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Abstract

To quickly detect sudden cardiac death (SCD), it is decisive to gather
suitable information and enhance the accuracy of the diagnosis algorithms.
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amplitude of each sub-signal are examined. The information flows
between signal strengths and measuring the complexity of energy sub-
signals are checked. A significant change from its former section is
identified. A support vector machine classifier benefits from detecting
individuals exposed to SCD by considering significant changes as
indicators of the SCD process. It can anticipate SCD 15 minutes before it
happens. Not restricted to any special subclass of cardiac diseases, this
technique has priority. To evaluate the specificity of the algorithm, it has
been used not only with patients having SCD but also with individuals who
are healthy, as well as those with coronary artery disease (CAD) and
congestive heart failure (CHF), analyzing their HRV signals. The
specificity values for normal, CHF, and CAD patients are 100%, 93.3%,
and 95.6%, respectively, in the results.
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1. Introduction treated as SCD [1-6]. Even healthy, junior, and

athletic people can die from SCD, but it is more

Sudden cardiac death (SCD) is an emergency
condition that can lead to death within minutes.
If someone experiences sudden changes like
arrhythmia, low blood pressure, chest pain,
breathlessness, or dizziness and gets involved
with cardiac arrest in an hour, those deaths are

common in the middle-aged and elderly [7-8].
SCD is responsible for over four million deaths
globally [9], with a minimum of 300,000 cases
reported in the United States [10]. The incidence
of diagnosed SCD ranges from approximately 37
to 39 cases per 100,000 individuals in the four
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European Union registries [11]. This syndrome
includes a muddled electrical activity in the
heart, hence, its ability to effectively pump blood
to vital organs can be disrupted. The patient's
death might be ineluctable if well-timed and
proper clinical proceedings are not done. Cardiac
arrhythmias are often detected as a prevalent
cause of such deaths. In 75 to 80% of cases,
ventricular fibrillation (VF) can be considered as
the first cause of this cardiac incident. On the
other hand, Brady Arrhythmia takes precedence
in 10 to 15% of patients [10, 5]. Survival in a
non-clinical environment is observable in only
about 1-2% of patients who suffer from this
syndrome [12]. The number of institutions that
have studied the prediction of SCD is very few.
American Heart Association is one of those
whose researchers have published many papers
in this field [13, 15]. The 2022 Heart and Stroke
Statistics Update has been recently released by
the American Heart Association [15]. According
to this report, cardiac arrest is still one of the
threats to public health. Recognizing subjects at
risk of SCD quickly and accurately, therefore, is
important for moderating their chances of dying.
Recently, researchers have studied the SCD
syndrome  through  the  analysis  of
electrocardiogram (ECG) or Heart rate
variability (HRV) signals. For example, Acharya
et al. [16] used a developed support vector
machine (SVM) algorithm to predict SCD four-
minutes prior to the event with 86.8% accuracy.
They used the wavelet method and then
extracted several features based on fractal and
sample entropy (SaE) analysis. Fujita et al. [17]
studied the non-linear aspects of the HRV signal
in twenty patients and eighteen normal
individuals. They precisely predicted a death
incident 94.7% of the time by taking advantage
of the SVM algorithm, four minutes before it
happened. Houshyarifar ef al. [ 18] accomplished
a 92% accuracy in anticipating the VF,
accurately predicting it five minutes before its
occurrence. Their study requires the use of four
features from recurrence plots and three features
from Poincaré plots. Ebrahimzadeh et al. [19]
foresaw the event thirteen minutes before its
occurrence by looking at nine classical, 11 time-
frequency, and four nonlinear features. The
multi-layer perceptron (MLP) network achieved
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an accuracy of 84.21%. Recurrence
quantification was used by Khazaei et al. [20] to
forecast SCD in less than a six-minute duration
prior to its occurrence. Their recommended
algorithm gained an accuracy, sensitivity, and
specificity rate of 95%. Vargas-Lopez [21] used
an ECG signal to forecast the syndrome. They
made an MLP algorithm that can anticipate SCD
with 94% accuracy by using a special analysis
just 25 minutes before it happens. They look at
different aspects of the heart signal (extracting
components of the signal through EMD and then
using Permutation Entropy and Higuchi Fractal
values as features) to make this anticipation. Shi
[22] used a technique named EEMD-based
entropy to analyze HRV signals. They
discovered that this approach could detect SCD
14 minutes earlier with a high accuracy of
96.1%, a specificity of 94.4%, and a sensitivity
0f 97.5%.

