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Article info: 
This paper presents the detection of fault prognostics in bearings with the 

application of extended Takagi-Sugeno fuzzy recursive least square 

algorithms (exTSFRLSA). The nonlinear system is decomposed into a 

multi-model structure, consisting of linear models that are not inherently 

independent, due to the fuzzy regions defined in exTSFRLSA. The 

exTSFRLSA was developed to tune, adjust and adapt the parameters 

involved in the propagation model, as it tends to update itself with the 

availability of new data. This method is suitable for the online identification 

of systems because of its unsupervised learning pattern which dwells on a 

mechanism cantered on rule-based evolution. Scenarios considered for the 

rule-based modification and upgrade are quite diverse, thereby ensuring 

effective comparison of measured and predicted defect size. An estimation 

of the remaining useful life was determined successfully with the proposed 

method, showing that the system performance health indicator reflects 

bearing degradation, and it was concluded that exTSFRLSA can be used for 

fault prediction of bearing where rolling element  are involved, especially 

while its operation is associated with fluctuating speed and load conditions.  
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1. Introduction

Takagi-Sugeno of extended form assumes a 

fixation on the rule-based fuzzy program 

structure. It is equally important to note that the 

rule-based Fuzzy structure is approximators of 

universal functions. 

These are ideal for the extraction of interpretable 

information which provides a promising 

structure for effective and strong prognostics, for 

the effective arrangement of systems and control 

designs.  

Attenuated faults used to estimate their 

remaining useful life, especially in bearings of 

rotating machinery usually result from adverse 

vibration.  

Using vibration or acoustic signature analysis, 

and most especially the adopted method in this 

work is a widely used technique to avoid 

breakdowns in machinery where taper and 
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rolling element bearings are often used. Such 

signals are usually correlated with in-order 

reference measurements to establish bearing 

conditions [1, 2]. 

Identification and fault detection in systems at 

the very early stage will greatly reduce system 

downtime, thus encouraging smooth production 

processes in industries, thereby enhancing 

productivity, efficiency, and profitability. The 

prognostics process is very important in fault 

detection; it entails the anticipation of possible 

manifestation of failure in a system and taking 

appropriate measures or solution procedures 

without postponement. The success of 

prognostic methods is a function of its ability to 

accomplish “accurate” estimates or predictions, 

a measure of reliability follows. In this research, 

the extended Takagi-Sugeno is applied in 

conjunction with one of the popular equations 

for fault detection known as Paris law to 

supplement and make the remaining useful life 

more expressive. Fuzzy Neural Networks, a 

hybrid metaheuristic technique, is a combination 

of neural network and fuzzy logic useful for 

solving complex combinatorial and stochastic 

problems in a diverse area of engineering like 

pattern recognition, control system modelling, 

robotics, and bioengineering applications, and 

other engineering problems.  
A good number of hybrid applications associated 

with the feed-forward process include combined 

fuzzy and neural networks known as (adaptive 

neuro-fuzzy inference system) model. Another 

popular aspect associated with hybrid 

metaheuristic application is the online adaptive 

fuzzy neural network and neural network 

combined with fuzzy [3-6]. 
Despite some discrepancies in the literature 

associated with fault detection, predictions, and 

prognostics, the International Organization for 

Standardization defines prognosis as the 

calculation of the time for failure to occur having 

modes of failure that are incipient and which 

could be one or more in number [7]. 

One of the important aspects of failure mode is 

time estimation of failure, which is associated 

with risk in such complex systems. Prognostics 

is defined [8, 9] as a process of systems analysis, 

which involves fault detection associated with 

impending conditions of design parameters with 

durable life.  

The complexities and dynamics of real-world 

problems in engineering and manufacturing 

require advanced methods and techniques for 

developing intelligent and adaptive systems 

(ISs) online. Systems in these industries should 

be able to evolve as they function and be able to 

improve the model by communicating with the 

environment as well as updating their 

knowledge. 

