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Article info:  
To quickly detect sudden Cardiac Death (SCD), it's decisive to gather 

suitable information and enhance the accuracy of the diagnosis algorithms. 

Consequently, In the present study the heart rate variability (HRV) signal 

of subjects who experienced sudden cardiac death (SCD) was studied. We 

looked at people's heart signals for one hour before something happened 

to see if there were any noticeable changes. The patients' HRV signals are 

segregated into 5-minute parts in the suggested approach. Each section is 

divided into four shorter signals. Thereupon, The energy and instant 

amplitude of each sub-signal are examined. The information flows 

between signal strengths and measuring the complexity of energy sub-

signals would be checked. A significant change from its former section is 

identified. A support vector machine (SVM) classifier benefits from 

detecting individuals exposed to SCD by considering significant changes 

as indicators of the SCD process. It can anticipate SCD 15 minutes before 

it happens. Not restricted to any special subclass of cardiac diseases, this 

technique has priority. To evaluate the algorithm's specificity, it has been 

used not only with patients having SCD but also with individuals who are 

healthy, as well as those with coronary artery disease (CAD) and 

congestive heart failure (CHF), analyzing their HRV signals. The 

specificity values for normal, CHF, and CAD patients are 100%, 93.3%, 

and 95.6%, respectively, in the results.  
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1. Introduction  

 
Sudden cardiac death is an emergency condition 

that can lead to death within minutes. If someone 

experiences sudden changes like arrhythmia, 

low blood pressure, chest pain, breathlessness, or 

dizziness and gets involved with cardiac arrest in 

an hour, those deaths are treated as SCD [1-6]. 

Even healthy, junior, athletic people can die 

from SCD, but it is more common in the middle-

aged and elderly [7-8]. SCD is responsible for 

over 4 million deaths globally [9], with a 
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minimum of 300,000 cases reported in the 

United States [10]. The incidence of diagnosed 

SCD ranges from approximately thirty -seven to 

thirty-nine cases per 100,000 individuals in the 

four European Union registries [11]. This 

syndrome includes a muddled electrical activity 

in the heart, hence, its ability to effectively pump 

blood to vital organs can be disrupted. The 

patient's death might be ineluctable if well-timed 

and proper clinical proceedings are not done. 

Cardiac arrhythmias are often detected as a 

prevalent cause of such deaths. In 75 to 80% of 

cases, ventricular fibrillation (VF) can be 

considered as the first cause of this cardiac 

incident. On the other hand, Brady Arrhythmia 

takes precedence in 10 to 15% of patients  

[10,12]. Survival in a non-clinical environment 

is observable in only about 1-2% of patients who 

suffere from this syndrome [13]. The number of 

institutions that have studied the prediction of 

SCD is very few. American Heart Association is 

one of those whose researchers have published 

many papers in this field [14,15]. The 2022 

Heart and Stroke Statistics Update has been 

recently released by the American Heart 

Association [16].  According to this report, 

cardiac arrest is still one of the threats to public 

health. Recognizing subjects at risk of SCD 

quickly and accurately, therefore, is important 

for moderating their chances of dying. 

Recently, researchers have studied the SCD 

syndrome throw the analysis of ECG or HRV 

signals. For example, Acharya et al. [17] used a 

developed support vector machine (SVM) 

algorithm to predict SCD four- minutes prior to 

the event with 86.8% accuracy. They used the 

wavelet method and then extracted several 

features based on fractal and sample entropy 

(SaE) analysis. Fujita et al. [18] studied in which 

they looked at the non-linear aspects of the HRV 

signal in twenty patients and eighteen normal 

individuals. They precisely predicted a death 

incident 94.7% of the time by taking advantage 

of the SVM algorithm, four minutes before it 

happened. Houshyarifar et al. [19] accomplished 

a 92% accuracy in anticipating the VF, 

accurately predicting it five minutes prior to its 

occurring. Their study requires the use of four 

features from recurrence plots and three features 

from Poincaré plots. Ebrahimzadeh et al. [20] 

foresaw the event thirteen minutes prior to its 

occurring by looking at 9 classical, 11 time-

frequency, and 4 nonlinear features. The multi-

layer perceptron (MLP) network achieved an 

accuracy of 84.21%. Recurrence quantification 

was used by Khazaei et al. [21] to forecast SCD 

in less than a six-minute duration prior to its 

occurrence. Their recommended algorithm 

gained an accuracy, sensitivity, and specificity 

rate of ninety-five percent. Vargas-Lopez [22] 

used an ECG signal for the forecasting of the 

syndrome. They made an MLP algorithm that 

can anticipate SCD with 94% accuracy by using 

a special analysis in just 25 minutes prior to its 

happening. They look at different aspects of the 

heart signal (extracting components of the signal 

through EMD and then using Permutation 

Entropy and Higuchi Fractal values as features) 

to make this anticipation. Shi [23] used a 

technique named EEMD-based entropy to 

analyze HRV signals. They discovered that this 

approach could detect SCD fourteen minutes 

earlier with a high accuracy of ninety -six point 

one percent and a specificity of 94.4%. and 

sensitivity of 97.5%. 