Despite all the previous studies, the methods
predicting SCD are not used in medical
examinations. The main reason is that the signals
in this syndrome are similar to those in other
heart diseases. It is well-known that SCD can
happen for many different reasons. Many SCD
patients also have a background of angina [23].
For example, about 50% of patients suffer from
SCD following a myocardial infarction [24].
Also, a great number of SCD patients have CAD
or CHF [25]. CAD refers to a disease in which,
due to the narrowed coronary arteries, the blood
supplied to the heart muscles becomes restricted
[26]. In general, CAD results from the
cholesterol plaques formed within coronary
arteries due to environmental pollution,
unhealthy lifestyles, smoking, or other unknown
factors [27]. If CAD is not treated on time, it may
finally decrease the capability of the heart to
pump oxygenated blood to the other body
organs. Such a syndrome of the heart is referred
to as CHF [28]. This syndrome is a28, in which,
due to the lack of enough energy, the heart is not
capable of pumping blood under normal heart
pressure [29]. It is estimated that 26 million
individuals are diagnosed with this disease
around the world [30]. To enhance anticipation
accuracy, Devi ef al. [31] suggested a technique
to discern signals of patients with SCD from
healthy individuals and those identified with
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CHF illness. The neural network reached an
accuracy of 83.33% for predicting VF
occurrences in less than ten-minute intervals.
Rohila et al. [32] have come up with a new
method to discriminate between patients
diagnosed with SCD, those who are healthy, and
patients with CAD and CHF. They use the HRV
signal for this purpose. Their new method is
usually accurate about 85% of the time when
looking at one-hour chunks of heart signals.
Every algorithm mentioned poses noticeable
restrictions. For example, a restricted number of
patients in each patient group has been studied.
Also, the features used in these sources might be
similar to those found in other heart diseases.
Therefore, if the cardiac signals of other cardiac
patients are applied to these algorithms, these
patients will be wrongly diagnosed by these
algorithms as patients at risk of sudden death.
To diagnose SCD, the algorithm should focus on
the unique features in the heart signals of patients
with this syndrome. The present study suggests
a novel algorithm designed to recognize
individuals diagnosed with SCD syndrome in
comparison to other heart disease patients and
those who are normal. We record important
changes in the heart signals of people who
experience SCD before it happens. Therefore,
the suggested approach is not restricted to any
specific group, resulting in greater specificity
compared to the current methods.

2. Methods and materials
2.1. Extracting features

This research analyzed the heart signal patterns
of patients in danger of SCD during the hour
before it happened. To achieve accurate HRV
measures, it is an obligation to choose the right
frequency for sampling ECG data which in turn
causes a reliable and valid calculation. Recent
developments affirm the need for ECG sampling
rates of at least 125 Hz [33].

Following the de-noising of the ECGs, the
subsequent signals are split into five-minute
intervals. Then, the HRV signal is realized in
patients with SCD. Later, the signals experience
resampling at a frequency of 2 Hz. Eventually,
every newly generated signal goes through
decomposition to four sub-signals. Researchers
often use the EMD method for this process.
Nonetheless, in the last few years, a technique
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named local characteristic decomposition (LCD)
has been used to study the vibrations in gearbox
bearings. This technique has fewer problems
with mixing modes than the EMD method [34-
36]. Hence, this study has considered the
potential of this method for decomposing the
signals of HRV. In turn, it is expected that the
amplitude of the sub-signals coming from the
LCD algorithm is not stable and keeps changing.
Sub-signals change in size and frequency along
with the main signal. Hence, we used the Teager-
Kaiser method to find the amplitude of every part
of the signals produced by the LCD method.
Afterward, we determine the Sak of the energy
signal and the transfer entropy (TE) among every
pair of instantaneous amplitude signals. Finally,
an SVM neural network has been made to
anticipatet  SCD by  considering the
abovementioned features and their variances
from their reciprocal values within the preceding
interval. Fig. 1 shows the block diagram of the
proposed method.

