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Article info:  
To quickly detect sudden cardiac death (SCD), it is decisive to gather 

suitable information and enhance the accuracy of the diagnosis algorithms. 

Consequently, in the present study, the heart rate variability (HRV) signal 

of subjects who experience sudden cardiac death (SCD) is studied. We 

looked at people's heart signals for one hour before something happens to 

see if there are any noticeable changes. The patients' HRV signals are 

segregated into 5-minute parts in the suggested approach. Each section is 

divided into four shorter signals. Thereupon, the energy and instant 

amplitude of each sub-signal are examined. The information flows 

between signal strengths and measuring the complexity of energy sub-

signals are checked. A significant change from its former section is 

identified. A support vector machine classifier benefits from detecting 

individuals exposed to SCD by considering significant changes as 

indicators of the SCD process. It can anticipate SCD 15 minutes before it 

happens. Not restricted to any special subclass of cardiac diseases, this 

technique has priority. To evaluate the specificity of the algorithm, it has 

been used not only with patients having SCD but also with individuals who 

are healthy, as well as those with coronary artery disease (CAD) and 

congestive heart failure (CHF), analyzing their HRV signals. The 

specificity values for normal, CHF, and CAD patients are 100%, 93.3%, 

and 95.6%, respectively, in the results.  
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1. Introduction  
 

Sudden cardiac death (SCD) is an emergency 

condition that can lead to death within minutes. 

If someone experiences sudden changes like 

arrhythmia, low blood pressure, chest pain, 

breathlessness, or dizziness and gets involved 

with cardiac arrest in an hour, those deaths are 

treated as SCD [1-6]. Even healthy, junior, and 

athletic people can die from SCD, but it is more 

common in the middle-aged and elderly [7-8]. 

SCD is responsible for over four million deaths 

globally [9], with a minimum of 300,000 cases 

reported in the United States [10]. The incidence 

of diagnosed SCD ranges from approximately 37 

to 39 cases per 100,000 individuals in the four 
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European Union registries [11]. This syndrome 

includes a muddled electrical activity in the 

heart, hence, its ability to effectively pump blood 

to vital organs can be disrupted. The patient's 

death might be ineluctable if well-timed and 

proper clinical proceedings are not done. Cardiac 

arrhythmias are often detected as a prevalent 

cause of such deaths. In 75 to 80% of cases, 

ventricular fibrillation (VF) can be considered as 

the first cause of this cardiac incident. On the 

other hand, Brady Arrhythmia takes precedence 

in 10 to 15% of patients  [10, 5]. Survival in a 

non-clinical environment is observable in only 

about 1-2% of patients who suffer from this 

syndrome [12]. The number of institutions that 

have studied the prediction of SCD is very few. 

American Heart Association is one of those 

whose researchers have published many papers 

in this field [13, 15]. The 2022 Heart and Stroke 

Statistics Update has been recently released by 

the American Heart Association [15].  According 

to this report, cardiac arrest is still one of the 

threats to public health. Recognizing subjects at 

risk of SCD quickly and accurately, therefore, is 

important for moderating their chances of dying. 

Recently, researchers have studied the SCD 

syndrome through the analysis of 

electrocardiogram (ECG) or Heart rate 

variability (HRV) signals. For example, Acharya 

et al. [16] used a developed support vector 

machine (SVM) algorithm to predict SCD four- 

minutes prior to the event with 86.8% accuracy. 

They used the wavelet method and then 

extracted several features based on fractal and 

sample entropy (SaE) analysis. Fujita et al. [17] 

studied the non-linear aspects of the HRV signal 

in twenty patients and eighteen normal 

individuals. They precisely predicted a death 

incident 94.7% of the time by taking advantage 

of the SVM algorithm, four minutes before it 

happened. Houshyarifar et al. [18] accomplished 

a 92% accuracy in anticipating the VF, 

accurately predicting it five minutes before its 

occurrence. Their study requires the use of four 

features from recurrence plots and three features 

from Poincaré plots. Ebrahimzadeh et al. [19] 

foresaw the event thirteen minutes before its 

occurrence by looking at nine classical, 11 time-

frequency, and four nonlinear features. The 

multi-layer perceptron (MLP) network achieved 

an accuracy of 84.21%. Recurrence 

quantification was used by Khazaei et al. [20] to 

forecast SCD in less than a six-minute duration 

prior to its occurrence. Their recommended 

algorithm gained an accuracy, sensitivity, and 

specificity rate of 95%. Vargas-Lopez [21] used 

an ECG signal to forecast the syndrome. They 

made an MLP algorithm that can anticipate SCD 

with 94% accuracy by using a special analysis 

just 25 minutes before it happens. They look at 

different aspects of the heart signal (extracting 

components of the signal through EMD and then 

using Permutation Entropy and Higuchi Fractal 

values as features) to make this anticipation. Shi 

[22] used a technique named EEMD-based 

entropy to analyze HRV signals. They 

discovered that this approach could detect SCD 

14 minutes earlier with a high accuracy of 

96.1%, a specificity of 94.4%, and a sensitivity 

of 97.5%. 

