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1. Introduction

Over the past few decades, the advancement of 

science and technology has inspired researchers 

to find new materials, such as auxetic materials. 

An important feature of these materials is that 

when pressed, they tend to contract in other 

directions in contrast with the usual materials. 

On the other hand, over the past decades, the use 

of sandwich plates has expanded extensively in 

various industries, such as aerospace, marine, 

automotive, and the like.  

One of the structures that have attracted many 

researchers is sandwich structures with cores of 

auxetic materials. On the other hand, due to the 

increasing growth of composite structures in 

various industries, the evaluation of interlayer 

stresses is as important as the calculation of other 

stresses [1]. Sandwich plates are one of the most 

important structures in different industries. Since 

the three-dimensional analytical solution of 
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sandwich plates has many limitations, the 

analysis of such structures based on the two-

dimensional theory of plates and shells is very 

practical and noteworthy.  

The basis of these theories is to convert three-

dimensional models to two-dimensional by 

eliminating the dependence of the model on 

thickness. For this purpose, various methods 

such as equivalent single-layer theories, layer 

wise theories, and theories based on the principle 

of superposition (zigzag and global-local) have 

been proposed [2]. However, some of the 

theories presented also have shortcomings. For 

example, if there are significant changes 

between the properties of the layers or if the 

structure is made up of a large number of layers, 

global theories will not be able to properly assess 

local displacements. As a result, calculated strain 

and stress by these theories will not be accurate. 

Thus, equivalent single-layer theories such as 

CLassical Theory (CLT), First-order Shear 

Deformation Theory (FSDT), and Higher-order 

Shear Deformation Theory (HSDT) [3-6] do not 

provide accurate results in such cases. 

Equivalent single-layer theories [7-10] are 

commonly used to analyze the overall behavior 

of structures.  

In layer wise theories, each layer of the plate or 

shell is considered as an independent layer, and 

in each layer, the description of the displacement 

field is used independently. The resulting models 

are also called layered (local) or local theories 
[11-14]. Although this theory has good accuracy 

and correctly displays the zigzag effects of 

displacement in composites, the number of 

independent parameters depends on the number 

of layers and therefore the time of their 

calculations is high [15]. 

Therefore, theories based on the principle of 

superposition were presented that in addition to 

considering the global and local behavior of the 

sandwich plate, it has fewer independent 

parameters and independent of the number of 

layers and therefore requires less time to analyze 

the structure [16]. It should be noted that 

different methods have been presented for 

converting three-dimensional models of 

multilayered sheets into two-dimensional 

models (removal of thickness dependence) with 

the proper selection of in-plate variables of these 

structures. Some of the most important of these 

studies are the following. Shariayat [17-19] 

examined the dynamic buckling of imperfect 

plates with piezoelectric sensors and operators 

under mechanical, electrical, and thermal loads 

while considering the dependence of material 

properties on temperature by presenting a finite 

element formulation based on the high-order 

theory of shear deformation, along with an 

effective numerical algorithm for solving 

nonlinear equations. Dafedar et al. [20] also 

proposed a mixed, higher-order analytical theory 

for solving composite face sheets. Similarly, 

Dehkordi et al. [21] used a multi-layered theory 

to investigate nonlinear buckling of damaged 

composite faces. Malekzadeh et al. [22] 

presented an improved high-order theory for 

analyzing the dynamic behavior of a sandwich 

plate with flexible core.  

In this method, the first order theory was 

employed in surface and the theory of elasticity 

is used in the core. In 2009, Carrera et al. [23] 

examined and evaluated the accuracy of all kinds 

of two-dimensional theory including single-

layer equivalent, layered (first to seventh order), 

zigzag and mixed when it came to the static and 

vibratory analysis of sandwich plates. Brischetto 

et al. [24] examined the results of bending of the 

sandwich plate for different geometric ratios and 

different rigidity ratios of surface to core by 

adding the zigzag function to the first and third 

shear theory. Kapuria et al. [25] evaluated the 

accuracy of general-local theories in terms of the 

bending and vibration analysis of laminated and 

sandwich sheets.  

Also, in 2013, Botshekanan et al. [26] used a 

mixed theory, based on the CUF model, 

including equivalent single-layer theory and 

layered theory with different degrees in order to 

carry out a static analysis of sandwich sheets. Li 

and Liu [27] developed the Zigzag theory to 

employ the double superposition principle. 

Shariyat [28] added the effect of vertical 

transverse strains to the double superposition 

theory of Li and Liu. Chakrabarti et al. [29] 

presented a two-dimensional finite element 

model based on the high-order zigzag theory to 

analyze multilayered and sandwich sheets. In the 

proposed model, the fourth-order functions were 

used for the transverse core displacement and the 

surface deformation was considered to be fixed 

when it came to in-plane displacements of the 
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surfaces and the degree polynomial core. In this 

study, the inter-layer continuity of transverse 

stresses was also considered. Demasi [30] 

presented a semi-zigzag theory, based on the 

CUF theory, for the analysis of composite and 

sandwich sheets. In this research, the effect of 

the type of theory (equivalent single-layer or 

zigzag) and the degree of displacement field on 

three direction of length, width and thickness of 

the sheet were considered in the accuracy of the 

results of the sheet. The results indicate that as 

far as thick sheets are concerned, the use of plate 

displacement field and Zigzag term will have 

good results. 

Khalili et al. [31] presented a new high-order 

theory for analyzing sandwich shells with a 

transversally deformed core. They calculated the 

behavior of the surfaces from the elasticity 

relations using the classical and core theory, and 

extracted the governing equations and boundary 

conditions based on the energy method and the 

Hamilton principle. Grover et al. [32] 

investigated the static and buckling analysis of 

multilayered and sandwich sheet using the 

reverse hyperbolic shear deformation theory. 