ECG
Twelve 5-minute intervals before SCD
Denoising

Pan-Tampkins
HRV extraction
Resampling

Local characteristic decomposition
Intrinsic scale components

Il

Teager energy operator
Instantaneous energy and amplitude

of each ISC

Feature extraction
Transfer entropy
Sample entropy

I

Selecting the segments which
the most differences are
observed between them

Classification

SVM: using transfer entropy, sample entropy and
detecting the pattern of heart inchination towards
SCD by tracking the alteration process

Feature extraction

t-test

Fig. 1. Block diagram of the proposed method.
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2.2. Database

We used the new algorithm on the signals from
the MIT-BIT database [37]. This database
includes heart signals from 23 patients who
passed away suddenly (sampling frequency=256
Hz). The intervening variables of this research
are the ECG signals of patients and normal
subjects. Unlike the cardiac signals of SCD
patients, which were studied in the last hour, the
cardiac signals of other patients and healthy
people were randomly selected.

The ECG signals were acquired from PhysioNet
databases. Physionet is an Open-Source database
for analyzing physiological signals which has
strict standards regarding compliance with codes
of ethics. The SCD syndrome subject database
provides accurate timing information for the
occurrence of VF. In 20 of the 23 patients for
whom the data are accessible in the specified
database, VF has been confirmed in 20, while the
timing of VF occurrence in the signals of the
remaining three subjects is uncertain. Hence, the
study excluded these three signals.

We tested how well our method works by
comparing it to other studies that used signals
from databases related to Normal Sinus Rhythm,
Coronary Artery Disease, and Congestive Heart
Failure.

2.3. Signals preprocessing

Since there is extra noise with the received
signals, it is an obligation to get rid of them
before further analysis. Hence, we used a
Butterworth filter to get rid of unwanted power
line effects and disturbances caused by the
person's breathing. Then, we focused on five-
minute segments in less than an hour before VF
happened in the cleaned-up signals. Therefore, a
total of 240 intervals, comprising 12 five-minute
parts for each patient have been collected. Ir
should be kept in mind that during the processing
stage, segments including severe noise lasting
longer than 30 seconds have been excluded.
Hence, sometimes we used a smaller number of
subjects instead of 20.

Once the de-noising process is done, the Pan-
Tompkins algorithm is used to create the HRV
signal [38]. Finally, due to variations in the
periods of the acquired signal data, The HRV
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signals were resampled using interpolation at a
frequency of 2 Hz.

2.3.1. Local characteristic decomposition

LCD refers to a pioneer signal processing
method operated in the decomposition of non-
stationary time series [39]. It breaks down the
provided signal x(t) into intrinsic scale
components (ISCs). Eq. (1) is used to find and
show a leftover term (r(t)) and K modes (d(t)).

x() = ) d(®) +7(0) (1)
k=1

More information regarding the LCD method
can be referred to references [34, 39].

Fig. 2 presents an HRV signal and its
corresponding ISCs that were achieved through
the LCD method as discussed earlier. As you can
be seen, the initial I1SCs exhibit a higher
frequency range, and later 1SCs bring a lower
frequency range.

2.3.2. Extraction of signal amplitude and
frequency

The LCD method produces several ISCs that
exhibit fluctuation and inconsistency over time.
The sub-signals vary in size and frequency
during the signal.  Therefore, signal
characteristics can be understood from variations
in size. The Hilbert transform (HT) [40] and the
Teager-Kaiser  energy  operator (TKEO)
techniques are two commonly used methods for
determining the frequency band and spatial
extent of the signals. The HT method works
excellently for signals with specific and bounded
frequency ranges, but it does not do as well with
signals that have sudden changes or shocks.
Negative frequencies can also be generated
using this method. TKEO method is superior to
the HT method for analyzing signals with sudden
changes. It is also easier on computer resources
compared to the Hilbert conversion method [41].
Based on the determined functionalities, the
TKEO methodology is used to evaluate the
frequency and dimensions of the achieved sub-
signals. Eq. (2) characterizes this operator for
discrete signals:
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Fig. 2. The LCD analysis’s results on a five-minute HRV section.
sx(M] =x?2(n) —x(n—1) xx(n+1) (2) X (D) = [x; Xig1 o Xipmo1] ©)

As can be seen, determining the value of the
operator value necessitates solely x(n), x(n+1),
and x(n-1). Hence, it has a very high-quality
image, and its sensitivity to change is noticeable.
The instantaneous frequency and amplitude of
the signal are determined using Egs. (3 and 4):

F(n)
_ L os 1 SE@AD —x -1 )
Anf 2¢[x(n)]
2
A(m)| = 1L{) (4)

Velx(n+ 1D = x(n - 1]
The sampling frequency is denoted by f.