In spite of all of the previous studies, the 

methods predicting SCD are not used in medical 

examinations. The main reason for this is that the 

signals in this syndrome are similar to those in 

other heart diseases. It's well-known that SCD 

can happen for many different reasons. Many 

SCD patients also have a background of angina 

[24]. For example, about 50% of patients suffer 

from SCD following a myocardial infarction 

[25]. Also, a great number of SCD patients have 

CAD or CHF [26]. CAD refers to a disease in 

which, due to the narrowed coronary arteries, the 

blood supply to the heart muscles becomes 

restricted [27]. In general, CAD results from the 

cholesterol plaques formed within coronary 

arteries due to environmental pollution, 

unhealthy lifestyles, smoking, or other unknown 

factors [28]. In the case that CAD is not treated 

on time, it may finally decrease the capability of 

the heart to pump oxygenated blood to other 

organs of the body. Such a syndrome of the heart 

is referred to as CHF. This syndrome is among 

the most lethal cardiovascular diseases [29], in 

which, due to the lack of enough energy, the 

heart is not capable of pumping blood under 
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normal heart pressure [30]. It is estimated that 26 

million individuals are diagnosed with this 

disease around the world [31]. In order to 

enhance anticipation accuracy, Devi et al. [32] 

suggested a technique to discern signals of 

patients with SCD from healthy individuals and 

those identified with CHF illness. The neural 

network reached  an accuracy of 83.33% for 

predicting VF occurrences in less than ten-

minute intervals. Rohila et al. [33] have come up 

with a new method to discriminate patients 

diagnosed with SCD, those who are healthy, and 

patients with CAD and CHF. They use the HRV 

signal for this purpose. Their new method is 

usually accurate about 85% of the time when 

looking at one-hour chunks of heart signals.  

Every algorithm mentioned poses noticeable 

restrictions. For example, a restricted amount of 

patients in each patient group has been studied. 

Also, the features used in these sources might be 

similar to those found in other heart diseases. 

Therefore, if the cardiac signals of other cardiac 

patients are applied to these algorithms, these 

patients will be wrongly diagnosed by these 

algorithms as patients at risk of sudden death. 

To diagnose SCD, the algorithm should focus on 

the unique features in the heart signals of patients 

with this syndrome. The present study suggests 

a novel algorithm designed to recognize 

individuals diagnosed with SCD syndrome in 

comparison to other heart disease patients and 

those who are normal. We record important 

changes in the heart signals of people who 

experience SCD before it happens. Therefore, 

the suggested approach is not restricted to any 

specific group, resulting in greater specificity 

compared to current methods.  

 

2. Methods and materials  

 2.1. Extracting features  
 

This research analyzed the heart signal patterns 

of patients in danger of SCD during the hour 

before it happened. In order to achieve accurate 

HRV measures, it is an obligation to choose the 

right frequency for sampling ECG data which in 

turn causes a reliable and valid calculation. 

Recent developments affirm the need for ECG 

sampling rates of at least 125 Hz [34].  

Following the de-noising of the ECGs, the 

subsequent signals are split into five-minute 

intervals. Then, the HRV signal is realized in 

patients with SCD. Later, the signals experience 

resampling at a frequency of 2 Hz. Eventually, 

every newly generated signal goes through 

decomposition to four sub-signals. Researchers 

often use the EMD method for this process. 

Nonetheless, in the last few years, a technique 

named local characteristic decomposition (LCD) 

has been used to study the vibrations in gearbox 

bearings. This technique has less problems with 

mixing modes than the EMD method [35-37]. 

Hence, this study has considered the potential of 

this method for decomposing the signals of 

HRV. In turn, it is expected that the amplitude of 

the sub-signals coming from the LCD algorithm 

are not stable and keep changing. Actually, the 

sub-signals change in size and frequency along 

with the main signal. Hence, we used the Teager-

Kaiser method to find the amplitude of every part 

of the signals produced by the LCD method. 

Afterward, we determine the SaE of the energy 

signal and the transfer entropy (TE) among every 

pair of instantaneous amplitude signals. Finally, 

an SVM neural network has been made to 

anticipate SCD by considering the 

abovementioned features and their variances 

from their reciprocal values within the preceding 

interval.  Fig.1 shows the block diagram of the 

proposed method. 
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Fig. 1. Block diagram of the proposed method. 

 

2.2. Database 
 

We used the new algorithm on the signals from 

the MIT-BIT database  [38]. This database 

includes heart signals from 23 patients who 

passed away suddenly (sampling frequency=256 

Hz).  The intervening variables of this research 

are the ECG signals of patients and normal 

subjects. Unlike the cardiac signals of SCD 

patients, which were studied in the last hour, the 

cardiac signals of other patients and healthy 

people were randomly selected. 

The ECG signals were acquired from PhysioNet 

databases. Physionet is an Open-Source database 

for the analysis of physiological signals which 

has strict standards regarding compliance with 

codes of ethics.  