This theory was developed based on nonlinear 

functions of shear strain while considering shear 

stress on developed surfaces as zero. Kapuria et 

al. [33] evaluated the accuracy of general-local 

theories in the bending and vibration analysis of 

multilayered and sandwich sheets.  

In this research, the results of theories of zigzag, 

general-local and three-dimension are presented 

for composite and sandwich sheets with different 

layers and hybrids. The results show a fairly 

good accuracy of general-local theory for sheets 

consisting of more than 3 layers with the same 

material, but it does not provide good results for 

hybrid and sandwich sheets, while Zigzag's 

theory shows the accurate results in the analysis 

of bending and frequency of composite and 

sandwich sheets. In 2013, khandelwal et al. [34] 

analyzed the sandwich plate with soft core 

statically by using a developed high order zigzag 

theory. They considered the sandwich plate as 3 

layers and to analyze its buckling behavior, they 

employed a third-order plate and zigzag 

displacement field for all three layers and a 

second-degree transverse displacement field for 

the core as well as the fixed displacement field 

for surfaces. Also, Botshekanan et al. [35] used 

a mixed theory, based on the CUF model, 

including Equivalent Single-Layer theory (ESL) 

and Layer-Wise theory (LW) with different 

orders to analyze sandwich plates statically. 

Different samples of sandwich sheets are 

analyzed using the proposed theory (from one to 

four orders) and are compared with three-

dimensional solution and high-order theories. 

The results of the stress and displacement of the 

4th order mixed theory correspond very well 

with 3D solution when it comes to thick 

sandwich sheet with soft core. 

In general, providing a powerful and highly 

accurate model is very important for modeling 

and analyzing these structures for their optimal 

design. The use of powerful theories and 

advanced software are inexpensive and fast 

compared to the traditional methods of empirical 

measurement of deformation and strain. Hence, 

in this paper, a general-local high-order theory, 

which is proposed based on the minimum total 

potential energy equation and is corrected based 

on the three-dimensional elasticity equations, is 

employed for the analysis of thin and thick 

sandwich plates, the accuracy of which 

corresponds to the obtained results from the 

three-dimensional solution.  

The main advantage of this theory is to satisfy 

the continuity conditions of shear transverse 

stresses between the layers and taking into 

account the deformation along the thickness. 

Also, another benefit is the low cost of 

computing in spite of the high accuracy of the 

results and considering the local components of 

stress and displacement of each layer. Another 

important feature of this theory is to consider the 

changes in the thickness of the plate.  

Therefore, a very high precise study of the 

behavior of thick sandwich sheets or sandwich 

sheets with soft and flexible core is also possible 

through this theory. Also, due to the 

aforementioned characteristics, the use of this 

theory to study the sandwich sheets with auxetic 

core materials is also appropriate and has led to 

accurate results. After verifying the proposed 

model, the behavior of sandwich plates in 

different models and with different Poisson’s 

ratios under transverse static load is evaluated 

carefully. 
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2. Equations and units 
 
The sandwich plate is a square-shaped plate with 
three layers, whose origin of the coordinate 
system is in its middle plane, and the z axis is 
considered to be positive upward. The length and 
width of the plane along x and y are a and b 
respectively and the thickness of the total plate is 
h. Also, the thickness of the upper layer is 
considered to be h1, the thickness of the core is 
considered to be h2 and the thickness of the lower 
layer is regarded as h3. The in-plane 
displacement components of the plate are 
considered as a combination of two local and 
general sections. 
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Gu and Gv are the general components of the 

displacement field which are considered as 
follows. 
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Also, Lu and Lv are local components of 

displacement and include: 
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(3) 

In the above equations, the index k represents the 

layer number. Also, 0

ku , 0

kv , 
( )k

x and 
( )k

y are 

respectively the local displacement of the middle 
plane of each layer and the local rotation of each 

layer. x and y are also the general rotation of 

the middle plane of the core. x and y are also 

related to the changes in curvature of the 
distribution of displacement components along 
the thickness. By applying the continuity 
conditions and simplification, Eqs. (4-6) will 
ultimately be achieved:  
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It is observed that the final deformation of the 
plate is calculated based on the superstition 
principle. One of the advantages of the current 
paper is to consider the second-order variations 
for the transverse displacement component of 
the core as follows: 
 

1 2 3
( ) ( ) ( )   

u m l
z w z w z w+ +L L L

 
(7) 

 

where 
u

w , 
l

w and 
m

w are displacement at the 

top, bottom and middle of the core respectively, 

and 1L , 2L , and 3L are parabolic interpolation 

functions. Thus, the three-layer sandwich plate 
has a total of 15 independent displacement 
parameters. These parameters are: 
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It should be noted that the displacement in the 
face sheets of sandwich plates is considered to 
be fixed, which is reasonable with respect to the 
thickness and stiffness of the face sheets. 
According to the above equations, the total 
displacement field of the sandwich plate can be 
written in the following matrix form (in which 

( , , )i x y z represent the displacement field 

governing the layers of the sandwich plate):  
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If the problem has a greater number of layers, it 

is possible to expand the equations for a higher 

number of layers. For example, the in-plane 

components of the displacement field for the 

case in which the composite plate has 5 layers 

are: 
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It should be noted that all the theories of 

sandwich and composite plate, including global-

local theory, are two-dimensional, and two-

dimensional finite element method must be used 

to solve them. In this research, non-linear and 

rectangular plate elements were employed to 

mesh the plate. Using the finite element method, 

displacement is written in the following form: 

 
( )

( , )( , , ) ( )e
x yx y t t = N

 
(10) 

 

where N and ( )e are the matrix in the form of 

functions and the vector of nodal displacement 

values respectively: 
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Thus, based on Eqs. (9 and 10):  
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On the other hand, the strain matrix form in each 

layer is: 
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The stress components are also calculated 

according to Hooke's law: 
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in which ( )iC  is the matrix of elastic coefficients 

in the rotated coordinate system of the plate. 