2.3.3. Sample entropy

The energy of the sub-signals attained in the
preceding  step  experiences  variations
throughout the signal duration. Sample entropy
(SaE) can be used to measure the energy
complexity of the signal. SaE is engaged in the
system complexity evaluation of biomedical
signals, which are sensitive to noise interference.
This method helps to discover how often a
specific length of time m with a certain tolerance
ris repeated. The SaE is calculated by these steps
when the signal includes N data points:

Step 1. Consider m as a vector dimension Eq. (5):

I1<i<N+m-1

Step 2. Using Eq. (6), the area amid the vectors
X (i) and X, (j) is calculated:

d[Xm(l) - Xm(])]
= max (X4 — Xj1k)

(6)

Inwhich0<k<m-1landj<N-m+1

Step 3. The amount of d[X,,(i) — X,, ()] < ris
calculated. Here, the threshold is denoted with
the letter 'r'. The calculation of the ratio is
according to Eq. (7) and includes the previously
tallied number divided by N-m + 1.

@i (r)
= N%m—i—l{the number of d[X,,(i) )
- Xn(D] <7}

Step 4. At this step it is averaged over i.
Therefore:

N-m
1
o) =g Z o7) ®)

Step 5. Substituting m +1 instead of m, in this
case, steps one to four are iterated, and it can be
written as Egs. (9 and 10).
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Step 6. Finally, the SaE can be computed by
using Eq. (11):

@™ (r)
(pm+1(r)

SampEn = log (11)

It is noteworthy to mention that regular time
series have lower SaE.

2.3.4. Transfer entropy

TE is a principle to measure the cause-and-effect
connection between two sets of time series data.
Suppose Y(t) and X(t) represent two time series
for the respective Stochastic variables Y and X.
TEy_y shows further information regarding the
future of variable Y. This can be done by
knowing the past and present of Y and the future
and past of X [42].

Consider that X™ and Y* are as follows in Eq.
(12):

{Xm = (Xn Xn-m Xn—(m—l)r)

YE = (Y Yook o Yoogee1yo) (12)

If such is the case, TE can be calculated as Eq.
(23):
TEX—>Y

PV |Y2 X))
=ZP(YH1 v Xl )log2— Y2 Xoeos

P(Y;41|Y)

(13)

where, g and | suggest the embedding
dimensions, meaning that the upcoming
probabilities of Y and X can be calculated using
the previous k and m values.

Additionally, t exemplifies the embedding
delay. P(Yiyq ¥ X/_._;) manifests the joint
probability. P(Yi4a|Y? X1_._), and
P(Yi+1|Yig) are the possibilities of the functions
of density.
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3. Results and discussion

As it has been said, we compare the
characteristics of every five-minute part of the
signal with the next one. Since the cardiac
signals are dynamic, the method of time
segmentation of the signals affects the final
results. Segments shorter than five minutes are
not appropriate for the analysis. At shorter
distances, the resolution improves, but the
extracted features lose their effectiveness. Also,
the accuracy of the calculation decreases when
the time interval exceeds five minutes.
Undoubtedly, modifications in the signal take
place as the event gets closer. Therefore,
observing and analyzing these changes help to
predict the probability of the occurring event.
There are some slight variations in the way
everyone's cardiac signals behave. Nevertheless,
an immediate and extreme adjustment in the
studied features suggests the probability of the
occurrence of an event. The t-test method has
been used to analyze the level of changes in
various time interval features. This particular test
can be used to determine if the presence or
absence of a variable actually has any significant
effect on the two sets of data. In a t-test, when
the feature p-value goes down, it means that the
feature is more impressive [43].

If we study various time intervals, we notice
significant changes in the HRV signals.
Specifically, there were potential changes in the
TE between sub-signal amplitudes and the SaE
of signal energy 25 to 10 minutes before the
event happened (Table 1). According to the
table, there is no big difference in the t-test
results until 10 minutes before the event.

Table 2 shows the results of using the TE method
for the 3rd, 4th, and 5th segments. Additionally,
we calculated the p-value to compare these
consecutive intervals. As you can see, there is an
abrupt change in the TE between the momentary
amplitudes of the 4ths and the 1st sub-signals 10
to 20 minutes prior to the VF. Simultaneously,
there are no identical changes in the remaining
sub-signals.