The SCD syndrome subject database provides 

accurate timing information for the occurrence 

of VF. In 20 of the 23 patients for whom data is 

accessible in the specified database, VF has been 

confirmed in 20, while the timing of VF 

occurrence in the signals of the remaining three 

subjects is uncertain. Hence, the study excluded 

these three signals.  

We tested how well our method works by 

comparing it to other studies that used signals 

from databases related to Normal Sinus Rhythm, 

Coronary Artery Disease, and Congestive Heart 

Failure. 

 

2.3. Signals preprocessing 
 

Due to the fact that there's extra noise with the 

received signals, it is an obligation to get rid of 

them before analyzing them further. Hence, we 

used a Butterworth filter to get rid of unwanted 

power line effects and disturbances caused by 

the person's breathing. Then, we focused on five-

minute segments in less than an hour before VF 

happened in the cleaned-up signals. Therefore, a 

total of 240 intervals, comprising 12 five-minute 

parts for each patient have been collected. You 

should keep in mind that during the processing 

stage, segments including severe noise lasting 

longer than 30 seconds have been excluded. 

Hence, sometimes we use a smaller number of 

subjects instead of 20. 

Once the de-noising process is done, the Pan-

Tompkins algorithm is used to create the HRV 

signal [39]. Finally, due to variations in the time 

periods of the acquired signal data, The HRV 

signals were resampled using interpolation at a 

frequency of 2 Hz. 

  

2.4.1. Local characteristic decomposition  

 

LCD refers to a pioneer signal processing 

method operated in the decomposition of non-

stationary time series [40]. It breaks down the 

provided signal x(t) into intrinsic scale 

components (ISCs). Eq. (1) is used to find and 

show a leftover term (r(t)) and K modes (dk(t)). 

𝑥(𝑡) = ∑𝑑𝑘(𝑡) + 𝑟(𝑡)

𝑛

𝑘=1

 (1) 



 

 

Fig. 2. The LCD analysis’s results on a 5-minutes HRV section. 

 

 

For more information regarding the LCD 

method, you should refer to references [35, 40].  

Fig.2 presents an HRV signal and its 

corresponding ISCs that were achieved through 

the LCD method as discussed earlier. As you can 

see, The initial ISCs exhibit a higher frequency 

range, and later ISCs bring a lower frequency 

range. 

 

2.4.2. Extraction of signal amplitude and 

frequency 

 

The LCD method produces several ISCs that 

exhibit fluctuation and inconsistency over time. 

Actually, the sub-signals vary in size and 

frequency during the signal. Therefore, signal 

characteristics can be understood from variations 

in size. The Hilbert transform (HT) [41] and the 

Teager-Kaiser energy operator (TKEO) 

techniques are two commonly used methods for 

determining the frequency band and spatial 

extent of signals. The HT method works 

excellent for signals with specific and bounded 

frequency ranges, but it doesn't do as well with 

signals that have sudden changes or shocks. 

Negative frequencies can also be generated 

using this method. TKEO method is superior to 

the HT method for analyzing signals with sudden 

changes. It's also easier on computer resources 

compared to the Hilbert conversion method [42]. 

Based on the determined functionalities, the 

TKEO methodology is occupied to evaluate the 

frequency and dimensions of the achieved sub-

signals. 

Eq. (2) characterizes this operator for discrete 

signals: 

 

𝜍[𝑥(𝑛)] = 𝑥2(𝑛) − 𝑥(𝑛 − 1) × 𝑥(𝑛
+ 1) 

(2) 

 
As you can see, determining the operator's value 

necessitates solely x(n), x(n+1), and x(n-1). 

Hence, it has a very high-quality image and its 

sensitivity to change is noticeable 

The signal’s instantaneous frequency and 

amplitude are determined using Eqs. (3-4): 

 
𝐹(𝑛)

=
1

4𝜋𝑓
acos⁡(1 −

𝜍[𝑥(𝑛 + 1) − 𝑥(𝑛 − 1)]

2𝜍[𝑥(𝑛)]
 

(3) 

 

|𝐴(𝑛)| =
2𝜍[𝑥(𝑛)]

√𝜍[𝑥(𝑛 + 1) − 𝑥(𝑛 − 1)]
 (4) 

 
The sampling frequency is denoted by f. 
 

2.4.3. Samaple entropy 
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The sub-signals’s energy attained in the 

preceding step experiences variations 

throughout the signal duration. Sample entropy 

(SaE) can be used to measure the signals’ energy 

complexity. SaE is engaged in the system 

complexities evaluation in biomedical signals, 

which are sensitive to noise interference. This 

method helps to discover how often a specific 

length of time m, with a certain tolerance r 

repeats. The SaE is calculated by these steps 

when the signal includes N data points: 

 

Step 1. Consider m as a vector dimension Eq. 5: 

 
𝑋𝑚(𝑖) = [𝑥𝑖 ⁡ 𝑥𝑖+1⁡ … ⁡ 𝑥𝑖+𝑚−1]⁡⁡⁡ 
1 < 𝑖 < 𝑁 +𝑚 − 1 

(5) 

 