Structural equations are obtained using the 

minimum total potential energy principle. If the 

strain energy and external force work are 

represented by the symbols U and V, 

respectively, it could be describe as: 
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in which: A,  and q are the surface area and the 

volume of the element and the intensity of the 

external load imposed on the plate respectively. 

By placing the Eqs. (17 and 18) in Eq. (16) could 

be written:  
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e T T e T
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   − = Q N  (19) 

 

Since ( )e is an arbitrary and non-zero vector, 

the structural equation of the sandwich plate will 

be: 

 
( )[ ] ( )T e T

A

d q R dA

    =  NQ

 
(20) 

 

or in its compressed state: 

 
( )eK F =  (21) 

 

3. The modification of transverse shear 

stresses using three-dimensional elasticity 

equations 
 

Here, after calculating the in-plane stresses, the 

values of transverse stresses are calculated using 
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three-dimensional equilibrium equations. 

Therefore, the contiguity condition between the 

layers and the condition of having zero 

transverse stresses in free surfaces are well 

established and there is no need to use shear 

correction coefficient. In this case, not only the 

transverse stresses along the thickness are not 

fixed, but also have a nonlinear distribution. 

 

4. Results and discussion 

 

In this section, in addition to verifying the 

obtained results, the problem is analyzed 

parametrically. In addition to verifying the 

obtained results with the 3D solution results 

presented in valid references, the convergence of 

the finite element results and the independence 

of mesh sizes are also carefully considered for 

different parameters and in different geometries. 

In all the proposed results, the size of the 

elements is chosen in such a way that the change 

in their number does not have a significant effect 

on the results of any geometry. Finally, it could 

be say that the size of meshing 40 × 40 provides 

more accurate and more appropriate results in all 

samples. 

 

4.1. Verification of obtained results 

 

First, the verification of the proposed theory 

results is analyzed using a static analysis of the 

sandwich plate with isotropic surfaces and cores 

under sinusoidal loading. In this example, a 

square symmetric sandwich plate, in which the 

composite face sheets have the same thickness, 

equivalent to 0.1 of overall thickness and core 

thickness is equivalent to 0.8 of the total 

thickness of the plate are analyzed using the 

proposed model and compared with the results in 

the reliable references.  

The boundary conditions of the plate are simple 

support for all edges and the top plate of face 

sheet is under distributed sinusoidal pressure 

loading. The properties of the face sheets and 

core material are as follows [29]: 
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The analyses were carried out on two cases of 

sandwich plate with stiff core (Ef/Ec = 10) and 

with soft core (Ef/Ec = 105) in three cases of thick 

(a/h = 4) thin (a/h = 10) and very thin (a/h=100). 

As it was mentioned in section 2 the length and 

the total thickness of the sandwich panel is a and 

h respectively. Displacements and stresses have 

become dimensionless using the following 

relationships:  
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At first the mesh independency of the obtained 

results should be checked. For this reason, plates 

were meshed using various types of meshes such 

as 5x5, 10x10, 20x20, 30x30 and 40x40 and their 

results were examined. The obtained results 

were analyzed for all three kinds of thin, very 

thin and thick plates with a/h ratio of 100, 10 and 

4 respectively. Various results such as non-

dimensional transverse stresses and 

dimensionless transverse displacement were 

investigated. 

Fig. 1 depicts the comparison of the obtained 

results for all three ratios of plate thickness and 

their comparison with the three-dimensional 

results existing in the references. The results 

show that the transverse displacement of the 

plate converges with the element size of 40x40. 

The obtained results show that the very thin plate 

(a/h=100) converges faster than the other two 

cases; however, in all three cases with mesh size 

40x40, the results are independent of the meshes 

number. 

Fig. 2 and Fig. 3 also show the convergence of 

the results for dimensionless transverse shear 

stresses in both cases of thick and thin plate 

conditions. As can be seen, the results of most 

transverse shear stresses with the element size of 

40x40 converge in both cases. The picture of the 

meshed plate is shown in Fig. 4. In the case of a 

square plate, the number of elements in the 

length and width of the plate is equal. 
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Verification of the converged results is shown in 

Table 1.  

The obtained results are compared with the 

three-dimensional result of the elasticity existing 

in reference [36]. The investigations showed that 

for all three cases of very thin plate, ordinary 

plate and thick plate, the results calculated by the 

proposed theory are acceptable and have very 

good accuracy. Finally, the obtained results 

showed that the mesh size 40x40 led to the 

provision of converged results, and the further 

increase in sandwich plate elements did not have 

a significant effect on the results. Also, 

comparing the obtained results with those 

existing in reference [36] made it clear that the 

theory has an acceptable accuracy. 

In order to further examine the proposed theory 

precisely, the results obtained from solving the 

example of a three-layer composite plate with 

three layers [0/90/0] are compared and verified 

with the results presented in valid references. To 

solve the reference, the exact solution provided 

by Pagano [37] has been used. 

 

Table 1. The results of most displacement and 

maximum dimensionless shear stresses of sandwich 

plate with soft core for different mesh sizes. 