In Fig. 3 you can see how much information was
flowing between the ISCs in the hour prior to VF
occurrence. An observable change is evident in
the 4th segment. The TE reaches its possible
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minimum right after the third interval (p=
0.0016). The energy pattern in the 4th part
suddenly changes when we compare the 4th and
5th time segments. This change is statistically
significant (p= 0.0451), but there are no
noticeable changes in the five minutes before
this, as indicated in Table 3. This table provides
the results of analyzing the patient’s data in the
4th and 5th intervals using SaE of instant energy.
As is shown, the value of SaE in the fourth sub-
signal before the event changes greatly from the
5th to the 4th segments.

The average SaE of the energy in the ISC4 is
observed to change in the hour leading up to
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SCD as shown in Fig. 4. A significant decrease
in entropy size is observed in the 4th segment,
compared to the preceding interval. In Fig. 5 and
Fig. 6, you can see the p-values for the listed
features in different periods. As it is evident,
most of the changes we studied happened during
the 4th and 5th periods. This means that the acute
time before the event is around 15 to 25 minutes.
These big changes suggest that the event might
start soon. The way things are changing indicates
that the beginning of SCD is getting closer. We
do not know exactly why, but shocks during this
time might make the heart more likely to go into
a dangerous state named VF.

Table 1. Comparison results of successive segments using t-test: TE for 5-minute segments, Sak of energy signal,
and P-value categorization (** for p-value < 0.05, # for p-value > 0.05).

Segment 1-2 2-3 3-4 4-5 5-6 6-7 78 89 9-10 10-11 11-12
TE # # ** ** # # # # # # #
SakE # # # ** # # # # # # #

Table 2. TE analysis results for 3ths, 4ths, and 5ths segments in patients with SCD, ** appears for p<0.01.

TE-O (meanzstd) P value

3" segment 4™ segment 5t segment 3 and 4t 4t and 5
TE, ., 0.136 £0.128 0.2167 £ 0.155 0.1299+ 0.112 0.667 0.052
TEi.3 0.1592 + 0.068 0.1795 +0.076 0.1486+0.06 0.391 0.1708
TE o4 0.1498 + 0.06 0.1775+ 0.054 0.1543+0.053 0.053 0.1849
TE, 1 0.1153 +0.135 0.1869 +0.145 0.1407+0.128 0.116 0.3003
TE3_1 0.0887 £ 0.110 0.1297 £ 0.093 0.1020+0.106 0.142 0.3906
TE4 4 0.0691 +0.088 0.1565 + 0.0906 0.0812+0.0779 0.0016"" 0.0086""
TE, 3 0.1607 £ 0.078 0.1765 +0.062 0.1718+0.652 0.449 0.819
TE3., 0.0963 +0.105 0.1318 +0.083 0.1149+0.087 0.150 0.537
TE3 4 0.1959 +0.073 0.1962 +0.053 0.1711+0.064 0.989 0.19
TE, 3 0.1712 +0.08 0.1999 + 0.066 0.1610+0.068 0.148 0.080
TE; 4 0.1518 £ 0.051 0.1572 + 0.056 0.1510+0.036 0.733 0.688
TE,., 0.0921+ 0.074 0.1112+ 0.080 0.0831+0.0694 0.45 0.252

Segments
Fig. 3. Information transfer from 4ths sub-signal to first across various time intervals in the instantaneous domain.
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Table. 3. SaE results for instant energy in 4ths and 5ths intervals of patients. * appears for p < 0.05.

4th portion 5th portion
SaE of energy (meanzstd) (meanzstd) P-value
ISC4 0.0223 + 0.0205 0.0454 +0.0424 0,0451"
ISC3 0.0519 + 0.0453 0.0884 £ 0.0752 0.0858
ISC2 0.1244 + 0.1427 0.1478 + 0.133 0.6149
ISC1 0.219 + 0.2375 0.2387 + 0.2563 0.8121
0.05 T T T T T T T T T T
0.045
0.04

Sample entropy
o
o
w
a1

1 2 3 4 5 6 7 8 9 10 11 12
Segments

Fig. 4. The SaE results of instant energy across various intervals in the 4ths sub-signal.

