
381 

J. Comp. Appl. Res. Mech. Eng. Vol. 11. No. 2, pp. 381-395, 2022  DOI: 10.22061/JCARME.2020.6073.1774 

Research paper 

Influence of material and internal support on natural frequencies of thin-

walled cylindrical tanks 

N. Habibia,* and S. Y. Ahmadib

aMechanical Engineering Department, University of Kurdistan, Sanandaj, Iran 
bCivil Engineering Department, University of Kurdistan, Sanandaj, Iran 

Article info: 
Water storage tanks are amongst the essential infrastructures, and the study of 

their natural frequencies plays a pivotal role in predicting and detecting dynamic 

behavior. Therefore, it helps to the uninterrupted operation of an industrial plant 

and the use of tank water in emergencies. This paper studies the influence of 

different shell materials, including steel, aluminum, and laminated composites 

with three types of different fiber orientations, on the natural frequencies of thin-

walled aboveground water storage tanks that have pinned boundary conditions 

at the base. Models investigated in this paper, either the roof is without an 

internal support structure or else a group of columns and radial beams are used 

for supporting it. These huge tanks had the height to diameter ratio of 0.4, and a 

water surface at 90% of the height of the tank's cylinder. The thicknesses of the 

cylindrical shells are tapered. The tanks without internal support included the 

vibrations that affect the cylinder mode shapes or the roof mode shapes or 

simultaneously both the cylinder and roof mode shapes. On the other hand, the 

mode shapes of the tanks with internal support affect predominantly only the 

cylinder. Among the studied tanks, the third type of composite tanks had the 

highest rigidity, and the first type of composite tanks had the lowest rigidity. The 

natural frequencies related to the first modes of vibrations for cylinder and roof 

shells with a wide range of circumferential wave numbers (n) and an axial half-

wave (m) are studied.     
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1. Introduction

The dynamic of thin-walled cylindrical shells 

has been studied in recent decades. The major 

engineering industries require thin-walled 

tanks for the storage and transfer of liquids. In 

recent years, these studies, especially for 

composite shells, have been done more based 

on the theory of classical shells and for very 

small and unrealistic dimensions which, 

consequently makes their results unreliable for 

thin-walled huge tanks. Because most of the 

failures and fractures of these structures are 

caused by dynamic loads, the need to study and 

predict the dynamic behavior of thin-walled 

tanks and cylindrical shells becomes more 

significant than ever before.  
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Free vibration and natural frequencies of thin-

walled cylindrical tanks are one of the most 

important and fundamental dynamical problems 

because it plays a considerable role in predicting 

seismic effects when applying seismic loads and 

determining the stiffness of the structure and, 

therefore, the elimination of possible defects. 

Especially considering that water storage tanks 

are not only used in the industry, and they help 

the environment in avoiding waste of water, but 

also, they play an important role in water 

shortages in emergencies. As a result, 

preservation of these structures against seismic 

effects should be considered. Also, the 

importance of the type of materials used in the 

thin-walled shells of these tanks is not only 

important for seismic subjects but also for 

economic issues. The main papers are mentioned 

in the literature review.     

Mazuch et al. [1] studied the mode shapes and 

natural frequencies of cylindrical tanks partially 

filled with liquid using experiments in the 

technical literature. This study was performed by 

analytical and semi-analytical techniques [2, 3] 

and finite element methods [1, 4]. Goncalves and 

Ramos [4] evaluated the free vibration 

characteristics of a thin cylindrical shell, 

partially or completely filled with liquid, and 

under any variationally consistent group of 

boundary conditions on the lower and upper 

boundaries by a simple modal solution based on 

the underlying ideas of the hierarchical FE 

method.  

A free vibration analysis was performed for 

cylindrical tanks partially filled with liquid with 

variable thicknesses by Han and Liu [3]. They 

obtained the natural frequencies for a tank with 

constant thickness and filled with water by the 

analytical method. The results are close to 

previous results published by Haroun and Tayel 

[5].  

The transfer matrix approach was used by Han 

and Liu [3] for extending the procedure 

formulated for the constant thickness tank to the 

variable thickness case that was solved for the 

empty and partially filled with liquid tanks. 

The natural frequencies for tanks that have their 

bottom plate resting on an elastic foundation and 

which are partially filled with liquid studied by 

Amabili [6] and Amabili et al. [7]. A pinned 

condition at the upper boundary of the cylinder 

were considered for the influence of the roof in 

both studies. Amabili [6] used an artificial spring 

method for the solution of the free vibrations of 

a tank, which is partially filled with liquid. A 

flexible bottom plate and a ring stiffener at the 

cylinder was considered for a tank by Amabili et 

al. [7]. A major effect on the mode shape of the 

shell and minor changes in the frequency was 

concluded by the use of the stiffener.  

Haroun and Housner [8], and Veletsos et al. [9] 

considered the mass-spring analogy for 

modeling the impulsive and convective modes of 

vibration, which are made by hydrodynamic 

pressure of liquid during strong ground motion. 

The impulsive component is the liquid, which 

moves with the tank's wall coincidently, and 

contributes to the fundamental mode of vibration 

of the liquid tank with a very short vibration 

period. On the other hand, independent sloshing 

movement of the liquid in the upper part of the 

tank shell is represented by a convective 

component that is associated with a longer 

period of vibration and has an insignificant effect 

on the response of the tank. For the anchored 

cylindrical tank-liquid systems under horizontal 

motion, the fundamental impulsive modes of 

vibration were reported by Virella et al. [10]. 

They performed the analyses by a finite element 

program and considered the effect of the 

hydrostatic pressure and the self-weight on the 

natural periods and modes. They also studied the 

effect of a fixed roof on the natural periods of 

vibrations of thin-walled steel tanks, which have 

clamped boundary conditions at the base [11]. 

The theoretical background of a simplified 

seismic design method for cylindrical ground-

supported tanks was provided by Malhotra et al. 

[12]. The method considers impulsive and 

convective (sloshing) actions of the liquid in 

concrete tanks or flexible steel fixed to rigid 

bases. 