Step 2. Using Eq. (6), the area amid the vectors 

𝑋𝑚(𝑖)⁡and 𝑋𝑚(𝑗) is calculated: 

 
𝑑[𝑋𝑚(𝑖) − 𝑋𝑚(𝑗)] 
= max⁡(𝑥𝑖+𝑘 − 𝑥𝑗+𝑘) 

(6) 

 

In which 0 ≤ 𝑘 ≤ 𝑚 − 1 and  𝑗 ≤ 𝑁 −𝑚 + 1 

 

Step 3. The amount of 𝑑[𝑋𝑚(𝑖) − 𝑋𝑚(𝑗)] < 𝑟⁡is 

calculated. Here, the threshold is denoted with 

the letter 'r'. The calculation of the ratio is 

according to Eq. (7) and includes the previously 

tallied number divided by N-m + 1. 

 
𝜑𝑖
𝑚(𝑟)

=
1

𝑁 −𝑚 + 1
{𝑡ℎ𝑒⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑑[𝑋𝑚(𝑖)

− 𝑋𝑚(𝑗)] < 𝑟}⁡⁡ 
(7) 

 

Step 4. At this step it is averaged over i. so: 

 

φ𝑚(𝑟) =
1

𝑁 −𝑚 + 1
∑ 𝜑𝑖

𝑚(𝑟)

𝑁−𝑚

𝑖=1

 (8) 

 

Step 5. Substituting m +1 instead of m, in this 

case, steps one to four are iterated and you can 

write it as Eqs. (9,10). 

 
𝜑𝑖
𝑚+1(𝑟)

=
1

𝑁 −𝑚
{𝑡ℎ𝑒⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑑[𝑋𝑚+1(𝑖)

− 𝑋𝑚+1(𝑗)] < 𝑟}⁡⁡ 

(9) 

 

φ𝑚+1(𝑟) =
1

𝑁 −𝑚
∑ 𝜑𝑖

𝑚+1(𝑟)

𝑁−𝑚−1

𝑖=1

 (10) 

 

Step 6. Finally, the SaE can be computed by 

using Eq. (11): 

 

𝑆𝑎𝑚𝑝𝐸𝑛 = 𝑙𝑜𝑔
φ𝑚(𝑟)

φ𝑚+1(𝑟)
 (11) 

 

Keep in mind that Regular time series have lower 

SaE. 

 

2.4.4. Transfer entropy 

 

TE is a principle to measure the Cause-and-

effect connection between two sets of time series 

data. Suppose Y(t) and X(t) represent two time 

series for the respective Stochastic variables Y 

and X. 𝑇𝐸𝑋→𝑌 shows further information 

regarding the future of variable Y. This can be 

done by knowing the past and present of Y and 

the future and past of X [43].  

Consider that 𝑋𝑚 and 𝑌𝑘 are as follows in Eq. 

(12): 

 

{
𝑋𝑚 = (𝑋𝑛⁡𝑋𝑛−𝑚⁡ … ⁡ 𝑋𝑛−(𝑚−1)𝜏)

𝑌𝑘 = (𝑌𝑛⁡ 𝑌𝑛−𝑘 ⁡ … ⁡ 𝑌𝑛−(𝑘−1)𝜏)
 (12) 

 

If such is the case, TE can be calculated as Eq. 

(13): 

 
𝑇𝐸𝑋→𝑌

=∑𝑃(𝑌𝑖+1⁡ 𝑌𝑖
𝑔
⁡ 𝑋𝑖−τ−1

𝑙 )𝑙𝑜𝑔2
𝑃(𝑌𝑖+1|𝑌𝑖

𝑔
⁡ 𝑋𝑖−τ−1

𝑙 )

𝑃(𝑌𝑖+1|𝑌𝑖
𝑘)

 
 

(13) 

 

In which, g and l suggest the embedding 

dimensions, meaning that the upcoming 

probabilities of Y and X can be calculated using 

the previous k and m values. 

Additionally, τ exemplifies the embedding 

delay. P(𝑌𝑖+1⁡ 𝑌𝑖
𝑔
⁡ 𝑋𝑖−τ−1

𝑙 ) manifests the joint 

probability. 𝑃(𝑌𝑖+1|𝑌𝑖
𝑔
⁡ 𝑋𝑖−τ−1

𝑙 ), and 

𝑃(𝑌𝑖+1|𝑌𝑖
𝑔
) are the possibilities of the functions 

of density. 

 

3. Results and discussion 
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As it has been said, we compare the 

characteristics of every five-minute part of the 

signal with the next one. Since the cardiac 

signals are dynamic, the method of time 

segmentation of the signals affects the final 

results. Segments shorter than five minutes are 

not appropriate for analysis. At shorter distances, 

the resolution improves, but the extracted 

features lose their effectiveness. also, the 

accuracy of the calculation decreases when the 

time interval exceeds 5 minutes. 

Undoubtedly, modifications in the signal take 

place as the event gets closer. Therefore, 

observing and analyzing these changes help to 

predict the probability of the event occurring. 