 Approach 
Mesh 

size 
a/h=4 a/h=10 

a/h=10

0 

D
im

en
si

o
n

le
ss

 t
ra

n
sv

er
s 

sh
ea

r 
st

re
ss

 

 

Present 

Theory 

10×10 0.00931 0.1398 15.824 

20×20 0.01049 0.1581 16.024 

30×30 0.01121 0.1659 16.215 

40×40 0.01128 0.1661 16.207 

3D [36] - 0.0111 0.1627 16.039 

      

D
im

en
si

o
n

le
ss

 t
ra

n
sv

er
s 

d
is

p
la

ce
m

en
t 

 

Present 

Theory 

10×10 1114.2 1051.2 124.94 

20×20 1204.8 1140.9 126.35 

30×30 1268.2 1203.2 127.85 

40×40 1272.5 1207.67 128.01 

3D [36] - 1299.4 1230.6 126.7 

 

 
Fig. 1. Mesh independency of the dimensionless 

transverse displacement for different a / h ratios. 

 

 
Fig. 2. Mesh independency of the dimensionless 

transverse shear stress for thick sandwich plate 

(a/h=4). 

 

 
Fig. 3. Mesh independency of the dimensionless 

transverse shear stress for thin sandwich plate 

(a/h=10). 
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Fig. 4. Plate with the appropriate meshing for 

analysis. 

 

All edges of the supporting plate are considered 

as simply support; also, the properties of 

materials of all three layers include: 

 

1 2 12 2 13 2

12 23 123 2 3

25;  0.5;

0.2;  0.2

/ / /

5/

E E G E G E

G E   

= = =

= = = =
 

The results obtained from the presented equation 

have become dimensionless too. The load is also 

applied in a sinusoidal way in the form of 

extensive pressure on the top surface of upper 

face sheet. The obtained results are compared 

with those of other references such as the results 

of other references such as Reddy [38], Kant and 

Swaminathan [39], Mantari et al. [40] and 

Karama et al. [41] in Table 2. From the 

comparison of the obtained results, it can be 

observed that the obtained results of the present 

theory have a very good consistency with the 

available results of the exact solution. 

 
Table 2. Results of dimensionless displacement and 

square-shaped composite plate stress (a = b) with 

porcelain layer [0/90/0] under sine load. 

𝜏𝑦𝑧̅̅ ̅̅ (
𝑎

2
, 0 ,0) 𝜏𝑥𝑧̅̅ ̅̅ (0,

𝑏

2
 ,0) 𝜎𝑦𝑦̅̅ ̅̅̅(

𝑎

2
,
𝑏

2
 ,

ℎ

2
) 𝜎𝑥𝑥̅̅ ̅̅ (

𝑎

2
,
𝑏

2
 ,

ℎ

2
) �̅�(

𝑎

2
,
𝑏

2
 ,0) Approach a/h 

0.208 0.253 0.542 0.765 1.975 Present 

4 

0.217 0.282 0.556 0.755 2.006 

3D 

elasticity 

[36] 

0.183 - - 0.734 1.921 
Reddy 

[38] 

- - 0.493 0.764 1.894 

Kant & 
Swamina

than [39] 

0.201 0.245 0.497 0.823 1.943 
Mantari et 

al. [40] 

0.191 0.220 0.502 0.775 1.944 
Karama 

et al. [41] 

0.110 0.345 0.274 0.585 0.730 Present 

10 

0.123 0.357 0.288 0.59 0.740 

3D 
elasticity 

[36] 

0.103 - - 0.568 0.712 
Reddy 
[38] 

- - 0.270 0.583 0.715 

Kant & 

Swamina
than [39] 

0.115 0.314 0.276 0.588 0.734 
Mantari 

et al. [40] 

0.108 0.272 0.272 0.576 0.723 
Karama 

et al. [41] 

 
Table 3. Results of dimensionless displacement and 

rectangular-shaped composite plate stress (b = 3a) 

with porcelain layer [0/90/0] under sine load. 

𝜎𝑦𝑦̅̅ ̅̅̅(
𝑎

2
,
𝑏

2
 ,

ℎ

2
) 𝜎𝑥𝑥̅̅ ̅̅̅(

𝑎

2
,
𝑏

2
 ,

ℎ

2
) �̅�(

𝑎

2
,
𝑏

2
 ,0) Approach 

a/

h 

0.1052 1.0912 2.698 Present 

4 
0.119 1.1 2.82 

3D 

elasticity 

[37] 

0.0453 0.721 0.895 Present 

10 
0.0435 0.725 0.919 

3D 

elasticity 

[37] 

0.0253 0.6198 0.5123 Present 

50 
0.0260 0.6276 0.5205 

3D 

elasticity 

[37] 

 

In the following, the intended plate with a 

different length to width ratio (b=3a) with the 

same layer was put under the sinusoid load, and 

then the obtained results were compared with 

those of Pagano’s precise three-dimensional 

resolution. The results shown in Table 3 

represent an excellent match between the results 

of the existing theory and the exact solution. 

 

4.2. Parametric analysis of sandwich plate with 

auxetic core under static transverse load 

 

Initially, the effect of Poisson's ratio on the 

behavior of sandwich plate under different 

transverse static conditions is investigated. The 

load is applied to the top of the upper face sheet 

in the form of a distributed sinusoidal pressure. 

The plate is investigated in two cases with soft 

core (Ef/Ec=105) and stiff (Ef/Ec=10) with a thick 
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geometry (a/h=4) and a thin one (a/h=10). Other 

properties of the materials are considered as in 

the previous section. In order to investigate the 

Poisson’s ratio better and more accurately, in all 

of the above mentioned cases, the Poisson’s ratio 

of the auxetic core has the following values: 

v= -0.3, -0.6, -0.9 

In the following, maximum transverse 

deformation of the sandwich plate in all four 

samples is studied in order to study more 

carefully the effect of the existence of auxetic 

core along with other parameters.  