1 T T T T T T T F T
0.8 * _
»
y 06 |
s * * *
Aopak _
* *
02 . .
Threshold
B A B
0, 2 g 4 5 6 7 8 9 10 11
Segments
Fig. 5. P-value results for TE comparison of 4ths ISC across sequential intervals.
1 T T T T T T T T T
®
08| .
o 064 =
=
g 3
2 04r . ¢ :
.
02f 'y i
___________ Threshold e _ ______ |
0 1 1 _? 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11

Segments
Fig. 6. P-value results for comparative analysis of SaE in successive intervals of 4ths ISC instant energy.
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3.1. Classification results

Since cardiac shock makes VF 15 to 25 minutes
before the event, we can group patient signals
into two categories. If the signal shows
characteristics from the first group (the 5th
interval), the patient is safe from SCD. However,
if it has features from the second group (the 4th
interval), the patient is at risk of SCD. Therefore,
according to what has been said, we have come
up with a classification algorithm. This
algorithm uses some particular features in the 5th
and 4th intervals to separate signals from
patients with SCD and signals from other
patients. To do so, certain characteristics like the
entropy of energy signals and the information
flow between different parts of the signal’s
immediate magnitude at specific times have
been analyzed. We also studied how these
measures change from one time interval to the
next. Here, we use a support vector machine to
tell apart the HRV signals of the 4th from the 5th
portions.

We used some criteria (Egs. (14-16)) to evaluate
the SCD prediction: specificity, accuracy, and
sensitivity:

TP
e TP (14)
FN +TP
TN
SP=———— (15)
TN + FP
TP + TN
ACC = (16)

TN +TP +FN + FP

TP: The detection of the SCD victim is accurate.
TN: A non-SCD victim is accurately detected as
no SCD.

FP: A non-SCD victim has been misdiagnosed
as a person with SCD.

FN: The SCD victim has been misdiagnosed as
a non-SCD subject.

Table 4 shows the results for the periods
preceding the event, particularly the 4th and 5th
intervals. Details such as levels of accuracy,
specificity, and sensitivity are presented in this
table. It is monitored that the cardiac ECG signal
of one patient was omitted because of significant
noise and the inability to extract the RR signal.
In this regard, the classifier is trained by leave-
one-out cross-validation. Hence, we use one data
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point to test the algorithm’s performance and the
other thirty-seven for training. It was found in
the results that the Kernel’s radial basis function
performs the best when 6=0.4. The classification
accuracy is calculated as 86.84%, which can be
considered satisfactory. The outcomes prove that
the proposed approach can precisely identify
SCD fifteen minutes prior to its beginning.

We used signals from the 6th to 11th intervals to
study the SVM-RBF classifier performance. The
results are presented in Table 5.

Most errors occur during the 6th interval. This
issue mostly happens since there are alterations
in the HRVs in a few number of cardiovascular
patients' signals during this period. Alternatively
stated, most patients show important signal
changes 25 to 15 minutes before the event.
However, a few experience these changes a bit
earlier.

We used HRV signals from different heart
databases such as Normal Sinus Rhythm, Long-
Term ST, and BIDMC Congestive Heart Failure
to test our neural network and see how well it
performs compared to previous studies (Table
6).

Using this method, we correctly identified
signals from healthy people every time (100%
specificity). For those with heart conditions like
CHF and CAD, we were right 93.3% and 95.6%
of the time, respectively. We did this process 50
times and averaged the results. The high
specificities come from the fact that the features
being studied do not change much among
consecutive time intervals. These details prove
that the method is efficient in telling apart
signals from someone with SCD compared to
other patients.

This study derives from the premise that sudden
changes in the signal of subjects with SCD occur
in the last hour leading to the event. Therefore,
in this study, one hour leading to the incident has
been investigated. This assumption could be
extended to hours before the event. There is also
a possibility that, apart from the features
examined in this study, there may be changes in
other hidden features in the cardiac signal of the
subjects with SCD.

3.2. Discussion

Eqg. (3) is utilized to determine the mean and
standard deviation for each ISC.
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Table 4. Results of classification using SVM.
Classifiers TP TN FP FN Acc Sen Spec
SVM-RBF (¢ = 0,4) 16 17 2 3 86.84% 84.21% 89.47%
SVM-RBF (¢ = 0,8) 15 16 3 4 81.58% 78.95% 84.21%
SVM-poly (d=2) 15 16 3 4 81.58% 78.95% 84.21%
SVM-poly (d=4) 15 15 4 4 78.95% 78.95% 78.95%

Table 5. The outcomes of analyzing signals in consecutive intervals (6 to 11) in the SVM-RBF classifier.

Segments number  Time prior to SCD (minutes) No of signals Error (false positive)
6 30-25 19 5
7 35-30 18 1
8 40-35 19 0
9 45-40 20 2
10 50-45 20 2
11 55-50 20 1

Table 6. The outcomes of giving the signals of various patients in SVM-RBF classifier.