There are some slight variations in the way 

everyone's cardiac signals behave. Nevertheless, 

immediate and extreme adjustment in the studied 

features suggests the probability of occurrence 

of an event. A t-test method was used to analyze 

the level of changes in various time interval 

features. This particular test can be used to 

determine if the presence or absence of a variable 

actually has any significant effect on the two sets 

of data. In a t-test, when the feature p-value goes 

down, it means that the feature is more 

impressive [44].  

If we study various time intervals, we notice 

significant changes in the HRV signals. 

Specifically, there were potential changes in the 

TE between sub-signal amplitudes and the SaE 

of signal energy twenty-five to ten minutes prior 

to the event happened (Table 1). According to 

the table, there's no big difference in the t-test 

results until 10 minutes before the event. 

Table 2 shows the results of using the TE method 

for the 3th, 4th, and 5th segments. Additionally, 

we calculated the p-value to compare these 

consecutive intervals. As you can see, ten to 

twenty minutes prior to the VF, there is an abrupt 

change in the TE between the momentary 

amplitudes of the 4ths and the 1st sub-signals. 

Simultaneously, there are no identical changes in 

the remaining sub-signals. 

As can be seen in Fig.3, you can see how much 

information was flowing between the ISCs in the 

hour prior to VF occurring. An observable 

change is evident in the 4th segment. The TE 

reaches its possible minimum right after the third 

interval (p= 0.0016). The energy pattern in the 

4th part suddenly changes when we compare the 

4th and 5th time segments. This change is 

statistically significant (p= 0.0451), but there are 

no noticeable changes in the five minutes before 

this (Table 3). 

Table 3 provides the results of analyzing patient 

data in the 4th and 5th intervals using SaE of 

instant energy. As is shown, the value of SaE in 

the fourth sub-signal before the event changes 

greatly from the 5th to the 4th segments.  

The average SaE of the energy in the ISC4 is 

observed to change in the hour leading up to 

SCD as shown in Fig 4. A significant decrease in 

entropy size is observed in the 4th segment, 

compared to the preceding interval. In Fig.5 and 

Fig.6, you can see the p-values for the listed 

features in different time periods. As it is 

evident, Most of the changes we studied 

happened during the 4th and 5th periods. This 

means the acute time before the event is around 

15 to 25 minutes. These big changes suggest that 

the event might start soon. The way things are 

changing indicates that the beginning of SCD is 

getting closer. We don’t know exactly why, but 

shocks during this time might make the heart 

more likely to go into a dangerous state named 

VF. 

 

 

 

Table 1. Comparison results of successive segments using t-test: TE for 5-minute segments, SaE of energy 

signal, and P-value categorization (** for p-value < 0.05, # for p-value > 0.05). 
11-12 10-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 Segment 

# # # # # # # ** ** # # TE 

# # # # # # # ** # # # SaE 
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Table 2. TE analysis results for 3ths, 4ths, and 5ths segments in patients with SCD, ** appears for p<0.01. 
TE-O  (mean±std) P value  

 

3rd segment 4th segment 

 

5th segment 

 

3rd and 4th 4th and 5th 

𝑇𝐸1→2 0.136 ± 0.128 0.2167 ± 0.155 0.1299± 0.112 0.667 0.052 

𝑇𝐸1→3 0.1592 ± 0.068 0.1795 ± 0.076 0.1486±0.06 0.391 0.1708 

𝑇𝐸1→4 0.1498 ± 0.06 0.1775± 0.054 0.1543±0.053 0.053 0.1849 

𝑇𝐸2→1 0.1153 ± 0.135 0.1869 ± 0.145 0.1407±0.128 0.116 0.3003 

𝑇𝐸3→1 0.0887 ± 0.110 0.1297 ± 0.093 0.1020±0.106 0.142 0.3906 

𝑻𝑬𝟒→𝟏 0.0691 ± 0.088 0.1565 ± 0.0906 0.0812±0.0779 𝟎. 𝟎𝟎𝟏𝟔∗∗     𝟎. 𝟎𝟎𝟖𝟔∗∗ 

𝑇𝐸2→3 0.1607 ± 0.078 0.1765 ± 0.062 0.1718±0.652 0.449        0.819 

𝑇𝐸3→2 0.0963 ± 0.105 0.1318 ± 0.083     0.1149±0.087 0.150     0.537 

𝑇𝐸3→4 0.1959 ± 0.073 0.1962 ± 0.053     0.1711±0.064 0.989     0.19 

𝑇𝐸4→3 0.1712 ± 0.08 0.1999 ± 0.066     0.1610±0.068 0.148     0.080 

𝑇𝐸2→4 0.1518 ± 0.051 0.1572 ± 0.056     0.1510±0.036 0.733     0.688 

𝑇𝐸4→2 0.0921± 0.074 0.1112± 0.080     0.0831±0.0694 0.45     0.252 

 

 

 
Fig. 3. Information transfer from 4ths sub-signal to first across various time intervals in the instantaneous domain. 

 

 
Table. 3. SaE results for instant energy in 4ths and 5ths intervals of patients. * appears for p < 0.05. 