Despite all the previous studies, the methods 

predicting SCD are not used in medical 

examinations. The main reason is that the signals 

in this syndrome are similar to those in other 

heart diseases. It is well-known that SCD can 

happen for many different reasons. Many SCD 

patients also have a background of angina [23]. 

For example, about 50% of patients suffer from 

SCD following a myocardial infarction [24]. 

Also, a great number of SCD patients have CAD 

or CHF [25]. CAD refers to a disease in which, 

due to the narrowed coronary arteries, the blood 

supplied to the heart muscles becomes restricted 

[26]. In general, CAD results from the 

cholesterol plaques formed within coronary 

arteries due to environmental pollution, 

unhealthy lifestyles, smoking, or other unknown 

factors [27]. If CAD is not treated on time, it may 

finally decrease the capability of the heart to 

pump oxygenated blood to the other body 

organs. Such a syndrome of the heart is referred 

to as CHF. This syndrome is a28, in which, due 

to the lack of enough energy, the heart is not 

capable of pumping blood under normal heart 

pressure [29]. It is estimated that 26 million 

individuals are diagnosed with this disease 

around the world [30]. To enhance anticipation 

accuracy, Devi et al. [31] suggested a technique 

to discern signals of patients with SCD from 

healthy individuals and those identified with 
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CHF illness. The neural network reached an 

accuracy of 83.33% for predicting VF 

occurrences in less than ten-minute intervals. 

Rohila et al. [32] have come up with a new 

method to discriminate between patients 

diagnosed with SCD, those who are healthy, and 

patients with CAD and CHF. They use the HRV 

signal for this purpose. Their new method is 

usually accurate about 85% of the time when 

looking at one-hour chunks of heart signals.  
Every algorithm mentioned poses noticeable 
restrictions. For example, a restricted number of 
patients in each patient group has been studied. 
Also, the features used in these sources might be 
similar to those found in other heart diseases. 
Therefore, if the cardiac signals of other cardiac 
patients are applied to these algorithms, these 
patients will be wrongly diagnosed by these 
algorithms as patients at risk of sudden death. 
To diagnose SCD, the algorithm should focus on 
the unique features in the heart signals of patients 
with this syndrome. The present study suggests 
a novel algorithm designed to recognize 
individuals diagnosed with SCD syndrome in 
comparison to other heart disease patients and 
those who are normal. We record important 
changes in the heart signals of people who 
experience SCD before it happens. Therefore, 
the suggested approach is not restricted to any 
specific group, resulting in greater specificity 
compared to the current methods.  
 
2. Methods and materials  
2.1. Extracting features  
 
This research analyzed the heart signal patterns 
of patients in danger of SCD during the hour 
before it happened. To achieve accurate HRV 
measures, it is an obligation to choose the right 
frequency for sampling ECG data which in turn 
causes a reliable and valid calculation. Recent 
developments affirm the need for ECG sampling 
rates of at least 125 Hz [33].  
Following the de-noising of the ECGs, the 
subsequent signals are split into five-minute 
intervals. Then, the HRV signal is realized in 
patients with SCD. Later, the signals experience 
resampling at a frequency of 2 Hz. Eventually, 
every newly generated signal goes through 
decomposition to four sub-signals. Researchers 
often use the EMD method for this process. 
Nonetheless, in the last few years, a technique 

named local characteristic decomposition (LCD) 
has been used to study the vibrations in gearbox 
bearings. This technique has fewer problems 
with mixing modes than the EMD method [34-
36]. Hence, this study has considered the 
potential of this method for decomposing the 
signals of HRV. In turn, it is expected that the 
amplitude of the sub-signals coming from the 
LCD algorithm is not stable and keeps changing. 
Sub-signals change in size and frequency along 
with the main signal. Hence, we used the Teager-
Kaiser method to find the amplitude of every part 
of the signals produced by the LCD method. 
Afterward, we determine the SaE of the energy 
signal and the transfer entropy (TE) among every 
pair of instantaneous amplitude signals. Finally, 
an SVM neural network has been made to 
anticipate SCD by considering the 
abovementioned features and their variances 
from their reciprocal values within the preceding 
interval.  Fig. 1 shows the block diagram of the 
proposed method. 
 

 
Fig. 1. Block diagram of the proposed method. 
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2.2. Database 
 

We used the new algorithm on the signals from 

the MIT-BIT database  [37]. This database 

includes heart signals from 23 patients who 

passed away suddenly (sampling frequency=256 

Hz).  The intervening variables of this research 

are the ECG signals of patients and normal 

subjects. Unlike the cardiac signals of SCD 

patients, which were studied in the last hour, the 

cardiac signals of other patients and healthy 

people were randomly selected.   