Balendra et al. [13] summarized the results of a 

numerical investigation of lateral free vibration 

of cylindrical storage tanks by an analytical 

method. Lam and Loy [14, 15] presented a 

straightforward procedure of analysis involving 

Ritz’s procedure, and Love’s first approximation 

theory is used to study the effect of boundary 

conditions and fiber orientation on the natural 

frequencies of thin orthotropic laminated 

cylindrical shells and then carried out a study on 
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the effect of boundary conditions for a thin 

laminated rotating cylindrical shell. The analysis 

was performed using the Love-type shell theory 

and solved by Galerkin’s method.  

The free vibration characteristics of fluid-filled 

cylindrical shells on elastic bases were reported 

by a semi-analytical FE method by Gunawan et 

al. [16] that the fluid domain was defined by the 

potential flow theory. The hydrodynamic 

pressure acting on shells was derived from the 

condition for dynamic coupling of the fluid-

structure. Taut et al. [17] reviewed most of the 

research performed in past years (2000-2009) on 

the dynamic behavior containing vibration of 

composite shells and also studied on the 

advances in the dynamic behavior of shells and 

free vibration behavior of isotropic and 

composite shell panels [18, 19].  

Free vibrations of the laminated composite 

cylindrical shells with clamped boundaries were 

studied by Lopatin and Morozov [20]. The 

calculations were verified by comparison with a 

FE solution. It was demonstrated that the 

analytical described formula provides an 

efficient means for rapid and reliable calculation 

of the fundamental frequency, which can be used 

for the evaluation of the structural stiffness of the 

shells in the design analysis. Liu et al. [21] 

provided an analytical method and closed-form 

vibration solutions that analytically determined 

coefficients for orthotropic circular cylindrical 

shells having classical boundary conditions 

based upon the simplest thin shell theory. 

Guoyong Jin et al. [22, 23] applied a simple 

precise solution method according to the Haar 

wavelet discretization method to the free 

vibration analysis of composite laminated 

cylindrical shells under various boundary 

conditions. They discussed the influences of 

several important aspects containing boundary 

conditions, length to radius ratios, lamination 

schemes, and elastic modulus ratios on natural 

frequencies, and also focused on the free 

vibration analysis of composite laminated 

conical, cylindrical shells, and annular plates 

with different boundary conditions, according to 

the first-order shear deformation theory by the 

Haar wavelet discretization method. Kumar et al. 

[24, 25] provided the reviews concerned with 

recent progress in describing the intricacies of 

mechanical and thermal properties of graphene 

composites. In their research, the utility of the 

dynamic mechanical analysis and 

thermogravimetric analysis applied for thermal 

characterization that has been presented by 

various researchers was analyzed. They 

highlighted the improvements in properties of 

two- and three-phase composites, due to the 

addition of graphene/ CNT, and focused on the 

comparison of various properties of CNT- and 

graphene-reinforced composites in the review. 

In this paper, a case study on water storage tanks 

is presented to highlight the influences of shell 

materials with different mechanical properties 

on the natural frequencies and mode shapes of 

vibrations. Considering that in most studies in 

this field, either only structural issues such as 

different ratios of length to width of empty 

reservoirs have been investigated or only the 

discussion of various mechanical properties of 

composite shells in unrealistic and small 

dimensions; therefore, this paper is distinct from 

other researches because it has considered huge 

tanks with both structural subjects and 

mechanical issues, which are the comparison of 

various types of materials of thin-walled shells 

with different mechanical properties. 
 

2. Tank models 
 

In this paper, a pinned condition at the base is 

considered for the cylindrical tanks, and the 

materials of tanks include a laminated composite of 

graphite-epoxy with different types of fiber's 

rotation angles, steel, and aluminum, with a cone 

roof which either it has the internal support, as 

shown in Fig. 1, or else it is without internal support. 

The columns are fixed to both bottom of the tank 

and ring beams, and the radial beams are connected 

to the cylinder of the tank directly. Also, all of the 

beams and columns are steel. 

The geometry considered in this work has an aspect 

ratio H/D = 0.4, where H and D are shown in Fig. 2. 

The water height is assumed to be HL = 0.9H. The 

thicknesses of the cylindrical shell are tapered as 

indicated in Fig. 2. The section of beams and 

columns are considered of the IPE section with 

dimensions of 0.311m, 0.165m, and 0.0095m in 

height, width, and thickness, respectively. The finite 

element package ABAQUS [26] is used to model 

and perform the computations. Virella et al. [10] 

used this model in their research. Each tank has a 

different shell materials. The differences between 
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graphite-epoxy laminated composites, which have 

different fibers angles, steel, and aluminum are 

investigated in this study. Details of all materials are 

given in Tables 1, 2, and 3. 

 

2.1. Tank-water models 
 

Only those modes corresponding to  the 

impulsive mode in which there is a coupling 

action between  the tank and water are considered 

in this paper.  The liquid is represented with 

acoustic 3D finite elements  based on linear 

theory. In addition, an inviscid liquid is 

considered for the present  research.  Between the 

surfaces of water and the tank cylinder and the 

bottom, the surface tied normal contact is 

assumed which this contact formulation is based 

on a master–slave technique that is both surfaces 

stay in contact throughout the simulation and 

transmit the normal forces between them. No 

sloshing waves are considered in this study, and 

thus no pressure was exerted to the nodes at the 

free water surface. 
 

 

 
Fig. 1. Configuration of the internal support of the 

tank (Lr= the length of rafters, Hc= the height of 

columns, Nr= the number of rafters, and Nc= the 

number of columns). 

 

Table 1. Mechanical properties of steel tank, 

aluminum tank, rafters, and liquid. 

Materials properties Steel Aluminum 
Fluid 

(water) 

Density (kg/m³) 7900 2700            983 

Poisson's ratio 0.3 0.33  

Young's modulus 

(GPa) 
200 70  

Bulk modulus 

(GPa) 
- - 2.07 

 
Fig. 2. Tank model with cone roof: t = cylinder shell 

thickness; tr = roof shell thickness; tr = 0.0127 m (roof 

without internal support); tr = 0.00635 m (roof with 

internal support); tb = bottom shell thickness; tb = 

0.012 m. 

       
Table 2. Mechanical properties of composite tanks. 

