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1. Introduction

To calculate the numerical responses of any 

structure using the finite-element method, the 

domain of the problem is usually discretized into 

three-dimensional (3D) elements. However, 

analyzing problems using 3D elements is a time-

consuming process, and in the case of nonlinear 

or dynamic analyses, the process is not cost-

efficient. Nevertheless, many problems in civil 

and mechanical engineering fields could be 

simplified as a 2D model, and using triangular or 

rectangular elements is more common. The main 

disadvantage of three-node triangular elements 

is that they are constant strain triangular (CST) 

elements and cannot simulate the variations of 

the stress field over the domain of the element. 

Accordingly, for appropriate evaluation of 
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stresses, fine meshes of CST elements should be 

created. Therefore, instead of using CST 

elements, rectangular or quadrilateral elements 

are used. Standard four-node rectangular 

elements usually comprise eight-translational 

degrees of freedom (DOFs) or sixteen DOFs 

(eight-translational and eight-rotational DOFs). 

Generally, the finite-element modeling of 

structures by elements without rotational DOFs 

is stiffer than the real behavior of the structures. 

Accordingly, adding rotations in the nodes of the 

elements will smooth the stiffness matrix. In the 

traditional displacement-based finite-element 

method, adding drilling rotations in the elements 

is difficult.  

Four-node rectangular elements that include 

sixteen DOFs, eight-translational and eight-

rotational DOFs are used for solving plate-

bending type problems and are not useful for 

plane stress or strain type ones. The formulation 

of these kinds of elements, including four DOFs 

in each node, is complicated, and the dimensions 

of mass and stiffness matrices are 16 × 16; and 

therefore, in comparison with four-node solid 

elements, are not cost-effective. Consequently, it 

is interesting to define a planar solid element 

with a drilling rotational degree of freedom at 

nodes, which can improve the performance and 

accuracy of numerical simulations.  

For the finite strip element (FSE) method, Wang 

R.H  presented a theory to construct membrane 

elements with a rotational degree of freedom; 

and the method is named a finite belt method [1]. 

Huang & Thambiratnam  applied the FSE 

method for analyzing plates resting on elastic 

foundations [2]. Liu, G.R used the combined 

FSE and finite-element method for analyzing the 

scattering of elastic waves in laminates [3]. Liu 

et al.  applied the strip element method for shape 

discrimination of strip rolling [4]. Xia et al.  

proposed the membrane element with rotational 

degrees of freedom for beam-type structures for 

static analyses [5]. Rojas et al.  used a 

quadrilateral layered membrane element with 

drilling degrees of freedom for nonlinear static 

modeling of reinforced concrete walls [6]. Also, 

Wang and Jiang  used this method for static 

analysis of curved box girder cells [7].  

The FSE method for buckling analysis of thin-

walled members has been applied by many 

researchers, e.g.: Schafer [8], Schafer and Adnay 

[9], Eccher et al.  [10], Ghannadpour et al.  [11], 

Yao et al.  [12], Chen and Qiao) [13], He et al.  

[14]. Similalry, in the area of steel member 

design, Li and Schafer [15], Zhen et al.  [16], and 

Ajeesh and Jayachandran [17] have applied the 

FSE element in various steel components design 

problems. Chen and Qiao utilized the FSE 

method [18] for post-buckling analysis of plates 

under shear and compression loadings,. In 

vibration and dynamic analysis fields, several 

types of research can be mentioned, e.g., Wang 

and Zhang [19], Jiang and Au [20], Poblet and 

Rodriguezz [21], and Senjanovic et al.   [22]. 

In the above-mentioned literature, several 

studies have been performed using the FSE 

element method under static loading only; 

however, for time-dependent loadings, no direct 

formulations, including drilling DOF, could be 

found. The authors believe that the 

characteristics of time-dependent problems are 

not similar to static ones. The stiffness, damping, 

and mass parameters of the structures are usually 

affected by the structural responses during the 

dynamic excitations. Moreover, for static cases, 

the system responses are influenced only by the 

stiffness of any system. Here, to develop the FSE 

formulation, a rectangular element is divided 

into two independent sets of orthogonal strips 

using truss and Bernoulli beam type elements. 