The ECG signals were acquired from PhysioNet 

databases. Physionet is an Open-Source database 

for analyzing physiological signals which has 

strict standards regarding compliance with codes 

of ethics. The SCD syndrome subject database 

provides accurate timing information for the 

occurrence of VF. In 20 of the 23 patients for 

whom the data are accessible in the specified 

database, VF has been confirmed in 20, while the 

timing of VF occurrence in the signals of the 

remaining three subjects is uncertain. Hence, the 

study excluded these three signals.  

We tested how well our method works by 

comparing it to other studies that used signals 

from databases related to Normal Sinus Rhythm, 

Coronary Artery Disease, and Congestive Heart 

Failure. 
 

2.3. Signals preprocessing 

Since there is extra noise with the received 

signals, it is an obligation to get rid of them 

before further analysis. Hence, we used a 

Butterworth filter to get rid of unwanted power 

line effects and disturbances caused by the 

person's breathing. Then, we focused on five-

minute segments in less than an hour before VF 

happened in the cleaned-up signals. Therefore, a 

total of 240 intervals, comprising 12 five-minute 

parts for each patient have been collected. Ir 

should be kept in mind that during the processing 

stage, segments including severe noise lasting 

longer than 30 seconds have been excluded. 

Hence, sometimes we used a smaller number of 

subjects instead of 20. 

Once the de-noising process is done, the Pan-

Tompkins algorithm is used to create the HRV 

signal [38]. Finally, due to variations in the 

periods of the acquired signal data, The HRV 

signals were resampled using interpolation at a 

frequency of 2 Hz. 
 

2.3.1. Local characteristic decomposition  
 

LCD refers to a pioneer signal processing 

method operated in the decomposition of non-

stationary time series [39]. It breaks down the 

provided signal x(t) into intrinsic scale 

components (ISCs). Eq. (1) is used to find and 

show a leftover term (r(t)) and K modes (dk(t)). 

𝑥(𝑡) = ∑𝑑𝑘(𝑡) + 𝑟(𝑡)

𝑛

𝑘=1

 (1) 

 

More information regarding the LCD method 

can be referred to references [34, 39]. 

Fig. 2 presents an HRV signal and its 

corresponding ISCs that were achieved through 

the LCD method as discussed earlier. As you can 

be seen, the initial ISCs exhibit a higher 

frequency range, and later ISCs bring a lower 

frequency range. 

 

2.3.2. Extraction of signal amplitude and 

frequency 
 

The LCD method produces several ISCs that 

exhibit fluctuation and inconsistency over time. 

The sub-signals vary in size and frequency 

during the signal. Therefore, signal 

characteristics can be understood from variations 

in size. The Hilbert transform (HT) [40] and the 

Teager-Kaiser energy operator (TKEO) 

techniques are two commonly used methods for 

determining the frequency band and spatial 

extent of the signals. The HT method works 

excellently for signals with specific and bounded 

frequency ranges, but it does not do as well with 

signals that have sudden changes or shocks. 

Negative frequencies can also be generated 

using this method. TKEO method is superior to 

the HT method for analyzing signals with sudden 

changes. It is also easier on computer resources 

compared to the Hilbert conversion method [41]. 

Based on the determined functionalities, the 

TKEO methodology is used to evaluate the 

frequency and dimensions of the achieved sub-

signals. Eq. (2) characterizes this operator for 

discrete signals: 
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Fig. 2. The LCD analysis’s results on a five-minute HRV section. 
 

𝜍[𝑥(𝑛)] = 𝑥2(𝑛) − 𝑥(𝑛 − 1) × 𝑥(𝑛 + 1) (2) 
 

As can be seen, determining the value of the 

operator value necessitates solely x(n), x(n+1), 

and x(n-1). Hence, it has a very high-quality 

image, and its sensitivity to change is noticeable. 

The  instantaneous frequency and amplitude of 

the signal are determined using Eqs. (3 and 4): 
 

𝐹(𝑛)

=
1

4𝜋𝑓
acos(1 −

𝜍[𝑥(𝑛 + 1) − 𝑥(𝑛 − 1)]

2𝜍[𝑥(𝑛)]
 

(3) 

 

|𝐴(𝑛)| =
2𝜍[𝑥(𝑛)]

√𝜍[𝑥(𝑛 + 1) − 𝑥(𝑛 − 1)]
 (4) 

 

 

The sampling frequency is denoted by f. 

 

2.3.3. Sample entropy 
 

The energy of the sub-signals attained in the 

preceding step experiences variations 

throughout the signal duration. Sample entropy 

(SaE) can be used to measure the energy 

complexity of the signal. SaE is engaged in the 

system complexity evaluation of biomedical 

signals, which are sensitive to noise interference. 