Fig. 5 to Fig. 8 show the maximum deflection of 

sandwich plates in all four cases of thick 

(a/h=4), thin (a/h=10) geometry with soft 

(Ef/Ec=105) and stiff (Ef/Ec=10) core. It should 

be noted that the results shown in the following 

become dimensionless as follows: 

 
3 4 2

4 3

0 0

100 10
, , ( , )core core

E h E h
W w U V u v

a q a q

−
= =

 
 

As can be clearly seen, in general, in all cases, 

making the core auxetic and the decrease in its 

Poisson's ratio leads to the reduction of plate 

increment. In all four cases, the largest out of 

plane deflection is for the sandwich plate with 

the normal soft core, while the least transverse 

deflection, among the four Poisson’s ratios, 

belongs to the Poisson’s ratio of -0.9. However, 

the amount of the deflection variation is another 

important point for the investigation the effect of 

using auxetic core.  

The largest change in transverse deformation 

occurred due to the auxetic core in the case of a 

thick sandwich plate with a stiff core. When it 

comes to thin plates with stiff and soft cores, the 

percentage of decrease in deflection is 

approximately the same.  

The reason for this decrease in transverse 

deformation, which occurs due to making the 

core auxetic, is the increase in the stiffness of the 

plate, in a way that the decrease in Poisson ratio 

from +0.3 to -0.9 leads to an increase of 5 times 

in the stiffness of the entire plate. 

Fig. 9 and Fig. 10 shows the changes in the 

dimensionless shear transverse stress along the 

thickness. As discussed in Section 3, the shear 

stresses were extracted through the correction 

method using three-dimensional equilibrium 

equations. Hence, in addition to satisfying the 

condition of zero shear stresses in the free 

surfaces of the upper and lower sandwich plate, 

the continuity condition of shear stresses 

between the layers, which is not met in many 

theories and methods, is satisfied perfectly with 

very high accuracy. 

 

 
Fig. 5. Maximum dimensionless transverse 

displacement of thick sandwich plate (a/h=4) with 

stiff core (Ef/Ec=10). 

 
Fig. 6. Maximum dimensionless transverse 

displacement of thick sandwich plate (a/h=4) with 

very soft core (Ef/Ec=105). 

 

 
Fig. 7. Maximum dimensionless transverse 

displacement of thin sandwich plate (a/h=10) with 

stiff core (Ef/Ec=10). 
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Fig. 8. Maximum dimensionless transverse 

displacement of thin sandwich plate (a/h=10) with 

very soft core (Ef/Ec=105). 
 

 
Fig. 9. Effects of the auxeticity of the core material 

on through-thickness distributions of the 

dimensionless transverse shear stress (Sxz) of the 

thick sandwich plate with very soft core. 
 

 
Fig. 10. Effects of the auxeticity of the core material 

on through-thickness distributions of the 

dimensionless transverse shear stress (Sxz) of the 

thick sandwich plate with stiff core. 

 
Furthermore, shear stresses possess quite 

dissimilar and nonlinear distribution. This is of 

great importance when it comes to the accuracy 

of the analysis of thick plates, especially plates 

with soft core. It can be seen from the results that 

in the cases of the very soft core, the behavior of 

shear stress is completely different from that of 

the stiff core. In other words, in terms of those 

with soft core, cores (in both thick and thin) 

virtually have a shear stress of zero, while when 

it comes to plates with stiff core, the core can 

virtually tolerate significant shear stresses. In 

general, amounts of the shear stresses produced 

in thin cases exceed those with thick ones. In the 

case of a thick sandwich plate with a soft core, 

the difference between the shear stresses created 

in the upper and lower layers is significant, while 

in the case of thin plate, this difference is less 

between the shear stresses of the upper and lower 

layers. 

As noted above, by changing the Poisson’s ratio 

of the core, the difference between the shear 

stress of upper and lower of the sandwich plate 

decreases or even in some cases disappears, in a 

way that when it comes to thick sandwich plates 

with a soft core in which the difference between 

shear stresses between the upper and lower 

layers is the highest, this change has led to a 

decrease in the difference, whereas in the case of 

thin plates with a soft core, the difference is 

removed thanks to the mentioned change.  

As a result, in this example with a Poisson’s ratio 

of (-0.9), the shear stress of the upper and lower 

layers is the same. Fig. 11 shows the changes in 

the core equivalent stress at section where it goes 

through the middle plane of the sandwich panel. 

(The mentioned contour only shows the 

equivalent stress in the core and no face sheets 

are presented in these contours). 

As shown in Fig. 9, in this example, the 

composite face sheets stress is much more than 

that of the PVC core belonging to the sandwich 

plate. Therefore, the stress of the face sheets is 

overlooked to merely obtain the distribution of 

the equivalent stress in the mentioned section of 

the core. This figure illustrates thick sandwich 

plate with both normal and auxetic soft cores. It 

should be noted that the curvature of the plate is 

shown with considerable magnification in order 

to give the better sense. However, the amount of 

magnification employed in both contours of “a” 

and “b” is the same. It is well observed that the 
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core deformation has been reduced by the use of 

the auxetic material, while the core stress level 

has increased more than ten times.  

Also, the stress distribution pattern in the core 

has also changed due to the use of an auxetic core 

with a Poisson’s ratio of (-0.9), in a way that 

when it comes to the sandwich plate with the 

normal core (Poisson’s ratio of +0.3), the highest 

equivalent stresses occur in the inner layers of 

the plate, while because of making the core 

auxetic and increasing the stiffness of the 

sandwich plate, the highest equivalent stress 

occurs in the upper surface of the core. 