Subjects Number of subjects Error number Specificity
NSR 18 0 100%
CAD 23 1 95.6%
CHF 15 1 93.3%

Table 7 shows the results of Eq. (3). As can be
seen, ISC1 corresponds to the VHF component
(0.4 - 1 HZ), ISC2 is the HF component (0.15 -
0.4 HZ), ISC3 is the LF component (0.04 - 0.15
Hz), and ISC4 is the VLF component (0.003-
0.04 Hz). The origin of high and low frequencies
is parasympathetic and sympathetic nerve
activity, respectively. In healthy people, these
frequency bands are in balance with each other,
as a result, a change in the balance of these bands
can indicate the event of SCD. The concept of
TE can be used to identify the influence of these
sub-signals on each other. As observed, there is
a significant change in the TE,_,; in the 10-25
minutes before the event. This rapid rise denotes
the strong impact of the low-frequency VLF
agents of the cardiac signals on VHF
fluctuations. In addition, it should be
emphasized that in the period from 25-15
minutes prior to the VVF, the instantaneous power
signal's SaE in the 4ths sub-signal drops
drastically, implying a reduction in the
adaptability of the heart in this segment. In
accordance with what was stated, it is
determined that the changes in the 4ths sub-
signal, which is distinguished by a VLF band,
are the driving factor that leads to the SCD event.
Although the physiological reason for the VLF
band is not yet understood, it has been stated that
this frequency band is likely influenced by the
body temperature regulation mechanisms and
renin-angiotensin-aldosterone [44]. This

information may contribute to a superior
comprehension of SCD in future research.
According to Table 5, 116 signals obtained from
segments six to 11 have been used for testing,
among which the algorithm has only 11 errors.
This number of errors results in a specificity of
90.5%, which is quite satisfactory. Furthermore,
the generated classifier correctly identifies all
subjects as normal when exposed to the healthy
individuals' signal. As far as we know, among
similar studies, this function is truly satisfactory
and unique.

Because the existing studies use data from
different subjects and different signal durations,
it is difficult to analogize the results of our
research with the reported ones. Considering this
issue, Table 8. compares the proposed method of
this study with other similar studies. From the
table, it can be observed that the signals of SCD
victims were typically distinct from those of
normal subjects in other studies, excluded from
two recent studies conducted by Rohila and
Devi.

Table 7. Average frequency content of each 1SC.

ISCs Mean IF£SD Band
ISC4 0.0219 £ 0.019 VLF
ISC3 0.0821 £ 0.0312 LF
ISC2 0.182 + 0.0532 HF
ISC1 0.44 +0.0387 VHF
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Table 8. Comparison of the proposed method and some older classification method.
Author Technique for extracting features Sepa'ra_t lon Prediction time Predlctlon_t!rr_]e

validity frame (accuracy) frame (specificity)

SaE, approximate entropy, fractal i Four minutes 4 minutes before:
Acharya (2015) dimensions, correlation dimensions SCD- Normal before: 86.8% 88.89%

" fuzzy entropy, tsallis entropy, Renyi i Four minutes 4 minutes before:
Fujita ( 2016) entropy, and energy SCD- Normal before: 94.7% 94.4%

. increment entropy and recurrence ) Six minutes . . o0
Khazaei (2018) quantification analysis-based features SCD- Normal before: 95% 6 min before: 95%
Ebrahimzadeh P0|Inc§1re plo'é, DdF,dA, Fre_quenc%j/-tlme | ) For thirteen y For 13 minutes

(2019) analysis, standar | eviation and mean SCD- Normal minutes averagely: averagely: 85.71%
of all RR intervals, etc, 90.18% B
. Three features of the Poincare plots, Normal- CHF- ten minutes .
Devi (2019) SaE, 4 features extracted from DFA CAD before: 83.33% Non mentiond
Measuring the entropies of Fuzzy,
. Reényi, Dispersion, improved . fourteen minutes 14 minutes before:
Shi (2020) multiscale permutation, and Renyi Normal- SCD before: 96.1% 94.4%
distribution
Dividing 1 h Dividing one-hour
signal of HRV  signal of HRV prior
Rohila (2020) DFA, Poincaré plot, s-transform based Normal- SCD- before SCD into  to SCD into twelve
features CHF -CAD 12 segments of 5 segments of 5
minutes duration:  minutes duration:
91.67% 94.64%
15 minutes before:
An approach that incorporates LCD-  Normal-SCD- 89.47% for patients.
Pronosed method TEO, SaE, TE, and the fluctuationsin ~ CHF- CAD- 15 minutes before  for normal, CAD
P these features over different time other cardiac 86.84% and CHF patients
frames. patients respectively: 100%,

95.6%, 93.3%.