Then, mass, damping, stiffness matrices, and the 

equivalent nodal forces are obtained based on the 

proposed shape functions. Subsequently, 

dynamic analyses of plane stress/strain type 

problems against earthquake records are 

performed. Without losing the generality of the 

proposed formulation, this method could be used 

for any domain and it is not limited to a 

rectangular area. For non-rectangular areas, 

simple mapping techniques should be used to 

convert the skew domains into rectangular or 

square. 

All steps of the presented formulations are 

programmed in a MATLAB environment [23]. 

The numerical studies reveal that the results of 

the FSE method using coarse meshes are 

competitive with the results of the finite-element 

method using fine meshes. This advantage is 

important in time-consuming computational 

cases such as dynamic or nonlinear analyses.  
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2. Formulation of FSE method  

 

According to Fig. 1, consider a rectangular 

element with three degrees of freedom at each 

node, and twelve DOFs in each element. Here, 

𝑢𝑖, 𝑣𝑖 are the translational degrees of freedoms, 

and 𝜃𝑖 is the drilling rotations. 

As seen from Fig. 2, to obtain the shape 

functions, extracting the stiffness and mass 

matrices, and force vectors, the rectangular area 

is divided into two orthogonal truss and beam 

elements. Therefore, each node has three degrees 

of freedom, and the quantities at any point are 

calculated by 𝑢𝐿  𝑢𝑅 𝑣𝐵 𝑣𝑈 interpolation 

parameters. The vales of these shape functions 

and strain-displacement matrix of the FSE are 

calculated in Section 2.1. 

2.1. Shape function and strain matrix 

In the finite-strip elements, FSE, a linear 

polynomial function for axial displacements, and 

cubic polynomial for transverse displacements 

are used, and the displacement functions are 

written as Eq. (1): 

 

𝑢 = [𝑀1 𝑀2]{𝑢𝐿 𝑢𝑅}𝑇 

𝑣 = [�̅�1 �̅�2]{𝑣𝐵 𝑣𝑈}𝑇 

 

(1) 

 

in which 𝑀1, 𝑀2, �̅�1, �̅�2 are linear interpolation 

functions, and are written as Eq. (2). 

 
𝑀1 = (1 − 𝑟) 2⁄   𝑀2 = (1 + 𝑟) 2⁄   𝑟 = 𝑥 𝑎⁄   

�̅�1 = (1 − 𝑠) 2⁄   �̅�2 = (1 + 𝑠) 2⁄   𝑠 = 𝑦 𝑏⁄   (2) 

 

In Eq. (1), the values 𝑢𝐿, 𝑢𝑅, 𝑣𝐿, 𝑣𝑅 are 

calculated as Eq. (3): 

 

 
𝑢𝐿 = [𝑁1  𝑁2  𝑁3  𝑁4]{𝑢1  − 𝜃1  𝑢4  −𝜃4}

𝑇 

𝑢𝑅 = [𝑁1  𝑁2  𝑁3  𝑁4]{𝑢2  − 𝜃2  𝑢3  −𝜃3}
𝑇 

𝑣𝐿 = [𝑁1  𝑁2  𝑁3  𝑁4]{𝑣1  − 𝜃1  𝑣2  −𝜃2}
𝑇 

𝑣𝑅 = [𝑁1  𝑁2  𝑁3  𝑁4]{𝑣4  − 𝜃4  𝑣3  −𝜃3}
𝑇 

(3) 

 

in which 𝑁1 𝑁2 𝑁3 𝑁4 and �̅�1  �̅�2  �̅�3  �̅�4 are 

cubic interpolation functions, and are defined as 

Eq. (4). 
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Accordingly, the matrix of shape functions for 

FSE is obtained as Eq. (5): 
 

NFS(𝑟 𝑠) = MN(𝑟 𝑠)Tr  
 

(5) 
 

where, MN is the matrix of the shape functions, 

and Tr is a transformation matrix of the 

relationship between the local rotations and the 

rotations at the nodes, defined in Eq. (6) and Eq. 

(7), respectively. 

In Tr, 𝑥𝑖  and  𝑦𝑖 are the coordinates of four-corner 

nodes. When the shape functions of the elements 

are obtained, the next step is the calculation of 

the strain–displacement (B) matrix. For the 

normalized (𝑟, 𝑠) coordinate system this matrix 

is written as Eq. (8): 

 

B = A [
J−1 0

0 J−1]

[
 
 
 
 
 
 
𝜕𝑀𝑁1 𝑖

𝜕𝑟
𝜕𝑀𝑁1 𝑖

𝜕𝑠
𝜕𝑀𝑁2 𝑖

𝜕𝑟
𝜕𝑀𝑁2 𝑖

𝜕𝑠 ]
 
 
 
 
 
 

Tr  

A = [
1
0
0
  
0
0
1
  
0
0
1
  
0
1
0
]  

(6) 

 

 

 
Fig. 1. A rectangular four-node element with drilling 

DOFs (𝜃𝑖).  
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Fig. 2. The finite strips for a rectangular domain. 
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  (8) 

 

where J is the Jacobian matrix and could be 

written as Eq. (9). 