In the following, the effect of the length-to-width 

ratio of the plate on its behavior is discussed.  

As the “a / b” ratio changes from 1 to 4, other 

parameters such as core stiffness as well as plate 

thickness change too. The effect of the length-to-

width ratio is carefully checked for each of the 

all mentioned cases. All of the dimensionless 

results are given in Table 4. 

It should be mentioned that in these examples, 

the boundary conditions of all four edges are 

considered to be simply support (SSSS). 

Moreover, the load is in the form of uniform 

distributed pressure applied to the upper surface  

 

of the sandwich plate.  

The results shown in Table 4 include the 

dimensionless transverse displacement of the 

middle point of the sandwich plate in the upper, 

lower surfaces and in the center of the plate, as 

well as the in plane dimensionless stress along 

the length and width in the middle point of the 

plate located on the upper and lower surfaces of 

the sandwich plate. 

The important point is that, in all (a/b) ratios, 

making the core auxetic significantly reduces 

transverse displacement in all cases. In general, 

it can be said that the change in the “a/b” ratio 

does not lead to the reduction of this effect, and 

the negativity of the Poisson's ratio of the core 

from + 0.3 to -0.5 has a nearly identical effect on 

all length-to-width ratios. Also, in all 32 

investigated cases of the sandwich plate, it can 

be seen that the change in the “a/b” ratio has no 

effect on the behavioral difference between the 

upper and lower composite face sheets and this 

behavioral difference between these layers 

remains constant for all “a/b” ratios. 

The main effect of the change in the length-to-

width ratio of the plate is observed in the changes 

in the amount of in plane stresses𝜎𝑥𝑥̅̅ ̅̅̅ and𝜎𝑦𝑦̅̅ ̅̅ ̅. 

 

 

 

  

Fig. 11. Distribution of equivalent stress on the mid plane of thick sandwich plate: (a) normal core (v= 0.3) and 

(b) Auxetic core (v= -0.9). 

 

(a) 

(b) 



JCARME                                            Numerical investigating of . . .                                   Vol. 11, No. 2 

 

309 

 

Table 4. The effect of a/b on the behavior of thick and thin sandwich plate with soft, stiff and auxetic core. 

𝑏

𝑎
 

𝑎

ℎ
 

𝐸𝑓

𝐸𝑐
 υ 

𝑊
(𝑎 2

,𝑏 2
 ,

ℎ 2
) 

𝑊
(𝑎 2

,𝑏 2
 ,

0
) 

𝑊
(𝑎 2

,𝑏 2
 ,

−
ℎ 2

) 

𝜎
𝑥

𝑥
̅̅

̅̅̅
(𝑎 2

,𝑏 2
 ,

ℎ 2
) 

𝜎
𝑥

𝑥
̅̅

̅̅̅
(𝑎 2

,𝑏 2
 ,

−
ℎ 2

) 

𝜎
𝑦

𝑦
̅̅

̅̅
̅(

𝑎 2
,𝑏 2

 ,
ℎ 2

) 

𝜎
𝑦

𝑦
̅̅

̅̅
̅(

𝑎 2
,𝑏 2

 ,
−

ℎ 2
) 