This method helps to discover how often a 

specific length of time m with a certain tolerance 

r is repeated. The SaE is calculated by these steps 

when the signal includes N data points: 
 

Step 1. Consider m as a vector dimension Eq. (5): 
 

𝑋𝑚(𝑖) = [𝑥𝑖  𝑥𝑖+1 …  𝑥𝑖+𝑚−1] 
1 < 𝑖 < 𝑁 +𝑚 − 1 

(5) 

 

Step 2. Using Eq. (6), the area amid the vectors 

𝑋𝑚(𝑖)and 𝑋𝑚(𝑗) is calculated: 

 
𝑑[𝑋𝑚(𝑖) − 𝑋𝑚(𝑗)] 
= max(𝑥𝑖+𝑘 − 𝑥𝑗+𝑘) 

(6) 

 

In which 0 ≤ 𝑘 ≤ 𝑚 − 1 and  𝑗 ≤ 𝑁 −𝑚 + 1 
 

Step 3. The amount of 𝑑[𝑋𝑚(𝑖) − 𝑋𝑚(𝑗)] < 𝑟is 

calculated. Here, the threshold is denoted with 

the letter 'r'. The calculation of the ratio is 

according to Eq. (7) and includes the previously 

tallied number divided by N-m + 1. 
 

𝜑𝑖
𝑚(𝑟)

=
1

𝑁 −𝑚 + 1
{𝑡ℎ𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑑[𝑋𝑚(𝑖)

− 𝑋𝑚(𝑗)] < 𝑟} 
(7) 

Step 4. At this step it is averaged over i. 

Therefore: 
 

φ𝑚(𝑟) =
1

𝑁 −𝑚 + 1
∑ 𝜑𝑖

𝑚(𝑟)

𝑁−𝑚

𝑖=1

 (8) 

Step 5. Substituting m +1 instead of m, in this 

case, steps one to four are iterated, and it can be 

written as Eqs. (9 and 10). 
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𝜑𝑖
𝑚+1(𝑟)

=
1

𝑁 −𝑚
{𝑡ℎ𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑑[𝑋𝑚+1(𝑖)

− 𝑋𝑚+1(𝑗)] < 𝑟} 

(9) 

φ𝑚+1(𝑟) =
1

𝑁 −𝑚
∑ 𝜑𝑖

𝑚+1(𝑟)

𝑁−𝑚−1

𝑖=1

 (10) 

 

Step 6. Finally, the SaE can be computed by 

using Eq. (11): 
 

𝑆𝑎𝑚𝑝𝐸𝑛 = 𝑙𝑜𝑔
φ𝑚(𝑟)

φ𝑚+1(𝑟)
 (11) 

 

 It is noteworthy to mention that regular time 

series have lower SaE. 
 

2.3.4. Transfer entropy 
 

TE is a principle to measure the cause-and-effect 

connection between two sets of time series data. 

Suppose Y(t) and X(t) represent two time series 

for the respective Stochastic variables Y and X. 

𝑇𝐸𝑋→𝑌 shows further information regarding the 

future of variable Y. This can be done by 

knowing the past and present of Y and the future 

and past of X [42].  

Consider that 𝑋𝑚 and 𝑌𝑘 are as follows in Eq. 

(12): 
 

{
𝑋𝑚 = (𝑋𝑛𝑋𝑛−𝑚 …  𝑋𝑛−(𝑚−1)𝜏)

𝑌𝑘 = (𝑌𝑛 𝑌𝑛−𝑘  …  𝑌𝑛−(𝑘−1)𝜏)
 (12) 

 

If such is the case, TE can be calculated as Eq. 

(13): 

 
𝑇𝐸𝑋→𝑌

=∑𝑃(𝑌𝑖+1 𝑌𝑖
𝑔
 𝑋𝑖−τ−1

𝑙 )𝑙𝑜𝑔2
𝑃(𝑌𝑖+1|𝑌𝑖

𝑔
 𝑋𝑖−τ−1

𝑙 )

𝑃(𝑌𝑖+1|𝑌𝑖
𝑘)

 
 

(13) 
 

where, g and l suggest the embedding 

dimensions, meaning that the upcoming 

probabilities of Y and X can be calculated using 

the previous k and m values. 

Additionally, τ exemplifies the embedding 

delay. P(𝑌𝑖+1 𝑌𝑖
𝑔
 𝑋𝑖−τ−1

𝑙 ) manifests the joint 

probability. 𝑃(𝑌𝑖+1|𝑌𝑖
𝑔
 𝑋𝑖−τ−1

𝑙 ), and 

𝑃(𝑌𝑖+1|𝑌𝑖
𝑔
) are the possibilities of the functions 

of density. 
 

3. Results and discussion 

As it has been said, we compare the 

characteristics of every five-minute part of the 

signal with the next one. Since the cardiac 

signals are dynamic, the method of time 

segmentation of the signals affects the final 

results. Segments shorter than five minutes are 

not appropriate for the analysis. At shorter 

distances, the resolution improves, but the 

extracted features lose their effectiveness. Also, 

the accuracy of the calculation decreases when 

the time interval exceeds five minutes. 

Undoubtedly, modifications in the signal take 

place as the event gets closer. Therefore, 

observing and analyzing these changes help to 

predict the probability of the occurring event. 