 

𝐉 = [

𝜕𝑋(𝑟 𝑠)

𝜕𝑟

𝜕𝑌(𝑟 𝑠)

𝜕𝑟
𝜕𝑋(𝑟 𝑠)

𝜕𝑠

𝜕𝑌(𝑟 𝑠)

𝜕𝑠

]  

𝐉−1 =
1

|𝐉|
[

𝜕𝑌(𝑟 𝑠)

𝜕𝑠

−𝜕𝑌(𝑟 𝑠)

𝜕𝑟
−𝜕𝑋(𝑟 𝑠)

𝜕𝑠

𝜕𝑋(𝑟 𝑠)

𝜕𝑟

]  

(9) 

 

The relation between normalized and global 

coordinates system is presented as Eq. (10). 

 

𝑋(𝑟, 𝑠) = ∑ 𝑁𝑖(𝑟, 𝑠)𝑥𝑖
4
𝑖=1   

𝑌(𝑟, 𝑠) = ∑ 𝑁𝑖(𝑟, 𝑠)𝑦𝑖
4
𝑖=1   

(10) 

 

In this method, the geometry of the strip element 

is described in a normalized coordinate system, 

and the bilinear shape functions are explained as 

Eq. (11). 
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𝑁𝑖(𝑟 𝑠) =
1

4
(1 + 𝑟𝑖𝑟)(1 + 𝑠𝑖𝑠) 

𝑟𝑖 = [−1 1    1 −1] 
𝑠𝑖 = [−1 −1    1 1] 

(11) 

For 𝑖 = 1 𝑡𝑜 4. 

2.2. Stiffness and mass matrices and Nodal 

forces  

After obtaining the shape functions and strain 

matrixes, the calculations of stiffness and mass 

matrices are available [24]. First, the stiffness 

matrix is computed as Eq. (12): 

 

𝐊𝐞 = 𝑡 ∬𝐁𝑇𝐃𝐁𝑑𝐴 = 𝑡 ∬𝐁𝑇𝐃𝐁|𝐉|𝑑𝑟𝑑𝑠

1

−1

 (12) 

 

in which, t defines the thickness of the element; 

B indicates the strain matrix, D refers to the 

material matrix, and |J| is the determinant of the 

Jacobian matrix. For plane stress or strain type 

problems, the material matrixes are written as 

Eq. (13): 

 

𝐃 =
𝐸

1−𝜈2 [

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

]  

For plane-stress problems, 

 

𝐃 =
𝐸(1−𝜈)

(1+𝜈)(1−2𝜈)

[
 
 
 
 1

𝜈

1−𝜗
0

𝜈

1−𝜈
1 0

0 0
1−2𝜈

2(1−𝜈)]
 
 
 
 

 

For plane-strain problems 

(13) 

 

where 𝐸 and  𝜈 are Yong modulus and Poisson 

ratio of the materials, respectively. Eq. (14) is 

used to obtain the mass matrix: 

 

𝐌𝐞 = 𝜌𝑡 ∬ 𝐍𝐅𝐒
𝑇 𝐍𝐅𝐒𝑑𝐴

= 𝑡 ∬ 𝐍𝐅𝐒
𝑇 𝐍𝐅𝐒|𝐉|𝑑𝑟𝑑𝑠

1

−1

 
(14) 

 

where 𝜌 is the mass density. It should be noted 

that the obtained mass matrix, according to Eq. 

(14), is not diagonal. For reducing the 

computational costs in dynamic analyses, and 

appropriate performance in frequencies 

calculations, the mass matrix should be 

diagonalized. This process is conducted 

according to the following steps [24, 25]: 

1. Compute only diagonal coefficients 𝑚𝑖𝑖  of 

the consistent element mass matrix. 

2. For each coordinate direction in which the 

element DOFs describe motion, two sub-

steps should be followed: 

2a. Determine a number s by adding the 𝑚𝑖𝑖 

associated with translational DOF (not 

rotational DOFs). 