Materials properties Graphite/epoxy 
Density (kg/m³) 1586 

Major poisson's ratio 0.3 

Longitudinal elastic modulus (Gpa) 153 

Transverse elastic modulus (Gpa) 10.9 

Shear modulus (GPa) 5.6 

 
Table 3. Fiber's rotation angles of composite tanks. 

Shell's 

thickness 
(mm) 

Layer's 

number 
Composite Composite3 

12.7 

12.0 

9.50 

7.90 

6.35 

10 

10 

8 

7 

6 

Composite1 

[45/−45]𝑠 
 

Composite2 

[0/90]𝑠 

[0/90/45/−45/45]𝑠 
[0/90/45/−45/45]𝑠 
[0/90/45/−45]𝑠 

[0/90/45/-45/45/90/0] 

[0/90/45]𝑠 

 

3. Theoretical formulation for composite 

tanks 

3.1. Energy of shell 

 
The equations of motion of the laminated 

cylindrical shell have been derived based on the 

first-order shear theory. In this theory, the 

middle surface displacement is referenced, and 

the displacements of the other points of the shell 

are related to the middle surface displacement by 

[14]: 

 

( ) ( ) ,, xzxuu xo +=                             (1a)  

( ) ( )  ,, xzxvv o +=                             (1b) 

 ( ),xww o=                                               (1c) 

 

where u₀, v₀, and w₀ are the middle surface 

displacements in the three directions x, θ, and z, 

respectively, as shown in Fig. 3, ψₓ and ψθ are 
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the rotations of the middle surface along x and θ, 

and z is the distance of each point from the shell 

to the middle surface.  

By using strain-displacement formulas in the 

cylindrical system, the strain relations are 

obtained, and the strain vector including the 

middle layer strains, the middle layer curves, and 

the transverse shear values are attained [27]. By 

the stiffness matrix and the rotation matrix, the 

shell strain potential energy is obtained, where L 

is the cylinder length, ε is the strain vector and S 

is the stiffness matrix [14]: 

 

dxRdSU
l

T

shell 


 =
0

2

0
][

2

1
                      (2) 

 

The kinetic energy of the shell is calculated using 

the following expression [14] . 
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where [S] and 𝜀 are the stiffness matrix and 

strain vector, respectively, and for a laminated 

cylindrical shell, 𝜌 can be written as: 

 

( )
=

−−=
N

k

kkkT hh
1

1                                    (4)                   

 

where 𝜌𝑘 is the density per unit length of the kth 

laminate and N is the number of layers. 

 

3.2. The influence of liquid-structure interaction 

on the composite shell vibrations 

  
To investigate the effect of liquid in the tank on 

the vibration of the shell, a mathematical model 

is used to analyze the interaction of solid and 

liquid at their contact surface, which is based on 

the following assumptions [6]: liquid flow is a 

potential flow type, inviscid and incompressible. 

In this section of the study, the linear wave 

theory is applied to represent water. The liquid 

velocity along the cylinder axis is zero.  

The effect of liquid surface waves and 

hydrostatic pressure is not taken into account. 

The kinetic energy of the liquid resulting from 

the movement of the liquid due to the 

displacement of the shell surface is defined as: 

drdxdvrT
R l

flfl 


  =
0

2

0

2

02

1
                 (5) 

 

where v is the velocity, and 𝜌𝑓𝑙  is the fluid 

density. By considering the incompressible 

liquid as well as ignoring the effects of surface 

waves, the potential energy of the liquid will be 

zero. 

 

 
Fig. 3. Layout of laminated shell layers 

 
3.3. Energy potential function and natural 

frequency 

 

By the kinetic and potential energies of the shell 

and liquid, the energy potential function is 

formed as follows: 
 

shellshellfl UTTF −+=                                    (6) 

 

where 𝑇𝑓𝑙 is the kinetic energy of the liquid, 

𝑇𝑠ℎ𝑒𝑙𝑙 is the kinetic energy of the shell, and 

𝑈𝑠ℎ𝑒𝑙𝑙  is the shell strain potential energy. The 

Rayleigh-Ritz method is used to find natural 

frequencies and mode shapes [14, 27]. This 

method is based on the principle of minimum 

potential energy.  

According to this method, in order to minimize 

the potential energy as a function of the 

coefficients A, B, C, D, E, the derivatives of the 

total potential energy must be zero relative to the 

coefficients used in the displacement field and is 

calculated using the following expression:   
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which K is the structural stiffness matrix and M 
is the mass matrix. The K matrix contains the 
geometrical dimensions and physical properties 
of the structures [15]. 
 
3.4. Verification of FE model 
 
For verifying results of natural period of 
vibration gained from FE method with the 
natural period introduced in Eurocode-8 [28], 
IITK (Indian Institute of Technology Kanpur) 
[29], and NZSEE (New Zealand Society for 
Earthquake Engineering) [30] guideline for 
seismic design of liquid storage tanks, modal 
analysis is executed on the model. For the 
aforementioned codes, the analytical solution for 
obtaining the fundamental natural period of 
impulsive mode is as follows: 
 

Eurocode-8: 
 

E

R

s

HC
T i

imp


=                                     (8) 

 

The coefficient Ci is given in Table B.1 reported 
in Eurocode-8. 
 
IITK GSDMA: 
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=                             (9) 

 

The following equation is used to determine Ci: 
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NZSEE: 
 

E

R

k

H
T

h

L
i

61.5
=                                    (11) 

 

Ti is the fundamental mode of impulsive period 
(sec), D is the nominal tank diameter (m), H is 
the maximum design product level (m), tu is the 
equivalent uniform thickness of the tank shell 
(mm), 𝜌 is the density (kg/m³), E is the Young’s 
modulus of elasticity of tank material (Mpa), and 
kh is the period coefficient, which relies on the 
ratio of the height to the radius of the tank. [30]. 

In Table 4, the result of FEM computed by 
eigenvalue modal analysis for the case of a steel 
tank is compared with the analytical solutions 
calculated by different codes and numerical 
result computed by virella et al. [11]. The natural 
period obtaned by FEM is obviosly in acceptable 
agreement with analytical formulations and 
numerical result. 
 