There are some slight variations in the way 

everyone's cardiac signals behave. Nevertheless, 

an immediate and extreme adjustment in the 

studied features suggests the probability of the 

occurrence of an event. The t-test method has 

been used to analyze the level of changes in 

various time interval features. This particular test 

can be used to determine if the presence or 

absence of a variable actually has any significant 

effect on the two sets of data. In a t-test, when 

the feature p-value goes down, it means that the 

feature is more impressive [43].  

If we study various time intervals, we notice 

significant changes in the HRV signals. 

Specifically, there were potential changes in the 

TE between sub-signal amplitudes and the SaE 

of signal energy 25 to 10 minutes before the 

event happened (Table 1). According to the 

table, there is no big difference in the t-test 

results until 10 minutes before the event. 

Table 2 shows the results of using the TE method 

for the 3rd, 4th, and 5th segments. Additionally, 

we calculated the p-value to compare these 

consecutive intervals. As you can see, there is an 

abrupt change in the TE between the momentary 

amplitudes of the 4ths and the 1st sub-signals 10 

to 20 minutes prior to the VF. Simultaneously, 

there are no identical changes in the remaining 

sub-signals.  

In Fig. 3 you can see how much information was 

flowing between the ISCs in the hour prior to VF 

occurrence. An observable change is evident in 

the 4th segment. The TE reaches its possible 
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minimum right after the third interval (p= 

0.0016). The energy pattern in the 4th part 

suddenly changes when we compare the 4th and 

5th time segments. This change is statistically 

significant (p= 0.0451), but there are no 

noticeable changes in the five minutes before 

this, as indicated in Table 3. This table provides 

the results of analyzing the patient’s data in the 

4th and 5th intervals using SaE of instant energy. 

As is shown, the value of SaE in the fourth sub-

signal before the event changes greatly from the 

5th to the 4th segments.  

The average SaE of the energy in the ISC4 is 

observed to change in the hour leading up to 

SCD as shown in Fig. 4. A significant decrease 

in entropy size is observed in the 4th segment, 

compared to the preceding interval. In Fig. 5 and 

Fig. 6, you can see the p-values for the listed 

features in different periods. As it is evident, 

most of the changes we studied happened during 

the 4th and 5th periods. This means that the acute 

time before the event is around 15 to 25 minutes. 

These big changes suggest that the event might 

start soon. The way things are changing indicates 

that the beginning of SCD is getting closer. We 

do not know exactly why, but shocks during this 

time might make the heart more likely to go into 

a dangerous state named VF. 
 

Table 1. Comparison results of successive segments using t-test: TE for 5-minute segments, SaE of energy signal, 

and P-value categorization (** for p-value < 0.05, # for p-value > 0.05). 

11-12 10-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 Segment 

# # # # # # # ** ** # # TE 

# # # # # # # ** # # # SaE 

 

Table 2. TE analysis results for 3ths, 4ths, and 5ths segments in patients with SCD, ** appears for p<0.01. 

TE-O 
(mean±std) P value 

3rd segment 4th segment 

 
5th segment 3rd and 4th 4th and 5th 

𝑇𝐸1→2 0.136 ± 0.128 0.2167 ± 0.155 0.1299± 0.112 0.667 0.052 

𝑇𝐸1→3 0.1592 ± 0.068 0.1795 ± 0.076 0.1486±0.06 0.391 0.1708 

𝑇𝐸1→4 0.1498 ± 0.06 0.1775± 0.054 0.1543±0.053 0.053 0.1849 

𝑇𝐸2→1 0.1153 ± 0.135 0.1869 ± 0.145 0.1407±0.128 0.116 0.3003 

𝑇𝐸3→1 0.0887 ± 0.110 0.1297 ± 0.093 0.1020±0.106 0.142 0.3906 

𝑻𝑬𝟒→𝟏 0.0691 ± 0.088 0.1565 ± 0.0906 0.0812±0.0779 𝟎. 𝟎𝟎𝟏𝟔∗∗ 𝟎. 𝟎𝟎𝟖𝟔∗∗ 

𝑇𝐸2→3 0.1607 ± 0.078 0.1765 ± 0.062 0.1718±0.652 0.449 0.819 

𝑇𝐸3→2 0.0963 ± 0.105 0.1318 ± 0.083 0.1149±0.087 0.150 0.537 

𝑇𝐸3→4 0.1959 ± 0.073 0.1962 ± 0.053 0.1711±0.064 0.989 0.19 

𝑇𝐸4→3 0.1712 ± 0.08 0.1999 ± 0.066 0.1610±0.068 0.148 0.080 

𝑇𝐸2→4 0.1518 ± 0.051 0.1572 ± 0.056 0.1510±0.036 0.733 0.688 

𝑇𝐸4→2 0.0921± 0.074 0.1112± 0.080 0.0831±0.0694 0.45 0.252 

 
Fig. 3. Information transfer from 4ths sub-signal to first across various time intervals in the instantaneous domain. 
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Table. 3. SaE results for instant energy in 4ths and 5ths intervals of patients. * appears for p < 0.05. 