Coyle et al. [10] were able to use a hybrid 

heuristic fuzzy combined with a neural network 

for the robustness of their work and to expand on 

the efficiency of the computation of related 

research. New methods were suggested for 

validating the network architecture after 

effective modification. There is no doubt that 

hybrid algorithms, specifically the creative ones 

of fuzzy neural models, are capable of adapting 

to complex structure, especially where neurons 

are needed. There is no doubt that the research 

presented by Coyle et al. [10] is very similar to 

that presented by Rubio [11] and quite related to 

the self-organizing fuzzy modified least-square 

network. He developed an online algorithm that 

is able to reorganize the model and adjust to a 

changing environment in which both the 

structure and the learning parameters are 

simultaneously carried out. His network avoids 

the singularity produced by the widths in the 

antecedent part for online learning. 

A clustering technique at the incremental level 

takes into consideration the non-stationary 

existence of the pattern of dataset presented 

which further produces clusters in online mode 

used as the first stage of the non-iterative 

learning process to form fuzzy rule-based 

structures of a previous existence in component 

forms. The breaking down of the learning 

recursive clustering leads to a powerful principle 

known as Takagi-Sugeno in extended, which is 

known for its powerful recursive estimation 

technique [12, 13]. 

The novelty introduced in this work is in the 

method of determining the remaining useful life 

of taper bearing (which can also be used for 

roller bearings) which as proposed for fault 

extraction is based on fuzzy rules and the use of 

recursive least square. This helps to look closely 

at the control perspective showing deep attention 

to the system structure that is usually overlooked 

in other methods. More attention is usually given 
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to the recognition from system parameter point 

of view, especially focusing on adaptation of the 

system, tuning process and modification process 

[14]. Fuzzy theory is often known to be the most 

suitable approach to real-life problems, 

especially problems associated with 

mathematical models especially stochastic cases 

or problems under uncertainty [15, 16].  

The hybrid system, of extended fuzzy and neural 

network recursive least square, has robust 

application and is very fast in terms of 

processing speed and practical application, as it 

can utilize linguistic terminologies associated 

with fuzzy rules for high performance [17]. 

Therefore, it is worthy to note that hybrid 

application of fuzzy and neural network with 

recursive least square is very significant in 

systems, especially where the remaining useful 

life of rolling element bearingss running and 

maintaining varying speed and load conditions 

are to be investigated [18-23]. 

The concept of the method in view is such that, 

considering fuzzy rules, components of fuzzy 

sets, and other variables of the occurrence 

elements, it is necessary to come up with a 

standard fuzzy rule-based model structure with 

alpha cuts from rule viewer [24].  

The adapted and hybrid fuzzy system functions 

like a creative or nature inspired system which is 

capable of mimicking real life natural systems 

like humans by looking at the system behavior 

and programmed to function based on their 

process of operation, especially looking at key 

features associated with the human system like 

learning pattern, developmental pattern, 

operational pattern, pattern of growth, and 

development to develop rules for data 

manipulations using linguistic terminologies 

[25]. With the Takagi-Sugeno of extended form 

being a technique with high level of creativity for 

solving complex problems with multiple modes 

of operation, online recognition methods have 

recently begun to see application [26]. In 

combination with model recognition, 

monitoring, fault detection, and signal 

processing, the issue associated with its online 

application has also been discussed.  

The model is a high-level fuzzy model of 

qualitative form using linguistic terminologies 

for effective rule development which has to be in 

line with membership function space and 

parameters by taking alpha cuts on the developed 

platform. This same algorithm is a function of 

recursive estimation of possible information 

based on dataset and rule development with 

expressive linguistic terminologies. The 

technique is qualitative hence the name extsfrls 

algorithm [27, 28]. An approach for modelling 

bearings degradation function is provided in this 

work, thus providing a relevant update on the 

bearings' remaining useful life by using the 

creative algorithm process, which is based on 

Takagi-Sugeno fuzzy of extended form and the 

least square recursive algorithm (exTSFRLSA) 

for the purpose of ensuring effective prognostics. 

Changing the parameters of a model is very 

possible using the proposed creative model as 

used in this study. The selected parameters are 

modified, tuned and properly adapted by relating 

measured and expected defect sizes in a structure 

under investigation [27]. Despite the variability 

defect growth behavior, the instantaneous rate of 

defect propagation was recorded, and there is 

also an improvement in the computation 

processing time. 