SaE of energy  4th portion 

(mean±std) 

5th portion 

(mean±std) 

P-value 

ISC4 0.0223 ± 0.0205 0.0454 ± 0.0424 𝟎. 𝟎𝟒𝟓𝟏∗ 

ISC3 0.0519 ± 0.0453 0.0884 ± 0.0752 0.0858 

ISC2 0.1244 ± 0.1427 0.1478 ± 0.133 0.6149 

ISC1 0.219 ± 0.2375 0.2387 ± 0.2563 0.8121 
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Fig. 4. The SaE results of instant energy across various intervals in the 4ths sub-signal. 

 

 
Fig. 5. P-value results for TE comparison of 4ths ISC across sequential intervals. 

 

 
Fig. 6. P-value results for comparative analysis of SaE in successive intervals of 4ths ISC instant energy. 

 

 

3.1. Classification results 
 

Since cardiac shock makes VF 15 to 25 minutes 

before the event, we can group patient signals 

into two categories. If the signal shows 

characteristics from the first group (the 5th 

interval), the patient is safe from SCD. However, 

if it has features from the second group (the 4th 

interval), the patient is at risk of SCD. So, 

according to what has been said, we’ve come up 

with a classification algorithm. This algorithm 

uses some particular features in the 5th and 4th 

intervals to separate signals from patients with 

SCD and signals from other patients. To do so, 
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some certain characteristics like the entropy of 

energy signals and the information flow betwixt 

different parts of the signal’s immediate 

magnitude at specific times have been analyzed. 

We also studied how these measures change 

from one time interval to the next. Here, we’re 

using a support vector machine to tell apart the 

HRV signals of the 4th from the 5th portions. 

We used some criteria (Eqs.  (14-16)) to evaluate 

the SCD prediction: Specificity, Accuracy, and 

Sensitivity: 

 

𝑆𝑁 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

(14) 

 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(15) 

 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (16) 

 

TP: The detection of the SCD victim is accurate. 

TN: A non-SCD victim is accurately detected as 

no SCD. 

FP: A non-SCD victim has been misdiagnosed 

as a person with SCD. 

FN: The SCD victim has been misdiagnosed as 

a non-SCD subject. 

 is not accurately identified as non SCD. 

 

Table 4 shows the results for the periods 

preceding the event, particularly the 4th and 5th 

intervals. Details such as levels of accuracy, 

specificity, and sensitivity are presented in this 

table. It is monitored that the cardiac ECG signal 

of one patient was omitted because of significant 

noise and the inability to extract the RR signal. 

In this regard, the classifier is trained by leave-

one-out cross-validation. Hence, we use one data 

point to test the algorithm’s performance and the 

other thirty-seven for training. It was found in 

the results that the Kernel’s radial basis function 

performs the best when σ=0.4. The classification 

accuracy is calculated as 86.84%, which can be 

considered satisfactory. The outcomes prove that 

the proposed approach can precisely identify 

SCD fifteen minutes prior to its beginning. 

We used signals from the 6th to 11th intervals to 

study the SVM-RBF classifier performance. The 

results are presented in Table 5. 

Most errors occur during the sixth interval. This 

issue mostly happens since there are alterations 

in the HRVs in a few number of cardiovascular 

patients' signals during this period. Alternatively 

stated, most patients show important signal 

changes 25 to 15 minutes before the event. 

However, a few experience these changes a bit 

earlier. 

We used HRV signals from different heart 

databases such as Normal Sinus Rhythm, Long-

Term ST, and BIDMC Congestive Heart Failure 

to test our neural network and see how well it 

performs compared to previous studies (Table 

6). 

With the method we used, we correctly 

identified signals from healthy people every time 

(100% specificity). For those with heart 

conditions like CHF and CAD, we were right 

93.3% and 95.6% of the time, respectively. We 

did this process 50 times and averaged the 

results. The high specificities come from the fact 

that the features being studied don’t change 

much among consecutive time intervals. These 

details prove that the method is efficient in 

telling apart signals from someone with SCD 

compared to other patients. 

This study derives from the premise that sudden 

changes in the signal of subjects with SCD occur 

in the last hour leading to the event. Therefore, 

in this study, one hour leading to the incident has 

been investigated. This assumption could be 

extended to hours before the event. There is also 

a possibility that, apart from the features 

examined in this study, there may be changes in 

other hidden features in the cardiac signal of 

subjects with SCD. 