2b. Multiply all coefficients 𝑚𝑖𝑖  associated 

with this direction by the ratio 𝑚/𝑠. 

The diagonal mass matrix is used for the 

calculation of Eigen-values to obtain the 

Rayleigh damping matrix. When the mass and 

stiffness matrices are obtained, the assembled 

matrixes are produced, and the Rayleigh 

damping matrix could be explained as Eq. (15) 

[26, 27]: 

 

𝐂 = (2𝜉
𝜔1𝜔𝑗

𝜔1+𝜔𝑗
 )𝐌 + (

2𝜉

𝜔1+𝜔𝑗
)𝐊 (15) 

 

where, 𝜔1 and 𝜔𝑗 refer to the first and last 

available natural frequencies of the system, 

respectively. Besides, 𝜉 is the damping ratio and 

is set to 0.05. The equivalent nodal forces for 

each element could be written as Eq. (16). 

 

𝐟𝐞 = 𝑡 ∬𝐍𝐅𝐒
𝑇 𝐛|𝐉|𝑑𝑟𝑑𝑠

1

−1

+ 𝑡 ∫ 𝐍𝐅𝐒
𝑇 𝐪𝐞𝑑𝑠

1

−1

 (16) 

 

Here, qe is the equivalent nodal force due to 

body and surface traction loadings. The b2×1  is 

the gravity or body force vector and (qe)2×1 

refers to the intensity of surface traction load 

along any side of the element.  

3. Time history analysis using FSE 

After the calculation of mass, damping, and 

stiffness matrices, the equation of motion for a 

structural system in the time domain is written as 

Eq. (17).  

 

Mü + Cu̇ + Ku = Peff = −Mr�̈�𝑔 (17) 
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Here, r  is the influence vector to insert the 

direction of earthquake record, and �̈�𝑔 is the 

ground acceleration. For solving the equilibrium 

equation in time history loadings, the linear 

acceleration Newmark algorithm is used [28]. 

The main steps for the calculation of time history 

responses are presented in Fig. 3. The described 

formulations in Sections 2, 3 are programmed in 

the MATLAB environment. 

4. Numerical studies  

For validating of the proposed formulation, 

according to Fig. 4, three plane-stress problems 

are studied. The cases are named Fig. 4(a) 

models (I), Fig. 4 (b) model (II), and Fig. 4 (c) 

model (III). Model (I), is a Bernoulli-type beam. 

The second model (II) could be considered as a 

Bernoulli or a Timoshenko beam. Finally, the 

third model (III) is a Timoshenko beam. For 

comparing the results of each model, three finite-

element models, in different mesh sizes, are 

proposed. The numerical results of the static 

responses and natural frequencies are compared 

with the analytical results. 

Material properties for static and dynamic 

analyses of the mentioned models have been 

presented in Table 1. 

 

4.1. Validations and results 

4.1.1. Displacements and rotations 

 

The responses of the mentioned models are 

compared using analytical, numerical 

(commercial finite-element software), and the 

presented method.  

Firstly, a concentrated load 𝑃 at node A is 

applied for the static responses of each model. 

Then, the static displacements of all DOF's are 

computed using the proposed formulations. 

The analytical displacement at A and stress at B 

are calculated using the Bernoulli beam theory 

for model (I) as Eq. (18):  

 

∆𝐴=
𝑃𝑙3

3𝐸𝐼
   , 𝜎𝐵 =

𝑀

𝑆
=

𝑃𝑙

𝐼/𝐶
=

6𝑃𝑙

𝑡ℎ2 (18) 

 

Table 1. Material properties of the case studies. 

Modulus of 

elasticity 

Mass 

density 

Poisson 

ratio 
P(kN) 

21 GPa 2400 kg/m3 0.25 100 

 
Fig. 3. Steps of numerical integration using Newmark methods for MDOF systems. 
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Fig. 4. Studied models; (a) model I, (b) model II, (c) model III and (d) general model. 

 
Table 2. Deformation responses of the model (I) at point A. 