3.5. Validation of finite element mesh 
 
Meshing FE modeling verified to the optimum 
state. The FE package ABAQUS [26] is used to  
perform the computations using S3R triangular 
elements and  S4R quadrilateral elements. The 
S4R is a shell element, which is a 4-nodes and 
doubly curved with hourglass control, reduced 
integration, and finite membrane strain 
formulation.  
A degenerated version of the S4R and a 3-nodes 
with finite membrane strain formulation is S3R. 
High mesh refinement is needed for modeling 
pure bending situations because the element S3R 
has constant bending and membrane strain 
approximations. The triangular elements (S3R) 
are applied in the roof shell, and the quadrilateral 
(S4R) and triangular (S3R) elements are used in 
the cylinder shell and bottom shell for the FE 
model of the tank. The number of shell elements 
used in the FE meshes for the Model is 12170 
elements.  
A 3D view of one of the tank models with its 
corresponding FE mesh is illustrated in Fig. 4. 
The presented water elements in ABAQUS are 
AC3D8R. They are solid, 8-nodes, and linear 
acoustic brick elements. In the model, the water 
mesh has 46278 acoustic elements. The 
boundary conditions are illustrated in Fig. 5. 

 

 
Fig. 4. Typical FE mesh for the model. 
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Fig. 5. Conditions assumed for the 3D tank-water 

finite element model. 

 

Table 4. Comparison between fundamental period of 

vibration obtained from different methods 
Different 

methods 
Fundamental 

period (s) 
Difference 

 (%) 
Eurocode-8 

IITK GSDMA 

NZSEE 

Virella et al. 

Present study 

0.2140 

0.2030 

0.2070 

0.2100 

0.2034 

4.95 

0.19 

1.73 

3.14 

- 

 

4. Numerical results 

4.1. Tanks without internal support 
 

The first 40 natural frequencies for the models 

without internal support tanks, listed in Tables 5, 

are in the ranges of 2.80-5.57, 2.85-5.70, 2.77-

5.61, 2.83-6.26, and 3.06-6.81, respectively, for 

steel tank, aluminum tank, first composite tank, 

second composite tank, and third composite 

tank. For duplicated symmetrical natural 

frequencies obtained, merely the odd natural 

frequencies presented in the table. As shown in 

Table 5, in all tanks without internal support and 

most of the early modes, only roof mode shapes 

can be seen. In the steel tank in 7 modes between 

modes 23 to 35, cylinder modes are predominant 

and in modes 37 and 40, both roof and cylinder 

mode shapes can be seen simultaneously.  

In the aluminum tank, in the 6 modes between 25 

and 33 and 40th mode, only the cylinder mode 

and the modes 35 and 37 both the roof and 

cylinder modes are dominant. In the first type of 

composite tank, there is cylinder mode between 

modes 23 to 40 except for mode 35. In the 

composite2 tank, in the modes 25, 27, 31, 37, and 

40, the cylinder mode is dominant and in the two 

modes, 33 and 35 both the cylinder and the roof 

mode shapes are observed. In the third type of 

composite tank, in the modes 27, 29, and 35, the 

cylinder mode predominant and in modes 31, 33, 

and 37 both cylinder and roof modes are 

observed. 

According to Table 5, in tanks without internal 

supports, in the lower modes, the composite1 

tank vibrates at a lower frequency than the other 

tanks and thus has less rigidity. Then the steel 

tank, the second type of composite tank, the 

aluminum tank, and the composite3 tank, vibrate 

at higher frequencies respectively, and thus the 

rigidity of the tanks is as mentioned. But at 

higher modes, after the first type of composite 

tank, respectively, the steel tank, the aluminum 

tank, the composite2 tank, and the composite3 

tank, vibrate at higher frequencies, which means 

that at the higher modes, the composite2 tank is 

more rigid than the aluminum tank. For the steel 

tank without internal support, the natural 

frequencies ranged from 2.8-5.57 Hz.  

Natural frequencies from 2.85-5.7 Hz, 2.77-5.61 

Hz, 2.83-6.26 Hz, and 3.1-6.81 Hz are obtained 

respectively for the aluminum, composit1, 

composit2, and composit3. For the models 

without internal support, the cylinder modes and 

the roof modes are specified by a wave pattern, 

as shown in Fig. 8. The defined modes as a 

circumferential wave pattern meet the cos(nθ) 

classification, in which “θ” is the angular 

coordinate in the circumferential direction, and 

“n” is the number of circumferential waves, 

described by Amabili. [31] and Williston and 

Haroun [32]. The variations of the natural 

frequencies corresponding to the first cylinder 

and roof modes for the tanks without internal 

support and rafters-supported roofs are presented 

in Fig. 6. 

 

4.2. Tanks with internal support 

 

The natural frequencies of the first 40 modes for 

tanks with internal support are presented in 

Tables 6, which are in the ranges of 4.99-9.42, 

5.65-9.72, 4.77-9.19, 5.08-9.58, and 6.56-11.42, 

respectively, for steel tank, aluminum tank, 

composite1 tank, composite2 tank, and 

composite3 tank. In all of them, only the 

cylindrical shell modes are dominant, resulting 

from the presence of internal supports, so that the 

stiffness of the roof is increased to such an extent 

that the cylindrical shell is the most flexible part 

of the tank.  
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Table 5. Natural frequency for tanks model without 

internal support (Hz). 