 
 

Table 4. Results of classification using SVM. 
Spec Sen Acc FN FP TN TP Classifiers 

89.47% 84.21% 86.84% 3 2 17 16 SVM-RBF (𝜎 = 0.4) 
84.21% 78.95% 81.58% 4 3 16 15 SVM-RBF (𝜎 = 0.8) 
84.21% 78.95% 81.58% 4 3 16 15 SVM-poly (d=2) 

78.95% 78.95% 78.95% 4 4 15 15 SVM-poly (d=4) 



 

 

Table 5. The outcomes of analyzing signals in 

consecutive intervals (6 to 11) in SVM-RBF 

classifier. 
Error (false 

positive) 

No of 

signals 
Time 

prior to 

SCD 

(minutes) 

Segments 

number 

5 19 30-25 6 
1 18 35-30 7 
0 19 40-35 8 
2 20 45-40 9 
2 20 50-45 10 
1 20 55-50 11 

 
Table 6. The outcomes of giving the signals of 

various patients in SVM-RBF classifier. 
Specificity Error 

number 
Number 

of 

subjects 

 Subjects 

100% 0 18 NSR 

95.6% 1 23 CAD 
93.3% 1 15 CHF 

 

3.2. Discussion 
 

Equation 3 is utilized to determine the mean and 

standard deviation for each ISC. Table 7 shows 

the results of Equation 3. As can be seen, ISC1 

is corresponded to the VHF component (0.4 - 1 

HZ), ISC2 is the HF component (0.15 - 0.4 HZ), 

ISC3 is the LF component (0.04 - 0.15 Hz), ISC4 

is the VLF component (0.003-0.04 Hz). The 

origin of high and low frequencies is 

parasympathetic and sympathetic nerve activity, 

respectively. In healthy people, these frequency 

bands are in balance with each other, as a result, 

a change in the balance of these bands can 

indicate the event of SCD. The concept of TE 

can be used to identify the influence of these sub-

signals on each other. As observed, there is a 

significant change in the ( 𝑇𝐸4→1) in the 10-25 

minutes before the event. This rapid rise denotes 

the strong impact of the low-frequency VLF 

agents of the cardiac signals on VHF 

fluctuations. In addition, it also should be 

emphasized that in the period from 25-15 

minutes prior to the VF, the instantaneous power 

signal's SaE in the 4ths sub-signal drops 

drastically, implying reducing the adaptability of 

the heart in this segment. In accordance with 

what was stated, it is determined that the changes 

in the 4ths sub-signal, which is distinguished by 

a VLF band, are the driving factor that leads to 

the SCD event. Although the physiological 

reason for the VLF band is not yet understood, it 

has been stated that this frequency band is likely 

influenced by the body temperature regulation 

mechanisms and renin-angiotensin-aldosterone 

[45]. This information may contribute to a 

superior comprehension of SCD in future 

research.  

According to Table 5, 116 signals obtained from 

segments six to eleven have been used for 

testing, among which the algorithm has only 11 

errors. This number of errors results in a 

specificity of 90.5%, which is quite satisfactory. 

Furthermore, the generated classifier correctly 

identifies all subjects as normal when exposed to 

the healthy individuals' signal. As far as we 

know, among similar studies, this function is 

truly satisfactory and unique.  

Because the existing studies use data from 

different subjects and different signal durations, 

it is difficult to analogize the results of our 

research with those reported. Considering this 

issue, Table 8. compares the proposed method of 

this study with other similar studies. From the 

table, it can be observed that the signals of SCD 

victims were typically distinct from those of 

normal subjects in other studies, excluded from 

two recent researches conducted by Rohila and 

Devi. When comparing the results, it is evident 

that our method outperforms other 

methodologies in discriminating normal subjects 

from SCDs, achieving a 100% success rate. 

Devi and Rohila have attempted to differentiate 

SCD patients from normal subjects and other 

cardiac patients in the cited studies. Here, the 

most extensive investigation in this regard was 

carried out by Rohila. In his research, patients 

with CAD and CHF were included alongside 

healthy subjects.  

 

Table 7. Average frequency content of each ISC. 
Band Mean IF±SD ISCs 

VLF 0.0219 ± 0.019 ISC4 

LF 0.0821 ± 0.0312 ISC3 

HF 0.182 ± 0.0532 ISC2 

VHF 0.44 ± 0.0387 ISC1 
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As mentioned, various factors are effective in the 

occurrence of SCD and its mechanism is also 

unknown. Consequently, since only a few 

subclasses leading to SCD were examined in 

their study, the performance of their algorithm is 

limited to these subclasses only. Moreover, 

according to their results, there are no changes in 

the cardiac signals of people with SCD in the 

one-hour period before death. This is in contrast 

to the definition of SCD, which means death 

within less than one hour from the beginning of 

symptoms. 

Increasing the duration of SCD prediction prior 

to the occurrence is evidently one of the 

objectives of the research undertakings in this 

domain. Of course, this increase in time should 

be accompanied by an increase in the ability to 

distinguish the signals of subjects with SCD 

from other patients. It must be acknowledged 

that all the prediction algorithms do contain a 

substantial margin of error when confronted with 

signals resembling those exhibited by 

individuals with SCD. 

 

 

 

 
Table 8. Comparison of the proposed method and some older classification method. 

