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1. Introduction

To the best of our knowledge, no investigation 

has been made yet to examine an impression of 

Ohmic heating (Joule heating) and radiation on 

MHD Jeffery fluid model in a vertical 

asymmetric tapering channel with peristalsis. 

The investigation of the mechanisms of 

peristalsis, in each physiological and mechanical 

situation, has been scientifically examined  quite  

slowly. The fundamental principles of peristaltic 

pumping were demonstrated in two – 

dimensional channel and highlighting the impact 

of various factors on regulating flow as outlined 

by  Jaffrin and Shapiro [1], Fung and Yih [2] and 

Shapiro et al. [3]. A numerical model for 

peristaltic motion of a Newtonian fluid  was 

designed by Kothandapani and Prakash  [4]. 
Bhatti et al. [5] discussed the mathematical 

modelling of heat and mass transfer 

consequences on MHD peristaltic flow. Free 

convection flow by elicited force field has been 



JCARME                                                    S. Ravikumar, et al.                                             Vol. 11, No. 2 

 

318 

 

mentioned by Ghosh et al. [6].  The in-depth 

literature on the present analysis can be found in 

the following references: Ameer Ahamad et 

al.[7] Makinde et al. [8], Sinha et al. [9], Akram 

and Nadeem [10], Ellahi [11], Rashidi et al.[12], 

Gnaneswara Reddy and Makinde [13], Bhatti et 

al. [14], Hayat et al. [15], Gnaneswara Reddy et 

al. [16], Veeresh et al. [17], Vajravelu et al. [18], 

Eldabe et al. [19], Asha and Sunitha [20], Nehad 

Ali Sha et al. [21] and several other therein. 

Recently, Chamkha et al. [22] designed the 

MHD flow and heat transfer of a hybrid 

nanofluid in a rotating system. 

The primary goal of the current study is to 

examine the impact of Ohmic heating and 

radiation on the MHD Jeffery fluid model in a 

channel with peristalsis; it has escaped the 

consideration of earlier scholars. Up to now 

numerous researchers  have examined peristaltic 

Jeffery fluid model with heat transfer through 

various channels like symmetric channel, 

planner channel, asymmetric channel, 

asymmetric vertical channel, tapered channel 

and also circular cylindrical tube, inclined 

circular tube and finite length tube with 

permeable walls.  

As previously stated, the current research has a 

broad range of applications in the polymer 

industry, as well as biomedical engineering, 

clinical diagnosis, and surgery, all of which 

involve flows through porous media in the 

presence of a magnetic field and radiation. The 

model established has been employed to explore 

the dynamics of blood flow in ill arteries under 

the influence of an external magnetic field, when 

the artery lumen transforms into a porous 

structure and blood functions like a plastic fluid. 

 
2. Formulation of the problem 
 

On the MHD Jeffery fluid model, we consider an 
incompressible viscous fluid flow with Ohmic 
heating  through a channel with peristalsis. The 
porous medium and radiation are also taken into 
account. 

The wall surface of the problem is labeled by 

(Fig. 1): 

 
Fig. 1. Schematic diagram of the physical mode. 

( )2

2
   sin  IY H b m X d X c t





 
= = + + − 

 
 

 

(1) 
 

( )2

2
   sin  IY H b m X d X c t





 
= = + + − 

 
 

 

 
(2) 

where , , , , ,b d c m t and   are mean half-width 

of the channel, .amplitude of the peristaltic wave, 
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where �̄�𝑎𝑛𝑑�̄�, 𝑘1, 𝜌, 𝑘, 𝜇, 𝑄0, 𝐶𝑝,𝑎𝑛𝑑�̄� are

velocity components, permeability of the porous 

medium, density of the fluid, thermal 

conduction, coefficient of the viscosity, constant 

heat addition, specific heat at constant pressure, 

and temperature of the fluid. 