 Displacements Method Mesh size 

𝜃 (𝑟𝑎𝑑)  ∆𝑦(𝑚𝑚)  ∆𝑥(𝑚𝑚)   

7.31×10-4 2.60 0.393 Finite strip 10×2 

3.30×10-4* 3.30 0.500 ABAQUS 

 8.39×10-4 2.50 0.386 Finite strip 20×4 

2.70×10-4* 2.70 0.400 ABAQUS 

9.62×10-4 2.50 0.387 Finite strip 30×6 

2.60×10-4* 2.60 0.400 ABAQUS 

- 2.50 - Timoshenko No mesh 

 3.57×10-4 2.40 0.736 Bernoulli 

* The values have been calculated by hand, and the software could not predict the rotations. 

 

  

where P is a concentrated load, E is the modulus 

of elasticity, l is the length and h is the height of 

the studied models. I refers to the moment of 

inertia and t refers to the thickness of the model. 

In the Timoshenko beam theory, the 

displacements and rotations at any point could be 

calculated as Eq. (19). 

 

∆𝐴=
𝑃𝑙3

3𝐸𝐼
    ,    σ𝐵 =

𝑀

𝑆
=

𝑃𝑙

𝐼/𝐶
=

6𝑃𝑙

𝑡ℎ2  

∆𝑥=
𝑃

𝐸𝐼
[
𝜈(𝑙−𝑥)

2
𝑦2 +

𝑙𝑥2

2
−

𝑥3

6
+

(1+𝜈)ℎ2𝑥

4
]  

∆𝑦=
𝑃

6𝐸𝐼
[3𝑥𝑦(2𝑙 − 𝑥) + (2 + 𝜈)𝑦3]  

𝜃𝑧 =
𝑃

2𝐸𝐼
[2𝑙𝑥 − 𝑥2 + 𝑦2 +

(1+𝜈)ℎ2

4
]  

(19) 

 

Besides, for the validation of the proposed 

formulation for dynamic analysis, the first three 

frequencies of Bernoulli type beams have been 

analytically calculated as Eq. (20). 

 

𝜔1 =
3,516

𝑙2
√

𝐸𝐼

𝑚
   (20) 

 𝜔2 =
22,03

𝑙2
√

𝐸𝐼

𝑚
   

𝜔3 =
61,7

𝑙2
√

𝐸𝐼

𝑚
  

 

Here, m refers to the mass per unit length of the 

studied models. When analytical solutions are 

not available for finding the responses, the 

commercial ABAQUS software [29] has been 

applied. For modeling such problems, the 

CPS4R element is used from the element library 

of the software. This element comprises eight 

translational DOFs. 

In Table 2 the displacements and the rotations of 

model I are presented. This model could be 

considered as a Bernoulli beam model, and for 

comparing the results of this beam, three mesh 

sizes are studied. 

As seen in Table 2, when the number of elements 

is changed, the obtained values from ABAQUS 

have more variations. Moreover, the variations 

of FSE's results are negligible when the mesh 

sizes are changed. 

 



JCARME  J. Akbari, et al.   Vol. 12, No. 2 

184 

Table 3. Deformation responses of the model (II) at point A. 
DisplacementsMethodMesh size

𝜃 (𝑟𝑎𝑑) ∆𝑦 (𝑚𝑚)∆𝑥 (𝑚𝑚)

1.60×10-4 0.210 0.085 Finite strip 10×5

2.30×10-5* 0.230 0.097 ABAQUS

2.80×10-4 0.220 0.089 Finite strip20×10

2.40×10-5* 0.240 0.093 ABAQUS

4.10×10-4 0.230 0.092 Finite strip30×15

2.40×10-5* 0.240 0.093 ABAQUS

3.00×10-5 0.190 0.140 TimoshenkoNo mesh

2.29×10-5* 0.150*  - Bernoulli

* The values have been indirectly calculated by hand, and the software could not predict the rotations

Table 4. Responses of the model (III) at point A. 
DisplacementsMethodMesh size

𝜃 (𝑟𝑎𝑑) ∆𝑦 (𝑚𝑚)∆𝑥 (𝑚𝑚)

1.2×10-4 3.51×10-2 5.24×10-2 Finite strip 10×5

1.3×10-5* 3.09×10-2 5.32×10-2 ABAQUS

2.5×10-4 4.02×10-2 5.92×10-2 Finite strip20×10

1.7×10-5* 3.78×10-2 6.61×10-2 ABAQUS

3.8×10-4 4.19×10-2 6.32×10-2 Finite strip30×15

1.8×10-5* 4.21×10-2 7.34×10-2 ABAQUS

8.4×10-6 3.43×10-2 1.83×10-2 Timoshenko (Exact) No mesh

* The values have been calculated by hand, and the software could not predict the rotations

Therefore, the present method has good 

performance for the prediction of displacements 

even for coarse meshes. This advantage is 

valuable in dynamic and nonlinear analyses 

because the computational costs for coarse 

meshes are less than fine meshes. Besides, the 

results of Table 2 show that variations of 

rotations from FSE are significant and even by 

reducing the mesh sizes, the errors are increased. 