1 

4 

10 
+ 0.3 -2.163 -2.136 -2.055 -0.580 0.567 -0.580 0.567 

− 0.5 -1.269 -1.185 -1.161 -0.507 0.463 -0.507 0.463 

105 
+ 0.3 -0.281 -0.226 -0.174 -12.24 9.858 -12.24 9.858 

− 0.5 -0.187 -0.139 -0.094 -11.19 8.257 -11.19 8.257 

10 

10 
+ 0.3 -0.962 -0.967 -0.959 -0.520 0.516 -0.520 0.516 

− 0.5 -0.731 -0.728 -0.728 -0.461 0.453 -0.461 0.453 

105 
+ 0.3 -0.046 -0.045 -0.043 -9.909 9.894 -9.909 9.894 

− 0.5 -0.031 -0.030 -0.029 -7.801 7.762 -7.801 7.762 

2 

4 

10 
+ 0.3 -3.810 -3.788 -3.689 -1.071 1.054 -0.493 0.474 

− 0.5 -2.317 -2.231 -2.209 -0.908 0.864 -0.410 0.372 

105 
+ 0.3 -0.432 -0.374 -0.319 -19.12 16.56 -19.02 16.21 

− 0.5 -0.284 -0.232 -0.185 -18.27 15.00 -12.42 11.18 

10 

10 
+ 0.3 -1.979 -1.987 -1.976 -0.913 0.908 -0.286 0.279 

− 0.5 -1.532 -1.529 -1.529 -0.803 0.795 -0.253 0.246 

105 
+ 0.3 -0.081 -0.080 -0.078 -18.37 18.35 -1.350 1.343 

− 0.5 -0.054 -0.053 -0.052 -14.34 14.30 -1.128 1.118 

3 

4 

10 
+ 0.3 -4.129 -4.106 -4.008 -1.158 1.140 -0.380 0.360 

− 0.5 -2.496 -2.409 -2.387 -0.971 0.928 -0.316 0.280 

105 
+ 0.3 -0.498 -0.441 -0.386 -23.63 20.97 -9.495 9.432 

− 0.5 -0.316 -0.265 -0.217 -22.00 18.60 -5.739 5.571 

10 

10 
+ 0.3 -2.206 -2.214 -2.202 -1.054 1.040 -0.338 0.332 

− 0.5 -1.703 -1.698 -1.698 -0.918 0.910 -0.296 0.289 

105 
+ 0.3 -0.088 -0.087 -0.085 -21.56 21.54 -1.805 1.799 

− 0.5 -0.059 -0.057 -0.056 -16.55 16.52 -1.443 1.433 

4 

4 

10 
+ 0.3 -4.141 -4.115 -4.020 -1.157 1.140 -0.337 0.316 

− 0.5 -2.498 -2.412 -2.390 -0.970 0.927 -0.290 0.255 

105 
+ 0.3 -0.508 -0.451 -0.396 -25.45 22.75 -3.800 3.786 

− 0.5 -0.318 -0.267 -0.220 -23.21 19.77 -2.219 2.099 

10 

10 
+ 0.3 -2.235 -2.244 -2.232 -1.075 1.070 -0.347 0.341 

− 0.5 -1.721 -1.718 -1.718 -0.934 0.926 -0.303 0.296 

105 
+ 0.3 -0.089 -0.087 -0.086 -22.14 22.12 -1.895 1.888 

− 0.5 -0.060 -0.058 -0.057 -16.96 16.93 1.5022 1.492 
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Table 5. The effect of boundary condition on the dimensionless results of squared thick and thin sandwich plate 

with soft, stiff, normal and auxetic core. 

B.C. 
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𝜎
𝑦

𝑦
̅̅

̅̅
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𝑎 2
,𝑏 2

 ,
−

ℎ 2
) 

CCCC 

4 

10 
+ 0.3 -2.163 -2.136 -2.055 -0.580 0.567 -0.580 0.567 

− 0.5 -1.269 -1.185 -1.161 -0.507 0.463 -0.507 0.463 

105 
+ 0.3 -0.281 -0.226 -0.174 -12.24 9.858 -12.24 9.858 

− 0.5 -0.187 -0.139 -0.094 -11.19 8.257 -11.19 8.257 

10 

10 
+ 0.3 -0.962 -0.967 -0.959 -0.520 0.516 -0.520 0.516 

− 0.5 -0.731 -0.728 -0.728 -0.461 0.453 -0.461 0.453 

105 
+ 0.3 -0.046 -0.045 -0.043 -9.909 9.894 -9.909 9.894 

− 0.5 -0.031 -0.030 -0.029 -7.801 7.762 -7.801 7.762 

CFCF 

4 

10 
+ 0.3 -4.088 -4.046 -3.957 -1.123 1.121 -0.079 0.149 

− 0.5 -2.459 -2.373 -2.349 -0.949 0.899 -0.212 0.144 

105 
+ 0.3 -0.491 -0.432 -0.375 -25.70 22.85 1.773 -1.16 

− 0.5 -0.310 -0.259 -0.211 -23.37 19.80 1.732 -0.66 

10 

10 
+ 0.3 -2.222 -2.229 -2.219 -1.040 1.039 -0.196 0.205 

− 0.5 -1.699 -1.696 -1.696 -0.907 0.897 -0.233 0.220 

105 
+ 0.3 -0.088 -0.086 -0.085 -22.26 22.26 -0.300 -0.23 

− 0.5 -0.059 -0.058 -0.056 -17.12 17.08 -0.261 0.248 

 

In all examples, the amount of in-plane stresses 

𝜎𝑦𝑦̅̅ ̅̅ ̅ decreased because of increasing the “a/b” 

ratio, while the amount of in-plane stresses 𝜎𝑥𝑥̅̅ ̅̅̅ 

has increased. Because of using auxetic foam as 

a sandwich core, the amount of the changes is 

varied but the total behavior of sandwich panels 

are the same with the normal core. 

By investigating the displacement changes in the 

central points (a/2,b/2) located in the upper 

surface (z=h/2), the lower surface (z=-h/2) and 

the middle plate (z=0) for all cases, including 

thick and thin sandwich panels, sandwich with 

very soft and stiff cores, or with normal and 

auxetic cores, it became obvious that the changes 

in transverse displacement (W) have converged 

at the ratio “b/a=3” and practically “W” is not 

affected by  increasing “b/a” from 3 to 4. 

Also, the difference of transverse displacement 

between the upper and lower layers in all “b/a” 

ratios remains constant in all cases and changing 

“b/a” does not have an effect on the behavior of 

upper and lower face sheets. In order to 

investigate this issue better, Fig. 12 and Fig. 13 

show the maximum dimensionless transverse 

displacement(W)changes of top and bottom of 

sandwich panels with different “b/a” ratios for 

four kinds of thick sandwich plate (a/h=4) with 

very soft core (Ef/Ec=105), normal (v = +0.3) and 

auxetic (v=-0.5) core, as well as thick sandwich 

plate (a/h=4) with stiff core (Ef/Ec=10), normal 

(v= +0.3) and auxetic (v = -0.5 ) core. 

Fig. 12 shows variations of mentioned 

parameters for a thick sandwich plate with a stiff 

core. In this example, it can be seen that for 

different ratio of “b/a”, the amount of transverse 

displacement(|W|) of upper and lower point of 

sándwich are reduce by using auxetic core. 
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The dimensionless transverse displacement(W) 

after the “b/a” ratio of 3 also converge and 

remain unchanged. In general, the increase in the 

“b/a” ratio has led to an increase in the amount 

of transverse displacement(|W|). This effect is 

visible at both central points of the upper and 

lower surfaces of the sandwich plate with an 

auxetic ad normal core. 

 

 
Fig. 12. The effect of the length-to-width ratio of the 

plate on the dimensionless transvers displacement of 

the middle points of the upper and lower surfaces 

belonging to the thick sandwich plate (a/h=4) with a 

stiff core (Ef /Ec=10) ordinary (v = +0.3) and Auxetic 

(v = -0.5). 