This method has been used extensively in this 

work to demonstrate the expressive power of 

exTSFRLSA, using small amount of dataset 

compared to the solution obtained from common 

problem of inducing expert opinion considering 

robust dataset, as seen in previous research work 

based on fuzzy models has a high level creative 

algorithms. Another benefit of this research has 

to do with the ability of the process to function 

with other nonlinear expression [28-31]. The 

hybrid algorithm technique uses the concepts of 

the Extended Takagi-Sugeno also known for its 

linguistic based ability on developed rules from 

dataset alpha-cuts and  from membership 

function of the fuzzy system [13]. Paris law in 

combination with the recursive least squares 

method thus capture’s the crack growth in the 

systems relevant to data capture online which is 

1.5 mm wide by 1mm deep simulated groove 

made on the bearings outer raceway by spark 

erosion machine. 

The approach adopted in this study is based on 

unsupervised learning, with a focus on the 

recursive, non-iterative building of the Fuzzy 

network with rule from the available dataset. The 

method adopted further provides awareness of 

the online detection of the existence of bearings 
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defects growth, thereby offering possible 

forecasting. It has a higher convergence speed 

and gives the fuzzy network better fine-tuning as 

shown in the conclusion. 

 

2. Takagi-Sugeno fuzzy of extended type and 

recursive least square model 

 

Real structures are complex, and sometimes their 

behavior appears to be non-stationary and often 

non-linear. The statement is true for bearings 

with rolling components working under 

fluctuating speed and load conditions. 

Monitoring systems are advanced; however, the 

online analyzes are now simple to perform with 

the help of the systems. Thus, creative and data-

driven methods are being applied increasingly to 

systems other than prognostics Fig. 1. The 

aforementioned creative algorithm Takagi-

Sugeno of extended form fuzzy models as an 

expert system has high-level expressive power 

and has demonstrated superior performance over 

traditional methods, so there is no doubt that the 

method can effectively perform prognostic 

degradation modeling [32-35].  

This hybrid creative model can be defined as a 

collection of the following type of fuzzy rules as 

shown in the system of Eq. (1), [13, 27]: 

 

𝑅𝑖: 𝐼𝐹(𝑥𝑖 .is.close.to.ℶ1
𝑖∗)𝐴𝑁𝐷…𝐴𝑁𝐷 

(𝑥𝑛.is.close.to.ℶ𝑛
𝑖∗) 

 

then (𝑦𝑖 = 𝑥𝑒
𝑇𝜋𝑖) 𝑖 = 1,2, … . ,R             (1) 

 

where 𝑅𝑖 denotes the 𝑖𝑡ℎ fuzzy rule, 𝑅 is the 

number of fuzzy rules, 𝑥𝑒 is the extended input 

vector; 𝑥𝑒 = [1, 𝑥
𝑇]𝑇 which is formed by 

appending the input vector 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑇, 

𝑥𝑗.is.close.to.𝑥𝑗
𝑖∗ denotes the 𝑖𝑡ℎ fuzzy sets of the 

𝑗𝑡ℎ fuzzy rule; 𝑗 = [1, 𝑛], ℶ𝑖
∗
 is the focal point of 

the 𝑖𝑡ℎ rule antecedent, 𝑦𝑖 = [𝑦1
𝑖 , 𝑦2

𝑖 , … , 𝑦𝑚
𝑖 ] 

represents the output 𝑖𝑡ℎ sub-system. 

The output of the hybrid fuzzy model is 

calculated by considering the developed rules 

and sectioning the weighted average of 

individual rules’ as shown in the system of Eq. 

(2).          

 

𝑦 =∑𝜏𝑖
𝑅

𝑖=1

(𝑥)𝑦𝑖 =∑𝜏𝑖
𝑅

𝑖=1

 

(𝑥)𝑥𝑒
𝑇𝜋𝑖= 𝛹𝑘

𝑇𝜃𝑘            (2) 

 

where 𝜏𝑖(𝑥) =
𝜇𝑖(𝑥)

∑ 𝜇𝑗𝑅
𝑗=1 (𝑥)

 stands for the  𝑖𝑡ℎ rule 

firing level, and 𝛹𝑘
𝑇 is the vector of the inputs 

weighted by normalized firing 𝜏 of the rules. 