Mode Steel Al 
Composite 

1 

Composite 

2 

Composite 

3 

1 2.7997ᵇ 2.8469ᵇ 2.7747ᵇ 2.8301ᵇ 3.0557ᵇ 

3 2.8352ᵇ 2.8854ᵇ 2.8592ᵇ 2.8749ᵇ 3.0747ᵇ 

5 2.9780ᵇ 3.0250ᵇ 2.8713ᵇ 2.9231ᵇ 3.4556ᵇ 

7 2.9928ᵇ 3.0468ᵇ 3.0382ᵇ 3.0384ᵇ 3.4701ᵇ 

9 3.2437ᵇ 3.3048ᵇ 3.3670ᵇ 3.2714ᵇ 3.7515ᵇ 

11 3.4772ᵇ 3.5493ᵇ 3.4390ᵇ 3.5071ᵇ 4.0649ᵇ 

13 3.5819ᵇ 3.6506ᵇ 3.5162ᵇ 3.8209ᵇ 4.1672ᵇ 

15 3.6399ᵇ 3.6903ᵇ 3.7795ᵇ 4.1173ᵇ 4.3038ᵇ 

17 3.9702ᵇ 4.0481ᵇ 4.2003ᵇ 4.2556ᵇ 4.5146ᵇ 

19 4.4190ᵇ 4.5072ᵇ 4.6695ᵇ 4.7285ᵇ 4.9899ᵇ 

21 4.8192ᵇ 4.9170ᵇ 4.6902ᵇ 5.2532ᵇ 5.5238ᵇ 

23 4.9155 5.0158ᵇ 4.7437 5.5676ᵇ 6.0843ᵇ 

25 4.9312 5.0466 4.7582 5.6339 6.1912ᵇ 

27 4.9330 5.0490 4.8372 5.6372 6.5410 

29 5.0264 5.1449 4.8962 5.6865ᵇ 6.5426 

31 5.0346 5.3265 5.0209 5.7411 6.6709ᶜ 

33 5.2044 5.3647 5.1790 5.7534ᶜ 6.6791ᶜ 

35 5.2484 5.5806ᶜ 5.1970ᵇ 5.8174ᶜ 6.6824 

37 5.4558ᶜ 5.5856ᶜ 5.2812 5.9505 6.7725ᶜ 

40 5.5663ᶜ 5.7001 5.6073 6.2553 6.8097ᵇ 

ᵃ The natural frequencies indicate cylinder mode shapes unless  

   otherwise demonstrated. 

ᵇ The natural frequencies indicate roof mode shapes. 
ᶜ The natural frequencies indicate cylinder and roof mode shapes 

   simultaneously. 

 

 
Fig. 6. The natural frequencies corresponding to the 

first cylinder and roof modes, for without internal 

support and rafters-supported tanks. 

 

As shown in Fig. 6, the internal supports have 

almost no effect on the value of the fundamental 

frequencies of the cylindrical shell [11], while 

the internal supports have a considerable effect 

on the roof's stiffness, so that no roof vibration 

modes are observed in the tanks with the internal 

support. Although at modes much higher than 

the modes investigated in this study, the 

vibration of the roof somewhat can be seen, but 

in tanks without internal support which roof shell 

thickness is twice that of the tanks with internal 

support, from the first modes, the roof mode 

shapes can be seen. This indicates that the 

internal support causes the dominant modes to be 

cylinder modes, and the roof modes to be 

predominant in the tanks without internal 

support. Thus, internal supports have a 

significant role in the overall dynamic behavior 

of the tanks.  

According to Table 6, in tanks with internal 

support, composite tank1 vibrates at a lower 

frequency than other tanks, which means that it 

has the least rigidity among the tanks. Then steel, 

aluminum, composite2, and third composite tank 

vibrate at higher frequencies, which means the 

third composite tank has the highest rigidity 

among these tanks. The mode shapes for the 

cylinder in the rafter-supported tank, and for the 

roof in the tank without internal support present 

with a wave pattern around the circumference, as 

shown in Figs. 7 and 8.  

The lateral vibration modes of cylindrical shells 

were classified into two types by Amibili [26], 

Williston, and Haroun [27]. The first type was 

recognized as “cos (θ)” for that a single cosine 

wave of deflection is found, which “θ” is the 

angular coordinate in the circumferential 

direction. The second type was identified as “cos 

(nθ)” for that the deformation of the shell 

corresponds to the number (n) of circumferential 

waves. As shown in Fig. 7, the typical 

circumferential pattern of displacements was 

illustrated here for the rafters-supported tanks, 

which is corresponds to the cos (nθ) 

classification determined in references [26, 27]. 

 
Table 6. Natural frequency for tanks model with 

internal support (Hz). 

 

Mode Steel Al 
Composite 

1 
Composite 

2 
Composite 

3 

1 4.9888 5.0782 4.7689 5.6508 6.5611 

3 4.9901 5.0823 4.7852 5.6563 6.5617 
5 5.0788 5.1778 4.8630 5.7577 6.7017 

7 5.0976 5.1809 4.9213 5.7799 6.7071 

9 5.2516 5.3591 5.0452 5.9665 6.9632 

11 5.3100 5.3951 5.2041 6.0134 7.0179 

13 5.4989 5.6151 5.3026 6.2692 7.3332 

15 5.6429 5.7240 5.6237 6.3778 7.4875 
17 5.8131 5.9372 5.6606 6.6609 7.7987 

19 6.1122 6.1921 6.0058 6.8704 8.1679 

21 6.1830 6.3176 6.2819 7.1328 8.3296 

23 6.6088 6.7536 6.4312 7.5130 8.3501 

25 6.6971 6.7813 6.9048 7.5176 8.9773 

27 7.0805 7.2378 7.1426 7.6789 9.0213 

29 7.4469 7.5352 7.4173 8.2961 9.6699 

31 7.5992 7.7689 7.9670 8.3374 10.0940 

33 8.1863 8.3186 7.9701 8.3446 10.1070 

35 8.7692 8.4671 8.2793 8.9791 10.4290 
37 8.7738 8.9680 8.5271 9.3713 11.2510 

40 9.4212 9.5812 9.1925 9.7247 11.4190 
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5. Comparison between different materials of 

tank  

 

Among the tanks with different materials and 

considering the first impulsive mode of 

cylindrical tanks, in both types of tanks with 

internal support and without internal support, 

according to Table 7 and Fig. 6, the first type of 

composite tank has the lowest natural frequency. 

The natural frequencies of the first impulsive 

mode of the cylindrical shell of the steel tank 

increase about 5%, aluminum tank 6%, second 

type of composite tank 19%, and third type of 

composite tank 38% compared to the 

composite1 tank.  

As a result, the third type of composite tank is 

considerably more rigid than the other types. 

Since graphite/epoxy is used in all composite 

tanks, so they have the same mass and differ only 

in the angles of the fibers. Therefore, the angles 

of the fibers considerably influence the stiffness 

of the composite tanks. 