 

 
Fig. 13. The effect of the length-to-width ratio of the 

plate on the dimensionless transvers displacement of 

the middle points of the upper and lower surfaces 

belonging to the thick sandwich plate (a/h=4) with a 

very soft core (Ef / Ec=105) ordinary (v = +0.3) and 

Auxetic (v = -0.5). 

Fig. 13 also shows the maximum dimensionless 

transverse displacement (W) changes for a thick 

sandwich plate with a soft core. In these 

examples, using the auxetic material as a 

sandwich core leads to the reduction of the 

displacement level caused by the increase in 

plate stiffness. It should be noted that the 

increase in “b/a” from 1 to 2 leads to the 

simultaneous increase in the transverse 

displacement both in the upper and lower 

surfaces. The difference between the 

displacement of the top and bottom layers of the 

sandwich in both sandwich sheets with the 

normal core and the auxetic core is the same. 

However, in this example, as in other examples 

in “b/a = 3 or 4” ratios, transverse displacement 

of upper and lower layers converge to a specific 

number. And it seems that larger length-to-width 

ratios of the sheet will not increase transverse 

displacement. However, in both cases, 

increasing the ratio of “b/a”, will increase the 

transverse displacement. 

In the following, the effect of boundary 

conditions on the behavior of square-shaped 

sandwich plate in different thick and thin cases 

with different cores is investigated carefully. The 

dimensionless results are shown in Table 5 

Changing the boundary conditions from CCCC 

(Clamped on all edges) to CFCF (Clamped-Free-

Clamped- Free) has increased displacements in 

all cases. In general, this change causes an 

increase in in-plane stresses in the upper and 

lower layers of the plate. Of course, for a thick 

plate with a soft core, the above mentioned 

change led to a change in sign 𝝈𝒚𝒚̅̅ ̅̅ ̅ both in the 

upper and lower layers. This is seen in both cases 

where the core of the sandwich plate is normal 

or auxetic. The change of stress sign 𝝈𝒚𝒚̅̅ ̅̅ ̅ 

stemming from the mentioned changes in the 

boundary conditions is also seen in the thin 

sandwich plate with a soft core. However, in this 

example, the auxetic state of the core leads to the 

correction of this issue and the uniformity of the 

sign of stress component in the lower layer. 

 

5. Conclusions 

 

In this paper, the effect of different parameters 

on the behavior of sandwich plate under 

transverse static load is studied. Some of these 
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parameters are the thickness of the plate, the 

length-to-width ratio of the plate, the core 

stiffness, using the auxetic material as a 

sandwich core and the various boundary 

conditions of the sandwich plate. In order to 

study the mentioned effects on the sandwich 

plate behavior, a high-order global local theory 

using the modification of the shear stress based 

on three-dimensional elastic equilibrium 

equations is applied.  

Also, one of the features of the proposed theory 

is the nonlinear simulation of the changes in the 

core thickness, which is essential in studying 

thick sandwich plates or sheets with a soft core. 

Before investigating the effects of various 

parameters, in addition to evaluating the 

convergence of the obtained results, the accuracy 

of the obtained results for different plates was 

evaluated and verified through the three-

dimensional solution results existing in valid 

references and other theories presented in 

different references. Here are some of the most 

important results: 

• The use of three dimensional elastic 

correction method along with high-order 

general-local theory is a highly efficient method 

for determining the all components of stresses 

such as shear stresses of sandwich plates, 

especially the thick sandwich plate with soft 

core, which in addition to satisfying the 

continuity condition of changes in transverse 

stress between the layers, evaluates its changes 

with great accuracy. 

• The use of an auxetic core has a very 

significant effect on the reduction of in-plane 

stresses, followed by an increase in the load 

tolerance capacity of the sandwich plate. 

• The assumption of considering transverse 

displacement constant along the sandwich 

thickness, which is common in many of the 

theories presented, can only be used in thin 

sandwich plates and plates with a stiff core; it 

leads to significant errors if used for thick 

sandwich plates or sandwich plates with a soft 

core. 

• The effect of the Poisson’s coefficient 

change from + 0.3 to -0.9 leads to the reduction 

of shear stresses occurring in different parts, so 

much so that in some cases, the shear stress of 

the core was reduced by up to 7 times due to the 

mentioned change. 

• Changes in the length-to- width ratio of 

sandwich plate have different effects in different 

cases. In some cases, the change in the “b/a” 

ratio from 3 to 4 does not affect the increment or 

in-plane stresses of the upper and lower plates, 

while in some others, such as a thick sandwich 

plate with a normal soft auxetic core, there are 

some changes in stresses and increment due to 

the mentioned change.   

• In general, an increase in the “b/a” ratio 

leads to an increase in the transverse 

displacement of the different points of the plate 

as well as an increase in the stress 𝝈𝒙𝒙̅̅ ̅̅ ̅ of the 

upper and lower surfaces of the plate, as well as 

a decrease in stress 𝝈𝒚𝒚̅̅ ̅̅ ̅. 

• Changing boundary conditions from the 

mode of CCCC (Clamped on all edges) to CFCF 

(Clamped-Free-Clamped- Free) leads to an 

increase in displacements in all cases. The 

auxeticity of the core has not played a significant 

role in the mentioned change in the effect. In 

general, the greatest change in transverse 

displacement is due to the change of boundary 

conditions from CCCC (Clamped on all edges) 

to CFCF (Clamped-Free-Clamped- Free) for a 

thin sandwich plate with a stiff auxetic core, and 

the slightest change among the investigated 

cases belongs to the thick sandwich plate with 

soft auxetic core. 
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