Considering the recursive least squares 

algorithm, there is no doubt that the algorithm is 

a powerful tool for the forecasting and filtering 

process. This can generate an unstable 

quantization effect and divergence problem, 

especially when applied in a finite precision 

setting. As with the use of exponentially 

forgetting components, this results in separate 

effects, where in most cases there is exponential 

growth associated with the errors. A vital feature 

of the recursive least squares is the calculation of 

the input data estimation associated with the 

correlation matrix in an inverse form which 

helps the process of minimization. There are 

certain limitations associated with the creative 

algorithm, which have to do with complex 

computation and dynamic variables of the 

algorithm. This is resolved through 

incorporating fuzzy into the recursive least 

square. The significance of the least square 

model compared to the RLSM algorithm is to 

optimize the difference in the sum of the squares 

between the filter output and the target signal.   

In terms of speed, the creative fuzzy model has a 

fast convergence, but not as fast compared with 

the the recursive least squares model. One of the 

interesting features of the recursive least squares 

is that it does not show the spread problem of its 

own value. A deterministic Takagi-Sugeno 

fuzzy of extended form is found to have less 

square defect-propagation model as built in the 

system to estimate the size of the defect and the 

rate of defect growth. A power law, which is 

closely related to the Paris law, has always taken 

the form of the defect growth model. 

 
𝑑𝐷

𝑑𝑡
= 𝐶0(∆𝐷)

𝑛                 (3) 

 

As presented in Eq. (3), 𝑑𝐷/𝑑𝑡 represents the 

diameter of crack with respect to time, equally, 

∆𝐷 represents the instantaneous defect area of 



JCARME                                          Bearing fault prognostics . . .                                       Vol. 12, No. 1 

125 

 

the system under study, and 0C  and n  represent 

material constants. This has been noted to vary 

with factors different from instantaneous defect 

size. As can be seen in Fig. 1, the figure clearly 

represents the flow chart of the hybrid system 

designed to estimate the growth rate of the defect 

size. 

The creative hybrid approach, due to its 

superiority, has been used for effective error 

prediction, thus it is capable of fine-tuning 

parameters of the established model with the 

RLS algorithm. It provides continuous 

improvement in the level of accuracy by 

adopting the defect growth behavior, which is a 

function of time. It is also worthy to note that 

there are three key parameters, which include 

0and, t . These parameters are to be 

obtained using the established model defined in 

the system of Eqs. (4-6), respectively. 

 










−−
=

n

C

n 1
log

1

1 0           (4) 

 

n−
=

1

1
              (5) 

 

1

0
0

0
1

+









−
= nD

n

C
t            (6) 

 

As presented in the equations, it is important to 

define the necessary parameters that make up the 

equations. According to the chart presented in 

Fig. 1, 𝐶0 = 0.0702 and 𝑛 = 0.6875, they both 

represent material constants, and 0D  represents 

the area of the smallest defect, which is capable 

of deflecting from size.  

To effectively update the desired values of the 

parameters presented in systems of Eqs. (4-6), 

including 0and, t , which are necessary for 

effective model estimation, it is important to 

make use of the forgetting factor in RLS. 

 

 
Fig. 1. Flow chart of exTSFRLSA prognostic system. 

 

To obtain the output of the fuzzy network, Eq. 

(7) is further presented, thus: 

 

( ) ( )Dlog =tY            (7) 

 

D represents the range of strain in the course 

of fatigue cycle. 

 

( )( ) ( )tYofestimatettY →−1,  
 

The output Y estimation is a function of the 

defect area due to the range of strain during the 

fatigue cycle of time ( )t and the filter parameter 

 . 