SaE of energy 
4th portion 

(mean±std) 

5th portion 

(mean±std) 
P-value 

ISC4 0.0223 ± 0.0205 0.0454 ± 0.0424 𝟎. 𝟎𝟒𝟓𝟏∗ 

ISC3 0.0519 ± 0.0453 0.0884 ± 0.0752 0.0858 

ISC2 0.1244 ± 0.1427 0.1478 ± 0.133 0.6149 

ISC1 0.219 ± 0.2375 0.2387 ± 0.2563 0.8121 

 
Fig. 4. The SaE results of instant energy across various intervals in the 4ths sub-signal. 

 

 
Fig. 5. P-value results for TE comparison of 4ths ISC across sequential intervals. 

 

 
Fig. 6. P-value results for comparative analysis of SaE in successive intervals of 4ths ISC instant energy. 
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3.1. Classification results 

 

Since cardiac shock makes VF 15 to 25 minutes 

before the event, we can group patient signals 

into two categories. If the signal shows 

characteristics from the first group (the 5th 

interval), the patient is safe from SCD. However, 

if it has features from the second group (the 4th 

interval), the patient is at risk of SCD. Therefore, 

according to what has been said, we have come 

up with a classification algorithm. This 

algorithm uses some particular features in the 5th 

and 4th intervals to separate signals from 

patients with SCD and signals from other 

patients. To do so, certain characteristics like the 

entropy of energy signals and the information 

flow between different parts of the signal’s 

immediate magnitude at specific times have 

been analyzed. We also studied how these 

measures change from one time interval to the 

next. Here,  we use a support vector machine to 

tell apart the HRV signals of the 4th from the 5th 

portions. 

We used some criteria (Eqs.  (14-16)) to evaluate 

the SCD prediction: specificity, accuracy, and 

sensitivity: 

 

𝑆𝑁 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

(14) 

 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(15) 

 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (16) 

 

TP: The detection of the SCD victim is accurate. 

TN: A non-SCD victim is accurately detected as 

no SCD. 

FP: A non-SCD victim has been misdiagnosed 

as a person with SCD. 

FN: The SCD victim has been misdiagnosed as 

a non-SCD subject. 

Table 4 shows the results for the periods 

preceding the event, particularly the 4th and 5th 

intervals. Details such as levels of accuracy, 

specificity, and sensitivity are presented in this 

table. It is monitored that the cardiac ECG signal 

of one patient was omitted because of significant 

noise and the inability to extract the RR signal. 

In this regard, the classifier is trained by leave-

one-out cross-validation. Hence, we use one data 

point to test the algorithm’s performance and the 

other thirty-seven for training. It was found in 

the results that the Kernel’s radial basis function 

performs the best when σ=0.4. The classification 

accuracy is calculated as 86.84%, which can be 

considered satisfactory. The outcomes prove that 

the proposed approach can precisely identify 

SCD fifteen minutes prior to its beginning. 

We used signals from the 6th to 11th intervals to 

study the SVM-RBF classifier performance. The 

results are presented in Table 5. 
Most errors occur during the 6th interval. This 
issue mostly happens since there are alterations 
in the HRVs in a few number of cardiovascular 
patients' signals during this period. Alternatively 
stated, most patients show important signal 
changes 25 to 15 minutes before the event. 
However, a few experience these changes a bit 
earlier. 
We used HRV signals from different heart 
databases such as Normal Sinus Rhythm, Long-
Term ST, and BIDMC Congestive Heart Failure 
to test our neural network and see how well it 
performs compared to previous studies (Table 
6). 
Using this method, we correctly identified 
signals from healthy people every time (100% 
specificity). For those with heart conditions like 
CHF and CAD, we were right 93.3% and 95.6% 
of the time, respectively. We did this process 50 
times and averaged the results. The high 
specificities come from the fact that the features 
being studied do not change much among 
consecutive time intervals. These details prove 
that the method is efficient in telling apart 
signals from someone with SCD compared to 
other patients. 
This study derives from the premise that sudden 
changes in the signal of subjects with SCD occur 
in the last hour leading to the event. Therefore, 
in this study, one hour leading to the incident has 
been investigated. This assumption could be 
extended to hours before the event. There is also 
a possibility that, apart from the features 
examined in this study, there may be changes in 
other hidden features in the cardiac signal of the 
subjects with SCD. 
 

