 2.2836 
4 

T2 
R1 1.0214 

5 R2 1.3704 
6 R3 1.8834 
7 

T3 
R1 0.4568 

8 R2 1.0214 
9 R3 1.6467 

 

 
Fig. 14. Representative reconstructions; (a)-(d) 8x8 

grid, (e)-(h) 16x16 grid, (i) 32x32 grid and  (j) 64x64 

grid. 
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Observe that the inclusions range from a simple 
square as in Fig. 14(a, d, e, h, i, j) to relatively 
complex shapes as in Fig. 14(b, d, f, g, i).  In all 
the reconstruction studies the contrast in the 
specimen materials property, Young’s modulus, 
has been taken to vary from 5% to 10% keeping 
in view of the fact that with larger contrast the 
bending of rays will be significant. 
Each illustration comprises of two images: one 
on the left side is the actual specimen cross-
section from which the input projection data is 
simulated; and one on the right shows the image 
of reconstructed cross-section. As outlined in 
section 2, the images are the distribution of 
slowness values across the cross-section. All 
results shown in Fig. 14 are obtained with the 
following common parameter settings: 
population randomly initialized with three 
different slowness values (corresponding to 
three different inclusion materials), size of the 
population is taken to be four times the final 
resolution (grid size), starting grid size of 8x8, 
and crossover probability of 0.8 and mutation 
probability of 0.01. The number of ultrasound 
transmitters and receivers for collecting the 
projection data is taken slightly on the higher 
side equal to half the desired resolution of 
specimen cross-section being reconstructed. 
In Fig. 15, the improvement in fitness is shown 
for the case when the reconstruction algorithm 
starts with a randomly initialized population 
with grid resolution same as the final required 
resolution. This essentially means that 
throughout the reconstruction process the 
resolution of the population is the same as the 
one with which the initial population is 
generated. All the fitness history plots 
correspond to the reconstruction of the cross-
section with materials distribution as illustrated 
in Fig. 15(a) at different resolutions. It can be 
seen that the cross-section considered has three 
different materials with two inclusions, the first 
being square located centrally and the second of 
a rectangular shape located at an offset. The plot 
in Fig. 15(b) is the fitness history plot for 8x8 
grid resolution, while the plots shown in Fig. 
15(c and d) are for 16x16 grid and 32x32 grid 
resolutions respectively. Observe that the fitness 
improvement follows a similar trend with higher 
generations required for finer grids. The 
reconstruction of 8x8 grid resolution required 

sixty generations and as mentioned earlier, the 
grid resolution of GA population all through the 
sixty generations remains the same which is 
equal to 8x8. 

 
Fig. 15. Fitness history plots with a single step 

strategy; (a) reconstructed cross section (b) 8x8 grid 

(c) 16x16 grid, and (d) 32x32 grid. 

 
Similarly, the grid resolution of the population is 
16x16 in all the two hundred twenty generations 
it takes to converge for the case shown in Fig. 
15(c) and it is equal to 32x32 all through the 
seven hundred generations it takes for 
reconstruction of a 32x32 grid resolution cross-
section. 
 

4.3. Multi-step strategy  
 

Fig. 16 demonstrates the improvement of fitness 
with number of generations with a multi-step 
strategy. By multi step strategy we mean the grid 
resolution of the initial population is small which 
is increased in steps as the generations increase. 
Here we start with a coarse resolution (8x8) and 
proceed to finer resolutions (16x16, 32x32). At 
intermediate stages the grid is refined to finer 
grids moving towards the final resolution of the 
cross section being reconstructed. For example, 
observe from Fig. 16(c) that in reconstructing 
cross sections with 16x16 resolutions each grid 
cell of the best 8x8 solution obtained at the 
sixtieth generation is subdivided into finer grids 
of four cells each and all of them are deemed to 
have the same slowness value of that of the 8x8 
mother grid cell.  

The plots in Fig. 16(b, c, and e) are the fitness 

history plots when reconstructing cross-sections 

with 8x8, 16x16 and 32x32 grid resolutions 

(a) (b) 

(c)     (d) 
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respectively. For the sake of clarity, Fig. 16(d 

and f) are the corresponding enlarged views of 

the portions of the plots enclosed in a rectangular 

frame as shown in Fig. 16(c and e).  

Fig. 17 illustrates the reconstruction results when 

a multi-step strategy is applied for the 

reconstruction of a cross-section with 32x32 

resolution. Fig. 17(a) shows the variation in 

misfit with each generation and the 

reconstruction results at intermediate stages are 

shown in Fig. 17(b, c and d). The image in Fig. 

17(b) is the best solution with 8x8 grid resolution 

which serves as a seed to refine the population 

grid from 8x8 to 16x16. Fig. 17(c) shows the best 

solution obtained working with 16x16 grid 

which now serves as a seed for refining the 

population grid from 16x16 to 32x32 resolution. 

Fig. 17(d) shows the final reconstruction result. 

 

4.4. Parametric studies 

 

With a view to understand the sensitivity 

behavior of the present binary coded GA 

reconstruction algorithm to the parameters 

involved, parametric studies were performed for 

a range of values of the population size, 

probability of crossover, and the probability of 

mutation [18]. The results are shown in Fig. 18. 