The recursive least squares algorithm is given as 

follows: 

 

𝑌(𝑡) = [𝛹𝑇(𝑡 − 1)𝜗(𝑡 − 1) + 𝜀(𝑡)]       (8) 

 

The output 𝑌(𝑡) is a function of the vector of the 

input 𝛹, the filter parameter   and the error 

which are all functions of time. 

where: 

 

 𝛹𝑇(𝑡 − 1) = [
𝑦(𝑡 − 1), 𝑦(𝑡 − 2),………

𝑦(𝑡 − 𝑛),
 

𝑢(𝑡 − 1 − 𝑁),………𝑢(𝑡 − 𝑟 − 𝑁), 1] 
𝜗𝑇(𝑡 − 1)
= [𝑎1, 𝑎2, ………𝑎𝑛 , 𝑏1, 𝑏2, ………𝑏𝑟, 𝑑] 
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A small amount of data is involved at the 

minimization of the filter parameter, which 

affects the signal sensitivity needed. Hence, Eq. 

(9) is given below: 

 

 min
�̂�
∑[𝛹𝑇(𝑖 − 1)𝜗(𝑖) − 𝑦(𝑖)⏟              

"𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒𝑠" 
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑦

]2        (9) 

 

As shown in the system of Eq. (9), it is important 

to properly define some parameters such as 𝑦, 

which represent the value of the output. Then, 𝑢 

which represents the input value of the system, 

and 𝑑 represent the noise or disturbance in the 

system during operation, N represents the time 

for system delay. The system of Eq. (10) present 

s a (3×3) matrix, which is a covariance matrix 

𝑝(𝑡). 
 

𝑃(𝑡) = 𝜆−1 (
𝑃(𝑡 − 1) −

𝑃(𝑡−1)𝛹(𝑡)𝛹𝑇(𝑡)𝑃(𝑡−1)

𝜆+𝛹(𝑡)𝑃(𝑡−1)𝛹(𝑡)

)      (10) 

 

As shown in the equation,  totally represents 

the forgetting factor and the range is between 0 

and 1, that is 10   . A unit matrix scale, 

which represent the initial covariance matrix, is 

chosen by a positive scalar and has a set of 

boundary conditions or functions between 1-

1000 (Fig. 1). 

 

 Tt0 =          (11) 

 
3. Experimental procedure 

 
Fig. 2 shows the test rig setup, which was used 

in the experiment. As shown in the figure 

representing the test rig, three bearings have 

been considered (Timken HR 30307 J); out of 

the three, two were selected to undergo 

artificially placed defects because they can be 

removed from the outer raceway. The test rig 

includes different parts; one of the very 

important parts is the servo-hydraulic actuators 

(two sets) for mounting the different vertical and 

horizontal load amplitudes on the bearing been 

tested. Two actuators were added for successful 

simulation, a situation that aided the coupling of 

the vertical and horizontal course to be 

considered. The rotational bearing speeds were 

quite slow and were between the range of values 

70 and 90 rpm. The force applied was sinusoidal. 

To further demonstrate the machine operation 

process, an AC motor of brushless type, with 

specification standard, Rockwell Automation 

MPL-B680B, was placed on a single row 

bearing with the name NSK 6309. The motor 

drive analog outputs were used to measure the 

angular velocity on the motor (BM-01 series 

Rockwell Automation Kinetix 6000). 

 
1.Variable speed motor, 2.Axial hydraulic actuator, 3.Radial hydraulic actuator, 4.Test rig, 5.Acoustic transducer 

1, 6.Test bearing housing, and 7.Acoustic transducer 2 
Fig. 2. Experimental test rig. 
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This system makes continuous variable 

velocities between 0 and 3600 rpm. An AE 

sensor, which have a frequency range of 25-530 

kHz (model number: SR 150 M), was added to 

the test rig. A bearing was added which was 

tested with a crack using the process of spark 

erosion. Fig. 3 represents a display of full 

schematic diagram of the test rig constructed. 

Fig. 4 shows the seeded crack test bearing 

details. The bearing details used are given in 

Table 1. The rated speed of the bearing, when 

used with grease, was 4800 rpm; however; for 

this work; the bearing via a variable motor speed 

at low speeds of  70  and  90  rpm  was  operated  

 

because of the unique experience observed at 

such speed under variable loads and speeds. 