The radioactive heat flux (Cogley et al. [24]) is 

given by ( )2
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4
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, here   is the mean 

radiation absorption coefficient. 
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where 𝑅𝑒,𝑀 , 𝑃𝑟, 𝐸 𝑐, 𝛽, 𝜂𝑎𝑛𝑑𝜂1, 𝑁 and Br
 
are

Reynolds number, Hartmann number, Prandtl 

number, Eckert number, heat sink parameter, 

gravitational parameters, Radiation parameter 

and Brinkman number. 

3. Solution of the problem

Substituting non-dimensional quantities (Eq. 
(9)) into Eqs. (5-8), we get the resultant 
equations after dropping the bars: 
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We use a long wavelength approximation, 

ignoring wave number ( ) and a low Reynolds 

number. Eqs. (10-13) become: 
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The dimensionless boundary conditions are: 
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The heat transfer coefficient (Z) at                        
𝑦 = ℎ1,𝑎𝑛𝑑,𝑦 = ℎ2,,walls, as calculated by: 

1 1y x
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The coefficient of heat transfer solutions at      
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In the wave frame, the volumetric flow rate is 
measured by: 
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The pressure gradient obtained from Eq. (25) can 
be expressed as:   
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In the laboratory frame, the flux 𝑄(𝑥, 𝑡) is:  
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The average volume flow rate of a peristaltic 
wave throughout one wave interval is expressed 
as: 
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The pressure gradient can be calculated using 
Eqs. (26) and    (28) as follows: 
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4. Results and discussion  
 
The goal of the research was to look at the Ohmic 
heating, Radiation, and Gravity Field in a 
tapered channel with peristalsis on an MHD 
Jeffery fluid model. For computations of this 
study, the following default parameter values are 
used: ε = 0.2, k1= 0.1,  x = 0.6,t = 0.4, / 3 = ,

/ 4 = ,
1

0.5 = ,  Da = 0.5, 1 = , M = 1, p = 0.5, 

0.2Q = , d = 2, Br = 0.1, Pr = 2, N = 0.3,      

0.1 = . Unless otherwise specified on the 

appropriate graph, all graphs relate to these 
values. 
 
4.1. Validation of the model 

 
We compared the computed numerical findings 
(Table 1) with the results of Ravi Rajesh and 

Rajasekhara Gowd [25] in this part. As Ravi 
Rajesh and Rajasekhara Gowd's method is 
completely analytical, it serves as a baseline in 
this comparison. As shown in Table 2, the 
estimated velocity is compared to the matching 
velocity distribution values derived by Rajesh 
and Rajasekhara Gowd's [25] solution. The 
computed findings for the porosity parameter   
Da = 0.1, 0.5, 1 are in close agreement with 
Rajesh and Rajasekhara Gowd's [25] 
comparable result, indicating that the solution 
computed is correct and the analysis provided is 
valid. 

 
4.2. Velocity profile 

 
Fig. 2 demonstrates the variation of the axial 

velocity (𝑢) with Gravity field ( ). It 

is ascertained from this graph  that the velocity 

of the fluid enhances with increase in  . The 

fluid of the velocity improved when the Jeffery 

fluid parameter increased, as illustrated in   Fig. 

3. We perceive from  Fig. 4 that the velocity 

enhances with increase in M. Fig. 5 presents the 

impact of Da on 𝑢; notice that 𝑢 increases as Da 

rises.   

 
Table 1. Velocity distribution for various values of 

Da. 

y value  Da = 0.1 Da = 0.5 D a = 1 

-1.25 -1 -1 -1 

-0.75 0.1002 0.2894 0.3899 

-0.25 0.2975 0.7550 0.9510 

0.25 0.2990 0.7598 0.9571 

0.75 0.1102 0.308 0.4117 

1.25 -1 -1 -1 

 

Table 2. Velocity distribution for various values of 

Da. 

y value Da = 0.1 Da = 0.5 Da = 1 

-1.25 -1 -1 -1 

-0.75 0.1043 0.2909 0.3909 

-0.25 0.3012 0.7591 0.9540 

0.25 0.3041 0.7602 0.9601 

0.75 0.1163 0.3102 0.4140 

1.25 -1 -1 -1 
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Fig. 2. Impact of η on axial velocity. 