The difference in the frequencies of the 

impulsive mode in the laminated composites 

indicates the importance of fiber orientation in 

dynamic problems. For the reason that the 

laminated composite mass is lower than steel 

mass, it can be expected that the first type of 

composite tank will vibrate at a higher natural 

frequency. However, it is observed that due to 

the angles of the fibers in the first type of 

composite tank, the stiffness reduces more than 

in other tanks. Therefore, the first type of 

composite tank has a lower impulsive natural 

frequency than the steel tank.   

According to the natural frequency formula, 

which has a direct relation to stiffness and an 

inverse relation to mass, this ratio for steel is 

larger than the first type of composite. It is due 

to the dominance of stiffness over mass. Also, 

this ratio is higher for the second and third types 

of composites compared to the first type of 

composite. Considering that composites have the 

same mass but differ in stiffness, so it proves the 

importance of fibers orientation in the 

composites. Furthermore, this ratio for steel 

shows the fact that mass has a dominant role over 

its high stiffness. 

As shown in Fig. 6 and Table 7, aluminum has a 

higher frequency than the first type of 

composite. 

Table 7. Lowest natural frequency (Hz), for the 

different materials. 

 

Therefore, it has a higher stiffness-to-mass ratio. 

Regarding that, aluminum has a greater mass 

than composite, so it should have higher 

stiffness. Due to the composites having less mass 

and more modulus of elasticity, it can be 

expected that as the second and third types of 

composites, the first type of composite have 

been a higher frequency than aluminum, but the 

only reason for reducing the frequency and 

stiffness is the angles of the fibers in the 

composite1. In the comparison between 

aluminum and steel, aluminum has a lower mass 

and stiffness than steel. However, it has a higher 

stiffness-to-mass ratio, so the natural frequency 

for aluminum is greater than steel. Similarly, in 

the comparison between aluminum and the 

second and third types of composites, the 

composites have lower mass and a larger 

modulus of elasticity. Also, unlike composite 1, 

they have appropriate fibers orientation that 

increases their stiffness, so they have a higher 

natural frequency than aluminum. First vibration 

mode for cylinder tank with/no internal supports 

illustrated in Figs. 7 and 8. 

As shown in Figs. 9 and 10, for the cylindrical 

modes, at the circumferential waves 

corresponding to the fundamental frequencies in 

each of the tanks, the effect of the shell material 

on the natural frequency of the first vibrational 

mode of the cylinder is less because the diagrams 

are closer together. 

Associated with tank cylinder vibration 
Roof condition 

Material 
Without 

support roof 

Rafters-support 

roof 

Steel 

Aluminum 

Composite 1 

Composite 2 

Composite 3 

4.9155 

5.0461 

4.7431 

5.6339 

6.541 

4.9888 

5.0782 

4.7689 

5.6508 

6.5611 
Associated with tank roof vibration 

Roof condition 

Material 
Without 

support roof 

Rafters-support 

roof 

Steel 

Aluminum 

Composite 1 

Composite 2 

Composite 3 

2.7997 

2.8469 

2.7747 

2.8301 

3.0557 

Not found 

Not found 

Not found 

Not found 

Not found 
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Fig. 7. First vibration mode of the cylinder for the 

internal supported tank. 

 

 
Fig. 8. First tank roof vibration mode for non-

internal supported tank. 

 

However, as shown in Table 7, the composite3 

tank has the highest fundamental frequency and 

the composite1 tank has the lowest fundamental 

frequency among all the tanks. 

With increasing the circumferential waves 

number, the effect of shell material on the second 

and third types of composite tanks increases as 

compared to steel, aluminum, and the first type 

composite tanks. And, the diagrams of the 

composites 2 and 3 tanks, which are nearly 

identical at higher circumferential waves, 

compared to the diagrams of steel, aluminum, 

and the composite1 tanks, which are nearly 

identical, there is a significant difference in 

frequencies corresponding to the first vibrational 

mode of the cylindrical part (cylinder mode). As 

the circumferential wave declines, the difference 

of this effect (shell material) between the 

composite 2 and 3 tanks is also observed. As 

observed in Fig. 10, the composite3 tank has a 

higher vibrational first mode natural frequency, 

approximately in all of the circumferential 

waves investigated. By reducing the 

circumferential waves, the composite2 tank has 

the lowest natural frequency compared to other 

tanks. It can be observed in Fig. 9 that in the first 

composite tank, with decreasing circumferential 

wave, the natural frequencies of the first cylinder 

mode are similar to that of the composite3 tank, 

and with the increasing circumferential wave, 

the difference between the frequencies of these 

two tanks increases.  

Aluminum and steel tanks have approximately 

similar frequencies at all circumferential waves, 

as shown in Fig. 9, their diagrams are nearly 

identical over the whole path. Also, as illustrated 

in Fig. 11 for the roof modes, in the 

circumferential waves corresponding to the 

fundamental modes, similar to the result 

obtained for the cylindrical shell, the effect of the 

shell material on the natural frequency of the first 

vibrational mode of the roof is less. 

Fig. 12 illustrates the angular orientation effect 

of fibers of each layer on the vibrational behavior 

of the laminated cylindrical shells. In 

circumferential waves corresponding to the 

fundamental frequencies, as summarized in 

Table 7, the third composite tank has the highest 

natural frequency, and the composite1 tank has 

the lowest natural frequency of the roof modes. 

In all circumferential waves, the composite3 

tank has the highest natural frequency of the first 

roof vibrational mode. 

 

 
Fig. 9. The natural frequency variation of cylinder 

modes versus the number of circumferential wave n 

and axial half-wave number m = 1 for tanks without 

internal support. 
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Fig. 10. The natural frequency variation of cylinder 

modes versus the number of circumferential wave n 

and axial half-wave number m = 1 for tanks with 

internal support. 

 

 
Fig. 11. The natural frequency variation of roof 

modes versus the number of circumferential wave n 

and axial half-wave number m = 1 for tanks without 

internal support. 

 

With the increase of the circumferential wave, 

the steel tank has the lowest natural frequency 

and with the decrease of the circumferential 

wave, initially, the composite1 tank and then the 

composite2 tank have the lowest natural 

frequency of the first roof vibrational mode.  