The three bearings were sinusoidally loaded 

500N vertically at a frequency of 2Hz and 900N 

and horizontally at a frequency of 1Hz. The 

addition of the load helps the model real-life 

scenarios. The servo motor speed for the 

bearings was set at 70 and 90 rpm, respectively, 

as reported earlier. At all these speeds the test-

bearing vibration signatures were obtained using 

an FFT analyzer, NI card acquisition (BNC-

2110) with BNC connector block acting as a 

shield. 

 
 

 

 
Fig. 3. Schematic diagram of test rig setup. 

 
Table 1. Bearing information. 

Contents Parameters 

Bearing specification Timken taper roller bearing HR 30307 J 

Bearing outer diameter 80 mm 

Bearing inner diameter 35 mm 

Bearing width 22.75 mm 

Bearing roller diameter 12 mm 

The number of rollers 14 

Rated speed with grease 4800 rpm 

 
1. Bearing inner ring, 2. Bearing roller, 3. Seeded crack, 4. Rollers cage, and 5-Bearing outer ring 

Fig. 4. Crack on outer race. 
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4. Results and discussion 

 

The tests conducted were halted after some 

random pits sprawled on both bearings, 

following operating for approximately 16 days 

each. Then the damaged data-bearing were 

sectioned, and each was used for the creative 

hybrid algorithm exTSFRLSA for effective 

analysis. The test results were collected on the 

damaged bearing, and the first category was 

identified as Data 1. It was measured and worked 

at a speed of 70 revolution per minute (rpm). The 

second group, sectioned as Data 2, was equally 

tested on the damaged bearing, and the speed of 

operation was recorded at 90 rpm.  

The training process was observed for data 1, 

which was observed at a slow and steady rate for 

groups in data 1. The learning rate used to verify 

the performance result for data 2 after the model 

was further trained was 0.5. The data groups 1 

and 2 contain 52 sets of data of 60,000 samples 

each.  Group in Data 1, was further partitioned 

into 2 groups, one containing a dataset of 

roughly 25 used to train the algorithm, while the 

other group of a dataset of roughly 27 was used 

to evaluate and verify the algorithm that was 

further trained. Upon presentation of each input 

vector for individual samples, the gradual 

training using the creative algorithm shows some 

level of adjustment of the set of weights and 

biases of the fuzzy model. This is a total shift 

from classical algorithms known as online 

training or the adaptive training process. The 

process demonstrated is purely creative using an 

expert learning algorithm, in this case, biases and 

weights are structured to modify the system by 

responding to available input variables. As 

demonstrated in the experiment, the Data 2 set 

was equally validated by considering the 

obtained set of data categorized into 27 sets. This 

is part of data 1 classification. It was further 

noted that the result obtained at this level is valid 

when compared with dataset 1.           

Fig. 5 shows a continuous simulation of defects 

with noticeable growth consisting of the 

estimated plot for parameters in the defect 

propagation model. The simulation process 

performed, at the first stage is four simulation 

procedures. The initial estimate is represented as 

𝛼 = −4.5, 𝛽 = 3.2, and 𝑡0 = 1.5. The 

estimation of the initial defect propagation 

parameters model is shown in Table 2. 

A clearer view of Fig. 5 demonstrates the 

obtained value of defect propagation model 

parameters which consist of the two bearings 1 

and 2. It was observed that the bearings obtained 

a speed of 70 and 90 rpm, respectively. It was 

further observed via the performed simulation at 

the very first time on dataset 1, that the obtained 

value of 𝛼1 gave a range of values far from zero. 

It was also observed that 𝑡01 increases due to 

convergence experience, at a close range of 

value of 10 × 104 cycles. It was further 

investigated that as 𝛼2 maintained a shift towards 

the zero, 𝑡02 was observed to be smaller. A close 

look at Fig. 6, reveals a divergence in the 

simulation process parameter not from the 

predicted but the actual value 

 
Table 2. The estimation of the initial defect 

propagation parameters model in continuous growth 

of defect area simulation.  
 Simulation of continuous growth of 

defect area on data group 1 at 70 rpm 

Prediction no. 𝛼1 𝛽1 𝑡01 

1 -4.5 3.2 3.6 

2 -4.2 3.4 2.4 

3 -5.0 2.5 2.0 

4 -4.0 2.5 2.4 

 Simulation of continuous growth of defect area 

on data group 2 at 90 rpm 

Prediction no. 𝛼2 𝛽2 𝑡02 

1 -3.5 2.2 1.4 

2 -3.5 2.2 1.5 

3 -3.5 2.5 1.3 

4 -2.0 2.2 1.3 

 
Fig. 5. Data 1 at 70 rpm using exTSFRLSA estimated 

defect propagation parameters model.  
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In running the simulation, it took a time of 