In ABAQUS, the rotations for the nodes were 

not available, and they were calculated by hand.  

In Table 3, the deformation responses of the 

model (II) are presented. This model could be 

considered as a Bernoulli or Timoshenko beam 

model. Therefore, analytical solutions for this 

model are available. As seen from Table 3, in 

comparison with the exact values, the proposed 

method using even coarse mesh (2 ×10) has 

acceptable displacement results. By increasing 

the mesh sizes, the numerical results were not 

improved. For rotations, similar to the model (I), 

the errors of FSE are significant in comparison 

with the exact values. It should be noted that the 

rotations obtained by ABAQUS are based on 

hand calculations.  

Model (III) is a Timoshenko-type beam, and an 

analytical solution for this model is available as 

Eq. (19). As seen in Table 4, the proposed 

method with coarse mesh (5×10) has reasonable 

performance. In all mesh sizes, FSE formulation 

presents better results in comparison with the 

commercial finite-element software. Similar to 

models (I), (II), the errors of the rotations are 

notable. 

The rotational results show that in all models, in 

comparison with analytical results, the values of 

the finite strip method are significant. Therefore, 

the proposed FSE formulation presents softer 

values than the responses of finite element 

software. Moreover, in all models, the 

displacements are more accurate than the 

rotational values.  

4.1.2. Stresses and frequencies 

In the finite-strip element, the stresses at any 

point are obtained as Eq. (21): 

σ = Dε (21) 

where D and ε are the material matrix and strain 

vector, respectively. The stresses in Bernoulli 

and Timoshenko beams could be obtained 

according to Eq. (21). The results of stresses 

using analytical, numerical, and finite strip 

methods are presented in Fig. 5. The results 

show that in Fig. 5. (b) model (II) and in Fig. 5. 

(c) model (III) approximately have similar
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results; and mesh sizes have no significant 

effects on the variations of stresses. Moreover, in 

model (I), for all mesh sizes, the FSE method 

presents a better performance in comparison 

with ABAQUS Software.  
Fig. 6 presents the results of the first three 
frequencies of the studied models. In model (I), 
the errors of the first frequency are negligible. 
However, the error of the second frequency 
obtained from ABAQUS for coarse mesh is 
large. The second frequency (𝜔2) calculated 
from FSE is not sensitive to mesh size. 
Moreover, this frequency calculated by 
ABAQUS is sensitive to the mesh size. For 𝜔3, 
the results of FSE and the exact method are the 
same, and mesh sizes have no significant effects 
on the variations of the frequencies. Even though 
the ABAQUS results are more sensitive to the 
changing of mesh sizes, the errors are notable.  
The second and third graphs of Fig. 6 illustrate 
the results of the first three frequencies for Fig. 
6(b) model (II) and Fig. 6(c) model (III). Here, 
the error of the first frequency is small. The 
second frequency (𝜔2) calculated by FSE is not 
sensitive to the mesh dimensions. However, this 
frequency obtained by ABAQUS is very 
sensitive to the number of elements. For 𝜔3 the 
results of FSE and analytical /exact methods are 
the same. Even so, the results of ABAQUS 
software are sensitive to the mesh dimensions. 
Briefly, the errors of the first frequencies in all 
models are negligible against mesh sizes; 
however, in all models, the second and third 
frequencies (𝜔2, 𝜔3) using FSE formulations are 
not sensitive to the mesh size. The frequencies 
obtained by ABAQUS are sensitive to the mesh 
size. 
 