When comparing the results, it is evident that our
method outperforms other methodologies in
discriminating normal subjects from SCDs,
achieving a 100% success rate.

Devi and Rohila attempted to differentiate SCD
patients from normal subjects and other cardiac
patients in the cited studies. The most extensive
investigation in this regard was carried out by
Rohila. In his research, patients with CAD and
CHF were included alongside healthy subjects.
As mentioned, various factors are effective in the
occurrence of SCD and its mechanism is
unknown. Consequently, since only a few
subclasses leading to SCD were examined in
their study, the performance of their algorithm is
limited to these subclasses only. Moreover,
according to their results, there are no changes in
the cardiac signals of people with SCD in the one
hour before death. This is in contrast to the
definition of SCD, which means death within
less than one hour from the beginning of
symptoms.

Increasing the duration of SCD prediction prior
to the occurrence is evidently one of the
objectives of the research undertakings in this
domain. Of course, this increase in time should
be accompanied by an increase in the ability to
distinguish the signals of subjects with SCD
from other patients. It must be acknowledged
that all the prediction algorithms do contain a
substantial margin of error when confronted with
signals resembling those exhibited by
individuals with SCD.

As previously stated, in all previous studies, the
cardiac signals of one or more groups of patients
have been compared with the signals of people
with SCD. To alleviate the limitation on
methodology performance, the SCD signals
were uniquely compared at various segments in
the current investigation. Our algorithm is based
on examining the changes in the signal of SCD
individuals (after decomposing HRV signals,
features such as TE and SaE) across various
segments. This approach enables the proposed
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method to distinguish the signal of patients with
SCD from that of additional patient populations.
Here, instances of no significant changes over
time, are regarded as solely unhealthy signals.
To put it another way, the proposed algorithm
identifies the pattern of heart predisposition to
SCD through the monitoring of the
alteration procedure. Consequently, our analysis
is not confined to any subclass of cardiac
disease, which is a substantial benefit of the
suggested method.

Furthermore, the suggested approach may not
achieve optimal performance in terms of
specificity and accuracy 15 minutes prior to the
occurrence when compared to certain studies
listed in Table 8. Except for normal subjects, we
contend that the presented methodology offers a
considerably greater degree of specificity than
the current approaches when it comes to
managing a wide variety of patients. The cause
for this is that the problem becomes more
difficult as the number of groups incorporated in
the classification increases. Neglecting this issue
may result in the misinterpretation of the
performance of classification.

However, the provided algorithm predicts the
VF 15 minutes before the event, which is
completely consistent with the definition of
sudden cardiac death, which refers to death in
less than 1 hour from the onset of clinical
symptoms. This interval affords the treatment
staff sufficient time to execute suitable clinical
procedures. Hence, the methodology is useful
for clinical examinations.

Finally, it should be mentioned that all previous
studies, as well as the present study, are based on
determining the time of ventricular fibrillation,
which is only one of the causes of SCD. To
continue working in this field, it is suggested that
other causes of SCD, such as bradyarrhythmia
and pulseless electrical activity, should be
studied separately.

3.3. Limitations

There are certain limitations regarding this study
that are worth mentioning. First of all, the
algorithm scans fluctuations in the HRV signal,
typically occurring in a time frame of 15 to 25
minutes prior to the event. Hence, if we use
signals from SCD patients just 5 minutes before
it happens, the neural network cannot tell the
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difference. Therefore, the detection of SCD wiill
go undiscovered. Then, we only lookat 20
patients with SCD. If we had more patients, the
results would be different.

4. Conclusions

This study proves that significant alterations in
the SCD subjects’ 4th sub-signal take place
approximately 15 to 25 minutes prior to the
occurrence of the event. These changes involve
a quick increase in information from the 4th to
the 1st sub-signal during the 4th and 5th time
periods. Moreover, there is a significant decrease
in the SaE of the signal’s instant energy of the
4ths ISC in this period. The suggested method
uses how features change over time as a new
aspect as well as evaluating properties based on
LCD-TEO-Entropy. Compared to other
methods, it shows greater reliability when faced
with new signals.
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