154.22 secs. This shows that it was quite fast 

covering a percentage value of 81 % compared 

to the recursive least squares process simulation. 

This is because the creative hybrid system of the 

fuzzy network was introduced and quite superior 

to the classical recursive least square algorithms. 

Fig. 7, shows the prediction plot, which reveals 

adaptation at the growth of the crack.  0.3 

standard deviation was considered with a zero 

mean added for normally distributed portion of 

noise. This is sufficient to account for the effect 

of the distortion inherent in in-direct 

measurement signal processing. For the 

simulation γ was 0.99 and was the forgetting 

factor. 

Considering the creative hybrid model 

exTSFRLSA, and the result of the simulation 

performed, testing the viability of the prognostic 

method became very necessary. It was further 

noted from the plots that the level of prediction 

differs, though there was not much deviation 

between the predicted and actual plot, 

considering the two vital bearings used. In the 

first set of simulations, according to the 

deterministic propagation model of both Eqs. (2, 

10), a defect is assumed to evolve continuously. 

Eq. (10) is therefore, very useful for use with Eq. 

(2) because it allows the estimation of many 

data. The unsupervised exTSFRLSA algorithm 

uses training, demonstrating the development of 

an evolving rule-based framework for evolution. 

The time series centroid input was gradually 

modified based on the dataset. 

There is a clear indication, as shown in Fig. 8, 

that the system is quite suitable for online 

identification, and it can depend on the previous 

value received; for example, if the method 

begins from time t0, it is possible to use the 

integrator block, this is done to enable the new 

value to align with the previous value, the time 

t2 is dependant on the value of t1.  

It is further shown from the graph by comparing 

the growth defect area using the creative hybrid 

model Takagi-Sugeno fuzzy of extended form 

and the classical model, recursive least square as 

a general diagnostic model. After demonstrating 

the solution strength of the classical recursive 

least squares, it is very clear that the creative 

hybrid exTSFRLSA algorithm is robust and quite 

suitable for prognostic rolling element bearing 

functioning at fluctuating speed and load 

conditions. 

 
Fig. 6. Data 2 at 90 rpm using exTSFRLSA estimated 

defect propagation parameters model.  

 
Fig. 7.  Rls prediction plot with adaptation at the 

crack growth. 
 

 
Fig. 8. Plot comparison between RLS and 

exTSFRLSA. 
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5. Conclusions 
 

This study is a demonstration of the creative 

hybrid system, as an online-based identification 

of the exTSFRLSA model, developed for fault 

detection in bearings, which is a creative hybrid 

Takagi-Sugeno fuzzy of extended form for 

system maintenance (condition and predictive 

based). This process is based on noniterative, 

recursive rule development through the creative 

or adapted learning process. The concept 

adopted is a hybrid classification considering an 

inspired creative algorithm, Takagi-Sugeno 

fuzzy, and a classical recursive least squares, 

combined with popular Paris law with 

simulation work, which demonstrated the 

solution strength for remaining useful life 

application in the prediction of bearing fault 

prognosis.  

A close view of the performance strength of 

exTSFRLSA shows a good performance in terms 

of defective prediction and analysis. The 

response strength is fast, in terms of bearing 

defect propagation, before failure. The 

application of this hybrid algorithm, Takagi-

Sugeno fuzzy of extended form, showed a high 

level of superiority over the classical recursive 

least squares approach, which involves less 

computational task but more computational 

resources, better sensitivity analysis, fast and 

accurate fine-tuning process, and well-structured 

parameters. In summary, the adopted model is 

computationally efficient and reliable. 
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