Fig. 3. Impact of λ1 on axial velocity. 

Fig. 4. Axial velocity with M. 

Fig. 5. Axial velocity with Da. 

Fig. 6. dp/dx with η. 

Fig. 7. dp/dx with λ1. 

4.3. Pumping characteristics 

4.3.1. Pressure gradient  

The aim of  Fig. 6 was to study the impact of 

gravity filed on pressure gradient. We can see in 

this graph that the pressure gradient of the fluid 

enhances with an increase. in a gravity field. An 

impact of λ1 on pressure gradient is portrayed in 

Fig. 7. The pressure gradient decreases as λ1  

increases, as shown in    Fig. 7.  Fig. 8 

presents  the impact of Hartmann number on 

dp/dx. It is ascertained from this graph  that the 

dp/dx increases when thre is a rise in M. Fig. 9  is 

drawn to review the impact of the porous 

parameter on the pressure gradient. We can see 

from this graph that when the porosity parameter 

increases, the pressure gradient decreases. 
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Fig. 8. dp/dx with M. 

Fig. 9. dp/dx with Da. 

4.3.2. Temperature 

Fig. 10 depicts the effect of  η on the temperature 

of the fluid. As can be seen in this diagram, when 

η increases, the temperature of the fluid rises. It 

can be seen in Fig. 11 that when the Jeffery fluid 

parameter increases, the fluid temperature drops. 

As Pr rises, the temperature rises, as can be seen 

in Fig. 12. Temperature enhances as N increases, 

as shown in Fig. 13. The aim of  Fig. 14 was to 

study the impact of β on θ. We observe that θ 

increases as there is an increase in β. From Fig. 

15, we notice that as Br rises, the temperature of 

the fluid increased.  

4.3.3. Heat transfer coefficient 

Fig. 16 represents the variation inn heat 

transfer coefficient (Z at y = h1) with Prandtl 

fluid parameter . It is ascertained from this graph 

that in  region  0,0.55 ,x the heat transferr

coefficient rate diminished whereas in region

 0.55,1 ,x the heat transfer coefficient rises as 

the Prandtl parameter rises. The impact of N on 

Z is portrayed in Fig. 17. The heat transfer 

coefficient in  region 𝑥 ∈ [0,55,1] increases as N 

increases. 

Fig. 18 shows that as    increases, the heat 

transfer coefficient increases in ,𝑥 ∈ [0,55,1]. 
Fig. 19 explains the results of  Z with 1

 , observe 

that as 
1

 rises, Z increases in 𝑥 ∈ [0,55,1].

Fig. 10. Temperature with η. 

Fig. 11.Temperature with λ1. 

Fig. 12. Temperature with Pr. 
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Fig. 13.Temperature with N. 

Fig. 14. Temperature with β. 

Fig. 15 . Temperature with Br. 

Fig. 16. Heat transfer coefficient with Pr. 

Fig. 17.  Heat transfer coefficient with N. 

Fig. 18. Heat transfer coefficient with β. 

Fig. 19. Heat transfer  coefficient with λ1. 

5. Conclusions

The role of Ohmic heating (Joule heating) and 

Radiation and Gravity Field on MHD Jeffery 

fluid model inn a vertical channel with peristalsis 

has been investigated. The main outcomes are 

cited below: 

• With an increase in
1

, , M and Da  , the 

velocity of the fluid increases. 

• Increases in η and M increase the pressure

gradient, while increases in 
1

 and Da decrease

it. 
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• The temperature of the fluid rises with 

increases  in , Pr , N ,  and Br , but falls  with 

an increase in 
1

  

• The rate of heat transfer coefficient 

enhances in  0.55,1x with a rise in

1
Pr, , .N and    
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