It can be seen from Figs. 9 and 10 that the 

internal support has approximately no effect on 

the value of the first vibration modes of the 

cylindrical shell corresponding to a wide range 

of the different number of circumferential 

waves. For all tanks, this difference is less than 

2%, which is higher in tanks with internal 

support. Thus, the internal support adds less than 

2% to the rigidity of the cylindrical shell. 

However, it can be seen from Tables 8 and 9 and 

Fig. 13 that the effect of the internal supports on 

the cylindrical shell vibrations is quite evident in 

the small range of the smallest number of 

circumferential waves, in order that the 

difference in natural frequencies between tanks 

without internal support and tanks with internal 

support in the lowest number of circumferential 

waves (n=3) for steel, aluminum, and the 

composite3 tanks is about 8%, for the 

composite2 tank is 7% and for the composite1 

tank is about 16%.  
 

 

Fig. 12. The natural frequency variation of cylinder 

modes versus the number of circumferential wave n 

and axial half-wave number m = 1 for laminated 

composite tanks. 

 

 

Fig.  13. Comparison of the natural frequency of 

cylinder modes with the number of circumferential 

wave n and axial half-wave number m = 1 for tanks 

with internal support and tanks without internal 

support.     

ªLegend: related to tanks with internal support. 
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Table 8. Comparison of the natural frequency of 

cylinder modes with the number of circumferential 

wave n and axial half-wave number m = 1 for tanks 

without internal support. 
Tanks with self-supported roofs 

n Steel Al Composite1 Composite2 Composite3 

3 30.998 31.298 31.855 23.289 36.856 

4 25.674 25.929 30.226 18.277 30.641 
5 21.302 20.568 27.262 14.689 25.494 

6 17.784 17.418 22.305 12.591 21.366 

7 14.750 14.861 17.968 10.841 18.098 
8 12.809 12.922 14.540 9.4353 15.422 

9 10.995 11.092 11.836 8.3756 13.237 

10 9.5204 9.6315 9.8504 7.5157 11.558 
11 8.3740 8.5105 8.3155 6.8824 10.192 

12 7.4156 7.5459 7.1632 6.3709 9.0679 

13 6.6530 6.7786 6.2808 6.0318 8.1851 
14 6.0000 6.1210 5.6268 5.7527 7.5062 

15 5.5818 5.7001 5.1790 5.6372 7.0057 

16 5.2478 5.3640 4.8953 5.6339 6.6709 
17 5.0335 5.1486 4.7565 5.7398 6.5419 

18 4.9307 5.0461 4.7431 5.9505 6.5410 

19 4.9155 5.0486 4.8367 6.2553 6.6821 
20 5.0259 5.1446 5.0209 6.6483 6.9450 

21 5.2039 5.3259 5.2812 7.1217 7.3158 

22 5.4558 5.5806 5.6064 7.6698 7.7830 
23 5.7739 5.9067 5.9875 8.2875 8.3347 

24 6.1497 6.2898 6.4175 8.9714 8.9619 

25 6.5777 6.7264 6.8908 9.7190 9.6579 
26 7.0539 7.2127 7.4059 10.530 10.419 

27 7.5758 7.7458 7.9607 11.404 11.244 

28 8.1415 8.3240 8.5545 12.341 12.132 

29 8.7508 8.9470 9.1876 13.344 13.082 

30 9.4042 9.6163 9.8616 14.413 14.097 

31 10.103 10.326 10.577 15.553 15.181 

32 10.848 11.089 11.337 16.765 16.334 
33 11.643 11.902 12.143 18.053 17.562 

34 12.488 12.767 12.997 19.421 18.867 

35 13.387 13.687 13.904 20.873 20.254 
36 14.344 14.665 14.865 22.415 21.728 

37 15.352 15.697 15.849 24.052 23.293 
38 16.433 16.800 16.931 25.789 24.956 

39 17.582 17.976 18.114 27.634 26.722 

40 18.802 19.226 19.332 29.593 28.599 
41 20.101 20.553 20.626 31.675 30.593 

42 21.482 21.966 22.001 33.887 32.712 

43 22.952 23.469 23.463 36.240 34.967 
44 24.518 25.071 25.018 38.744 37.365 

45 26.186 26.776 26.673 41.411 39.917 

46 27.964 28.596 28.436 44.253 42.635 
47 29.864 30.538 30.316 47.283 45.530 

48 31.894 32.614 32.323 50.512 48.615 

49 34.064 34.834 34.465 53.971 51.903 

 

In contrast to higher circumferential wave 

numbers, the natural frequencies at lower 

circumferential waves in tanks without internal 

support are higher than in tanks with internal 

support. 

It can be concluded that since the circumferential 

waves are less than the number corresponding to 

the fundamental mode, the amount of natural 

frequencies is gradually increased in the tanks 

without internal support, thus in this range of the 

number of circumferential waves, unlike the 

number of circumferential waves corresponding 

to the fundamental mode and the range of 

number of circumferential waves greater than 

that, the cylindrical shell rigidity of the tanks 

without the internal support is greater. 
 