3.2. Discussion 
 

Eq. (3) is utilized to determine the mean and 
standard deviation for each ISC.  
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Table 4. Results of classification using SVM. 
Spec Sen Acc FN FP TN TP Classifiers 

89.47% 84.21% 86.84% 3 2 17 16 SVM-RBF (𝜎 = 0.4) 
84.21% 78.95% 81.58% 4 3 16 15 SVM-RBF (𝜎 = 0.8) 
84.21% 78.95% 81.58% 4 3 16 15 SVM-poly (d=2) 

78.95% 78.95% 78.95% 4 4 15 15 SVM-poly (d=4) 
  

Table 5. The outcomes of analyzing signals in consecutive intervals (6 to 11) in the SVM-RBF classifier. 
Error (false positive) No of signals Time prior to SCD (minutes) Segments number 

5 19 30-25 6 
1 18 35-30 7 
0 19 40-35 8 
2 20 45-40 9 
2 20 50-45 10 
1 20 55-50 11 

 

Table 6. The outcomes of giving the signals of various patients in SVM-RBF classifier. 
Specificity Error number Number of subjects  Subjects 

100% 0 18 NSR 
95.6% 1 23 CAD 
93.3% 1 15 CHF 

 

Table 7 shows the results of Eq. (3). As can be 

seen, ISC1 corresponds to the VHF component 

(0.4 - 1 HZ), ISC2 is the HF component (0.15 - 

0.4 HZ), ISC3 is the LF component (0.04 - 0.15 

Hz), and ISC4 is the VLF component (0.003-

0.04 Hz). The origin of high and low frequencies 

is parasympathetic and sympathetic nerve 

activity, respectively. In healthy people, these 

frequency bands are in balance with each other, 

as a result, a change in the balance of these bands 

can indicate the event of SCD. The concept of 

TE can be used to identify the influence of these 

sub-signals on each other. As observed, there is 

a significant change in the 𝑇𝐸4→1 in the 10-25 

minutes before the event. This rapid rise denotes 

the strong impact of the low-frequency VLF 

agents of the cardiac signals on VHF 

fluctuations. In addition, it should be 

emphasized that in the period from 25-15 

minutes prior to the VF, the instantaneous power 

signal's SaE in the 4ths sub-signal drops 

drastically, implying a reduction in the 

adaptability of the heart in this segment. In 

accordance with what was stated, it is 

determined that the changes in the 4ths sub-

signal, which is distinguished by a VLF band, 

are the driving factor that leads to the SCD event. 

Although the physiological reason for the VLF 

band is not yet understood, it has been stated that 

this frequency band is likely influenced by the 

body temperature regulation mechanisms and 

renin-angiotensin-aldosterone [44]. This 

information may contribute to a superior 

comprehension of SCD in future research.  

According to Table 5, 116 signals obtained from 

segments six to 11 have been used for testing, 

among which the algorithm has only 11 errors. 

This number of errors results in a specificity of 

90.5%, which is quite satisfactory. Furthermore, 

the generated classifier correctly identifies all 

subjects as normal when exposed to the healthy 

individuals' signal. As far as we know, among 

similar studies, this function is truly satisfactory 

and unique.  

Because the existing studies use data from 

different subjects and different signal durations, 

it is difficult to analogize the results of our 

research with the reported ones. Considering this 

issue, Table 8. compares the proposed method of 

this study with other similar studies. From the 

table, it can be observed that the signals of SCD 

victims were typically distinct from those of 

normal subjects in other studies, excluded from 

two recent studies conducted by Rohila and 

Devi.  

 

Table 7. Average frequency content of each ISC. 

Band Mean IF±SD ISCs 

VLF 0.0219 ± 0.019 ISC4 

LF 0.0821 ± 0.0312 ISC3 

HF 0.182 ± 0.0532 ISC2 

VHF 0.44 ± 0.0387 ISC1 
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Table 8. Comparison of the proposed method and some older classification method. 

Prediction time 

frame (specificity) 

Prediction time 

frame (accuracy) 

Separation 

validity 
Technique for extracting features Author 

4 minutes before: 

88.89% 

Four minutes 

before: 86.8% 
SCD- Normal 

SaE, approximate entropy, fractal 

dimensions, correlation dimensions 
Acharya (2015) 

4 minutes before: 

94.4% 

Four minutes 

before: 94.7% 
SCD- Normal 

fuzzy entropy, tsallis entropy, Renyi 

entropy, and energy 
Fujita ( 2016) 

6 min before: 95% 
Six minutes 

before: 95% 
SCD- Normal 

increment entropy and recurrence 

quantification analysis-based features 
Khazaei (2018) 

For 13 minutes 

averagely: 85.71% 

For thirteen 

minutes averagely: 

90.18% 

SCD- Normal 

Poincaré plot, DFA, Frequency-time 

analysis, standard deviation and mean 

of all RR intervals, etc, 

Ebrahimzadeh 

(2019) 

Non mentiond 
ten minutes 

before: 83.33% 

Normal- CHF-

CAD 

Three features of the Poincare plots, 

SaE, 4 features extracted from DFA 
Devi (2019) 

14 minutes before: 

94.4% 

fourteen minutes 

before: 96.1% 
Normal- SCD 

Measuring the entropies of Fuzzy, 

Rényi, Dispersion, improved 

multiscale permutation, and Renyi 

distribution 

Shi (2020) 

Dividing one-hour 

signal of HRV prior 

to SCD into twelve 

segments of 5 

minutes duration: 

94.64% 

Dividing 1 h 

signal of HRV 

before SCD into 

12 segments of 5 

minutes duration: 

91.67% 

Normal- SCD-

CHF -CAD 

DFA, Poincaré plot, s-transform based 

features 
Rohila (2020) 

15 minutes before: 

89.47% for patients. 

for normal, CAD 

and CHF patients 

respectively: 100%, 

95.6%, 93.3%. 