Prediction time 

frame 

(specificity) 

Prediction time 

frame 

(accuracy) 

Separation 

validity 
Technique for extracting features  Author 

4 minutes 

before: 88.89% 

Four minutes 

before: 86.8% 

SCD- Normal SaE, approximate entropy, fractal 

dimensions, correlation dimensions 

Acharya (2015) 

4 minutes 

before: 94.4% 

Four minutes 

before: 94.7% 

SCD- Normal fuzzy entropy, tsallis entropy, 

Renyi entropy and energy 

Fujita ( 2016) 

6 min before: 

95% 

Six minutes 

before: 95% 

SCD- Normal increment entropy and recurrence 

quantification analysis-based 

features 

Khazaei (2018) 

For 13 minutes 

averagely: 

85.71% 

For thirteen 

minutes 

averagely: 

90.18%  

SCD- Normal Poincaré plot, DFA, Frequency-

time analysis, standard deviation 

and mean of all RR intervals, etc, 

Ebrahimzadeh 

(2019) 

Non mentiond ten minutes 

before: 83.33% 

Normal- 

CHF-CAD 

Three features of the Poincare 

plots, SaE, 4 features extracted 

from DFA  

Devi (2019)  

14 minutes 

before: 94.4% 

fourteen 

minutes before: 

96.1% 

Normal- SCD Measuring the entropies of Fuzzy, 

Rényi, Dispersion, improved 

multiscale permutation, and Renyi 

distribution  

Shi (2020) 

Dividing one-

hour signal of 

HRV prior to 

SCD into twelve 

segments of 5 

minutes 

duration: 

94.64% 

Dividing 1 h 

signal of HRV 

before SCD into 

12 segments of 

5 minutes 

duration: 

91.67% 

Normal- 

SCD-CHF -

CAD 

DFA, Poincaré plot, s-transform 

based features 

Rohila (2020) 

15 minutes 

before: 89.47% 

for patients. 

for normal, 

CAD and CHF 

patients 

respectively: 

100%, 95.6%, 

93.3%. 

 

15 minutes 

before 86.84% 

 

Normal-

SCD- CHF- 

CAD- other 

cardiac 

patients 

An approach that incorporates 

LCD-TEO, SaE, TE, and the 

fluctuations in these features 

over different time frames. 

Proposed method 

  

  



JCARME                                                                                                                                  Vol. X, No. X 

 

As previously stated, in all previous studies, the 

cardiac signals of one or more groups of patients 

have been compared with the signals of people 

with SCD. In order to alleviate the limitation on 

methodology performance, the SCD signals 

were uniquely compared at various segments in 

the current investigation. Our algorithm is based 

on examining the changes in the signal of SCD 

individuals (after decomposing HRV signals, 

features such as TE and SaE) across various 

segments. This approach enables the proposed 

method to distinguish the signal of patients with 

SCD from that of additional patient populations. 

Here, instances of no significant changes over 

time, are regarded as solely unhealthy signals. 

To put it another way, the proposed algorithm 

identifies the pattern of heart predisposition to 

SCD through the monitoring of the 

alteration procedure. Consequently, our analysis 

is not confined to any subclass of cardiac 

disease, which is a substantial benefit of the 

suggested method.  

Furthermore, while the suggested approach may 

not achieve optimal performance in terms of 

specificity and accuracy 15 minutes prior to the 

occurrence when compared to certain studies 

listed in Table 8. with the exception of normal 

subjects, we contend that the presented 

methodology offers a considerably greater 

degree of specificity than the current approaches 

when it comes to managing a wide variety of 

patients. The cause for this is that the problem 

becomes more difficult as the number of groups 

incorporated in the classification increases. 

Neglecting this issue may result in the 

misinterpretation of the performance of 

classification. However, the provided algorithm 

predicts the VF 15 minutes before the event that 

is completely consistent with the definition of 

sudden cardiac death, which refers to death in 

less than 1 hour from the onset of clinical 

symptoms. This interval affords the treatment 

staff sufficient time to execute suitable clinical 

procedures. Hence, the methodology is useful 

for clinical examinations.  

Finally, it should be mentioned that all the 

previous studies mentioned as well as the present 

study are based on determining the time of 

ventricular fibrillation, which is only one of the 

causes of SCD. In order to continue working in 

this field, it is suggested that other causes of 

SCD, such as bradyarrhythmia and pulseless 

electrical activity, should be studied separately. 

 

3.3. Limitations 
 

There are certain limitations regarding this study 

that are worth mentioning. First of all, the 

algorithm scans fluctuations in the HRV signal, 

typically occurring in a time frame of 15 to 25 

minutes prior to the event. Hence, if we use 

signals from SCD patients just 5 minutes before 

it happens, the neural network can't tell the 

difference. Therefore, the detection of SCD will 

go undiscovered. Then, we're only looking at 20 

patients with SCD. If we had more patients, the 

results would be different.  

 

4. Conclusions 
 

This study proves that significant alterations in 

the SCD subjects’ 4ths sub-signal take place 

approximately 15 to 25 minutes prior to the 

occurrence of the event. These changes involve 

a quick increase in information from the 4ths to 

the 1st sub-signal during the 4ths and 5ths time 

periods. Moreover, there is a significant decrease 

in the SaE of the signal’s instant energy of the 

4ths ISC in this period. The suggested method 

uses how features change over time as a new 

aspect as well as evaluating properties based on 

LCD-TEO-Entropy. Compared to other 

methods, it shows greater reliability when faced 

with new signals. 
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