Table 9. Comparison of the natural frequency of 

cylinder modes with the number of circumferential 

wave n and axial half-wave number m = 1 for tanks 

with internal support. 
Tanks with rafters supported roofs 

n Steel Al Composite1 Composite2 Composite3 

3 28.683 29.276 27.318 21.715 34.063 

4 24.154 23.872 26.743 17.992 28.866 

5 20.214 20.38 24.56 14.684 24.215 
6 17.122 17.321 20.501 12.434 20.182 

7 14.636 14.77 17.177 10.669 17.404 

8 12.585 12.707 14.114 9.3713 15.059 

9 10.885 10.99 11.765 8.3374 13.056 

10 9.5042 9.6094 9.7486 7.513 11.412 
11 8.3716 8.4671 8.2764 6.8704 10.099 

12 7.4446 7.5319 7.1379 6.374 9.0213 

13 6.6969 6.7813 6.2811 6.013 8.1651 

14 6.0929 6.1763 5.6443 5.7713 7.4875 

15 5.6423 5.724 5.2034 5.6563 7.0179 
16 5.31 5.3911 4.9213 5.6508 6.7071 

17 5.0956 5.1809 4.7852 5.7575 6.5611 

18 4.9901 5.0782 4.7689 5.9649 6.5617 
19 4.9888 5.0818 4.8621 6.2692 6.7017 

20 5.0779 5.1778 5.0452 6.6609 6.9632 

21 5.2516 5.3583 5.3026 7.1328 7.3332 
22 5.4989 5.6137 5.6224 7.6789 7.797 

23 5.8121 5.9372 6.0058 8.2961 8.3501 

24 6.183 6.3176 6.4312 8.9775 8.9733 

25 6.6079 6.7536 6.9043 9.7245 9.6693 
26 7.0805 7.2378 7.4158 10.534 10.429 

27 7.5992 7.7682 7.967 11.407 11.251 
28 8.1403 8.3186 8.5271 12.334 12.112 

29 8.7704 8.9675 9.1925 13.346 13.078 

30 9.4204 9.6318 9.8576 14.411 14.104 
31 10.123 10.352 10.584 15.554 15.184 

32 10.864 11.109 11.337 16.763 16.333 

33 11.658 11.923 12.144 18.054 17.558 
34 12.502 12.785 12.983 19.421 18.874 

35 13.4 13.701 13.902 20.872 20.255 

36 14.355 14.681 14.861 22.418 21.727 
37 15.37 15.718 15.88 24.052 23.289 

38 16.448 16.821 16.96 25.788 24.952 

39 17.596 17.994 18.107 27.632 26.715 

40 18.815 19.242 19.324 29.593 28.617 

41 20.112 20.568 20.617 31.674 30.597 
42 21.489 21.976 21.986 33.877 32.712 

43 22.96 23.48 23.451 36.24 34.963 

44 24.52 25.078 25.003 38.748 37.349 
45 26.18 26.789 26.661 41.41 39.916 

46 27.964 28.605 28.422 44.251 42.633 

47 29.873 30.547 30.303 47.283 45.526 

48 31.908 32.617 32.29 50.511 48.598 

49 34.071 34.841 34.474 53.971 51.902 

 
However, the major impact of internal support is 

only on the rigidity of the roof. As shown in 

Tables 8 and 9 and Fig. 13, it is possible to 
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compare the natural frequencies for tanks 

without internal support and tanks with internal 

support versus the number of circumferential 

waves for a significant number of vibrating 

modes with the condition m = 1. 

 

6. Conclousions 

 

In this study, free vibration and natural 

frequencies were investigated in steel, 

aluminum, and laminated composite tanks with 

different fibers orientation in the tanks with 

internal support and without internal support. 

For all models, the tapered thicknesses of the 

cylindrical shells were considered. In tanks 

without internal support, by examining the first 

40 modes of vibrations for the tanks, it was found 

that in the first modes of this range of modes, 

there were only roof modes and then in the later 

modes, there were cylinder modes of vibrations. 

Also, in some cases, simultaneous vibrations of 

the roof and the cylinder were seen.  

In tanks without internal support in the first 

modes, the composite1, steel, composite2, 

aluminum, and the composite3 tanks, 

respectively, were vibrated at higher 

frequencies. But at higher modes, after the 

composite1 tank, steel, aluminum, the 

composite2, and the composite3 tanks vibrated 

at higher frequencies, respectively. 

In the tanks with internal support, only the 

cylindrical shell modes are dominant; in fact, the 

internal beams and columns have increased the 

stiffness of the roof to an extent that the cylinder 

shell was the most flexible part of the tank and 

they had approximately no effect on the natural 

frequencies of the cylindrical shell. While they 

had an important influence on the stiffness of the 

roof and no roof vibration modes were seen for 

tanks with internal support in the studied range 

of frequencies. However, it can occur at higher 

frequencies. The internal support only affected 

the type of modes of vibration. For the tanks with 

internal support, the dominant modes were 

cylinder modes, while for the tanks without 

internal support, the roof modes were dominant. 

Thus, internal supports have an important role in 

the overall dynamic behavior of the tank. In the 

tanks with internal support, the composite1 tank 

had the lowest rigidity and natural frequency 

among the tanks. The natural frequencies of the 

first mode of vibration of the cylindrical shell of 

the steel tank increased by about 5%, aluminum 

tank 6%, composite2 tank 19%, and the 

composite3 tank 38% compared to the 

composite1 tank. As a result, the composite3 

tank had significantly higher rigidity than other 

tanks, and this result holds for both types of tanks 

with and without internal support. Given that 

graphite/epoxy was used in all three types of 

composite tanks, so they had the same mass. 

They were different only in fibers orientation. 

Thus, the significance of the effect of fibers 

orientation on the stiffness of laminated 

composites as well as dynamic problems can be 

resulted. 

In the circumferential waves corresponding to 

the fundamental frequencies for the cylinder 

modes, the effect of the shell material on the 

natural frequency of the first vibration mode of 

the cylinder was less. As the number of cylinder 

circumferential waves increased, the effect of 

shell material on natural frequencies increased 

for the second and third types of laminated 

composite tanks compared to steel, aluminum, 

and the composite1 tanks. Besides, with the 

decrease in the number of circumferential waves, 

the effect of shell material on natural frequencies 

between the second type and third type of 

laminated composite tanks was also observed. 

Furthermore, at circumferential waves 

corresponding to the fundamental frequencies 

for the roof modes, the influence of the shell 

material on the natural frequency of the first 

vibration mode of the roof was less.  

With increasing the number of circumferential 

waves of the roof from the number of 

circumferential waves corresponding to the 

fundamental frequencies, the steel tank had the 

lowest natural frequencies of the roof in 

comparison with other tanks, and with 

decreasing the number of circumferential waves, 

this result was correct for the composite2 tank. 

For both cylinder and roof modes, in all 

circumferential waves, the composite3 tank had 

the highest natural frequencies Similar to the 

result obtained for the fundamental frequencies, 

the internal support had approximately no effect 

on the natural frequencies of the first vibration 

mode of the cylindrical shell corresponding to 

different numbers of circumferential waves. 
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