15 minutes before 

86.84% 

Normal-SCD- 

CHF- CAD- 

other cardiac 

patients 

An approach that incorporates LCD-

TEO, SaE, TE, and the fluctuations in 

these features over different time 

frames. 

Proposed method 

When comparing the results, it is evident that our 

method outperforms other methodologies in 

discriminating normal subjects from SCDs, 

achieving a 100% success rate. 

Devi and Rohila attempted to differentiate SCD 

patients from normal subjects and other cardiac 

patients in the cited studies. The most extensive 

investigation in this regard was carried out by 

Rohila. In his research, patients with CAD and 

CHF were included alongside healthy subjects.  

As mentioned, various factors are effective in the 

occurrence of SCD and its mechanism is 

unknown. Consequently, since only a few 

subclasses leading to SCD were examined in 

their study, the performance of their algorithm is 

limited to these subclasses only. Moreover, 

according to their results, there are no changes in 

the cardiac signals of people with SCD in the one 

hour before death. This is in contrast to the 

definition of SCD, which means death within 

less than one hour from the beginning of 

symptoms. 

Increasing the duration of SCD prediction prior 

to the occurrence is evidently one of the 

objectives of the research undertakings in this 

domain. Of course, this increase in time should 

be accompanied by an increase in the ability to 

distinguish the signals of subjects with SCD 

from other patients. It must be acknowledged 

that all the prediction algorithms do contain a 

substantial margin of error when confronted with 

signals resembling those exhibited by 

individuals with SCD. 

As previously stated, in all previous studies, the 

cardiac signals of one or more groups of patients 

have been compared with the signals of people 

with SCD. To alleviate the limitation on 

methodology performance, the SCD signals 

were uniquely compared at various segments in 

the current investigation. Our algorithm is based 

on examining the changes in the signal of SCD 

individuals (after decomposing HRV signals, 

features such as TE and SaE) across various 

segments. This approach enables the proposed 
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method to distinguish the signal of patients with 

SCD from that of additional patient populations. 

Here, instances of no significant changes over 

time, are regarded as solely unhealthy signals. 

To put it another way, the proposed algorithm 

identifies the pattern of heart predisposition to 

SCD through the monitoring of the 

alteration procedure. Consequently, our analysis 

is not confined to any subclass of cardiac 

disease, which is a substantial benefit of the 

suggested method.  
Furthermore, the suggested approach may not 
achieve optimal performance in terms of 
specificity and accuracy 15 minutes prior to the 
occurrence when compared to certain studies 
listed in Table 8.  Except for normal subjects, we 
contend that the presented methodology offers a 
considerably greater degree of specificity than 
the current approaches when it comes to 
managing a wide variety of patients. The cause 
for this is that the problem becomes more 
difficult as the number of groups incorporated in 
the classification increases. Neglecting this issue 
may result in the misinterpretation of the 
performance of classification. 
However, the provided algorithm predicts the 
VF 15 minutes before the event, which is 
completely consistent with the definition of 
sudden cardiac death, which refers to death in 
less than 1 hour from the onset of clinical 
symptoms. This interval affords the treatment 
staff sufficient time to execute suitable clinical 
procedures. Hence, the methodology is useful 
for clinical examinations.  
Finally, it should be mentioned that all previous 
studies, as well as the present study, are based on 
determining the time of ventricular fibrillation, 
which is only one of the causes of SCD. To 
continue working in this field, it is suggested that 
other causes of SCD, such as bradyarrhythmia 
and pulseless electrical activity, should be 
studied separately. 
 
3.3. Limitations 
 
There are certain limitations regarding this study 
that are worth mentioning. First of all, the 
algorithm scans fluctuations in the HRV signal, 
typically occurring in a time frame of 15 to 25 
minutes prior to the event. Hence, if we use 
signals from SCD patients just 5 minutes before 
it happens, the neural network  cannot tell the 

difference. Therefore, the detection of SCD will 
go undiscovered. Then, we only lookat 20 
patients with SCD. If we had more patients, the 
results would be different. 

 

4. Conclusions 
 

This study proves that significant alterations in 

the SCD subjects’ 4th sub-signal take place 

approximately 15 to 25 minutes prior to the 

occurrence of the event. These changes involve 

a quick increase in information from the 4th to 

the 1st sub-signal during the 4th and 5th time 

periods. Moreover, there is a significant decrease 

in the SaE of the signal’s instant energy of the 

4ths ISC in this period. The suggested method 

uses how features change over time as a new 

aspect as well as evaluating properties based on 

LCD-TEO-Entropy. Compared to other 

methods, it shows greater reliability when faced 

with new signals. 
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