4.1.3. Dynamic responses 
 

For calculating the dynamic responses of the 
described models, three strong ground motions 
are considered. The horizontal components of 
El-Centro, Kobe, and Tabas earthquakes were 
selected from the PEER database [30]. The 
acceleration time histories of the mentioned 
records are shown in Fig. 7. 
Fig. 8 presents the results of the dynamic 
responses of the  model (I) against the Tabas 
earthquake. As seen from this figure, FSEFSE 

results are not sensitive to the change of elements 
number. Moreover, the results of finite-element 
modeling, ABAQUS, are very sensitive to the 
mesh dimensions. Therefore, to get reliable 
values of responses using finite-element 
modeling, the trial–error procedure should be 
performed for finding the proper mesh size. 
Unlike the finite-element model, the FSE 
produces acceptable results for any mesh size. 
This preference is vital in the numerical 
modeling of structures in dynamic analysis and 
nonlinear cases.  
Table 5 shows the maximum horizontal 
displacements of model (I) against various mesh 
sizes against the Tabas record. The results show 
a small difference, 2 𝑚𝑚, when using coarse 
meshes, 2×10, and fine meshes, 6×30. 
Moreover, in the finite-element method, the 
difference between coarse mesh, 2×10, and fine 
mesh, 6×30 is 11 𝑚𝑚. Therefore, applying the 
proposed FSE method is not sensitive to the 
mesh sizes, and is interested in the numerical 
analyses. 
To parametric study, Fig. 9 presents the dynamic 
responses of a FSE method for studied models 
against Tabas, El-Centro, and Kobe records. As 
seen from this figure, the peak values of the 
horizontal displacements belong to El-Centro 
records. The responses of Fig. 9 are obtained 
from coarse mesh sizes (2×10). 
Table 6 shows the maximum horizontal 
displacements of models against triple records 
for coarse meshes. The mentioned values in 
Table 5 are approximately obtained from Fig. 9. 
 
Table 5. Maximum displacements of the model (I) at 

point A v.s. mesh sizes. 

∆𝑥(max) (𝑚𝑚) 
Mesh size 

ABAQUS FSE 

41 27 2×10 

38 25 4×20 

29 25 6×30 
 

Table 6. Maximum displacements of models  against 

the records. 

∆𝑥(max) (𝑚𝑚) 
Record 

Model (III) Model (II) Model (I) 
0.2 4.0 25.0 Tabas 
0.4 8.0 46.0 El-Centro 
0.1 3.0 14.0 Kobe 
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Fig. 5. Stress response of studied models (values are at point B); (a) model I, (b) model II, (c) model III and (d) 

general model. 

 

 
Fig. 6. Comparison of calculated frequencies for  studied models; (a) model I, (b) model II and (c) model III. 
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Fig. 7. Acceleration time histories of the horizontal component; (a) El-Centro record, (b) Kobe record and (c) 

Tabas record. 
 

 

Fig. 8. Dynamic responses of Model I against Tabas earthquake v.s mesh dimensions; (a) mesh size 2x10, (b) 

mesh size 4x20 and (c) mesh size 6x30. 
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Fig. 9. Dynamic responses of studied models against Tabas, El-Centro, and Kobe records; (a) model I, (b) model 

II and (c) model III. 

  

5. Conclusions  

This paper presents the finite strip method for 

dynamic analyses of plane stress and strain 

problems, including drilling DOF. For this 

purpose, a computer program in the MATLAB 

environment is provided and validated. Based 

on the present study, the following conclusions 

are drawn: 

1. The proposed element has twelve degrees 

of freedom and is softer than four-node 

rectangular elements, including eight 

degrees of freedom. 

2. In all studied models, the present 

formulation has good performance for the 

prediction of displacements, even when  

coarse meshes are used. This advantage is 

valuable in dynamic and nonlinear analyses 

because the computational costs using 

coarse meshes are preferable.  

3. The rotational results show that in all 

studied models, the values of the finite strip 

method are more than analytical results. 

Therefore, the proposed FSE formulation 

presents softer values than the responses of 

the finite-element method. Moreover, in all 

models, the displacements are more 

accurate than the rotational values. 

4. The errors of first frequencies in all models 

are negligible against mesh sizes. 

Additionally, in all models, the values of 

higher frequencies using present 

formulations are not sensitive to the mesh 
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size. However, the frequencies obtained 

from the finite-element method are very 

sensitive to the mesh sizes. 

5. The dynamic responses show small 

differences between using coarse meshes 

and fine meshes. Moreover, in the finite-

element method, the differences or 

responses between coarse meshes and fine 

meshes are large. Therefore, applying the 

proposed FSE method is not sensitive to 

mesh sizes, and is preferable in numerical 

analyses. 

6. The most significant advantage of this 

formulation is that using coarse meshes is 

sufficient to obtain reliable results, and the 

computational time in large-scale problems 

is cost-effective. 
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