Fig. 18(d and e) which is an enlarged view of the 

portion of Fig. 18(d) demonstrates the influence 

of population size on the nature of fitness with 

increasing number of generations. In addition, 

the influence of population size on the 

magnitude of the RMS error is also shown in Fig. 

18(f).   

While smaller values of both misfit and RMS 

indicate good reconstruction results, the value of 

misfit as defined by Eq. (2) does not give us any 

estimate of the deviation of the actual physical 

property distribution across the cross section. In 

order to correlate the misfit with the actual 

physical property RMS error is defined and 

calculated after the final reconstructed result is 

obtained. The RMS error is defined here, as the 

square root of the algebraic sum of the squares 

of deviation in physical property in each of the 

corresponding grid cells of the test specimen and 

the reconstructed cross sections. 

It must be kept in mind that this value cannot be 

used as a fitness function while running a GA 

program since in a realistic situation one does not 

have any idea of the actual specimen cross 

section being reconstructed. It is observed that 

the performance of the present algorithm is poor 

with smaller population. One reason for this 

behavior possibly is that there is not enough 

diversity in the population with a small 

population size and the number of generations 

fixed is insufficient to converge within the 

specified acceptable deviation. 

Fig. 18(g) demonstrates the increase in 

reconstruction time with an increase in 

population size. Thus, it should be kept in mind 

that though a higher population helps in 

converging to the desired solution it comes at the 

cost of a higher reconstruction time. Based on 

these observations, a population size equal to 

three to four times the required resolution is 

recommended and the same used in all the 

reconstructions illustrated in our study.  

 

 

 

Fig. 16. Fitness history plots for different resolutions; 

(a) reconstructed cross section, (b) coarse resolution, 

88grid, (c) finer resolution, 1616grid with, (d) 

enlarged view, (e) finer resolution, 3232grid with, 

and (f) enlarged view. 
 

(c) 

(a) (b) 
  

(d) 

(e) (f) 
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Fig. 17. Results of reconstructions with a multi-step 

strategy; (a) variation of misfit with each generation, 

(b) solution with 88grid, (c) solution with 16
16grid, and (d) final solution with 3232grid. 

 

 
Fig. 18. Influence of population size on rms error and 

reconstruction time for a 16x16 cross section; (a) 

reconstructed cross section, (b) twice the grid size, (c) 

Thrice the grid size, (d) fitness versus number of 

generations with, (e) enlarged view, (f) RMS error 

with population size, and (g) reconstruction time with 

population size. 

 

The reconstructed cross-section with the 

population size taken to be two times the grid 

size (2x16=32) and the one obtained with a 

population size more than three times the grid 

size (3x16=48 and above) are shown in Fig. 18(b 

and c) respectively. Fig. 18(a) illustrates the 

specimen cross section from which the 

projection data is collected. 
 

 
Fig. 19. Influence of probability of mutation for 

different grid sizes; (a) reconstructed cross section, 

(b) RMS error with mutation probability with, and (c) 

enlarged view. 

 

 
Fig. 20. Reconstruction results with noisy input 

data; (a) reconstructed cross section, (b) effect of 

noise in the projection data on the fitness history. 

Sample reconstructions for the case of, (c) 1% 

noise, (d) 2% noise, and (e) 3% noise.  

 

 

(a) (b) 

(c) (d) 
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4.5. Effect of noise in the projection data  

 

Results obtained on the performance of present 

algorithm in handling the noise are illustrated in 

Fig. 20. The noise is introduced into the 

simulation data by increasing or decreasing at 

random each of the projection data by a certain 

percentage. This noisy projection data is given as 

input to the present algorithm and the 

reconstruction results analyzed. Fig. 20(b) 

demonstrates the effect of noise in the projection 

data on the fitness history when reconstructing 

the cross section shown in Fig. 20(a). It can be 

seen from Fig. 20(b) that with increasing 

percentage of noise, the reconstruction results 

deviate from the expected result and with a noise 

greater than or equal to 3% the reconstructions 

are unacceptable. Some sample reconstructions 

for the case of 1%, 2% and 3% noise are shown 

in Fig. 20(c, d and e) respectively. 

 

5. Conclusions 
 

A variation of binary coded genetic algorithm 

methodology for the tomographic reconstruction 

of material cross section is discussed and the 

results of numerical studies are presented. The 

reconstructions are performed with simulated 

time of flight data of ultrasound through the 

specimen under investigation. The method 

outlined assumes the specimen has at most three 

materials distributed across its cross section. The 

methodology is shown to be consistent in 

reconstructing specimens with different defects 

in terms of the material, shape, location and 

contrast in the reconstruction property. 

Parametric studies show that a population size of 

three to four times the grid size is appropriate. 

The mutation probability is observed to be 

inversely proportional to the grid resolution. The 

present method is shown to be capable of 

handling projection data contaminated with a 

maximum noise of 2%. The algorithm is limited 

in its application in that the ray tracing is 

performed by neglecting bending of rays and that 

the method assumes the availability of priori 

information of the materials in the specimen. 
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