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Article info:  
Researchers encounter difficulties in producing clean energy and addressing 

environmental issues. Solid oxide fuel cells (SOFCs) present a promising 

prospect to the growing demand for clean and efficient electricity due to their 

capacity to convert chemically stored energy into electrical energy directly. In 

enhancing this technology, ammonia is employed as a cost-effective and 

carbon-free fuel with convenient transport capabilities. Efficiently predicting 

the performance of a system in relation to its operating environment has the 

potential to expedite the identification of the optimal operating conditions 

across a broad spectrum of parameters. For this purpose, the performance of 

intermediate temperature solid oxide fuel cell (IT-SOFC) with inlet ammonia 

fuel is predicted utilizing machine learning, which is efficient in time and cost. 

Initially, the system is simulated with computational fluid dynamics finite 

element code to generate data for training machine learning algorithms (DNN, 

RFM and LASSO regression), followed by an evaluation of the predictive 

accuracy of these algorithms. The analysis demonstrates that the three examined 

algorithms exhibit sufficient accuracy in predicting the performance of the 

introduced solid oxide fuel cell (SOFC) system, all surpassing a 95 percent 

threshold. RFM and DNN exhibit the most accurate predictions for the 

maximum temperature and power density of fuel cells, respectively. 
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1. Introduction  

 
The energy crisis and environmental issues have 
had serious consequences for human life over the 
past few decades. The increase in energy 
demand, greenhouse gas emissions and limited 
fossil fuel resources have prompted research 
efforts to develop sustainable and renewable 
energy sources. One promising option is solid 
oxide fuel cells (SOFCs), which can directly 

convert chemical energy into electricity. These 
cells have gained widespread acceptance due to 
their advantageous characteristics, including 
versatility in utilizing various fuels, high 
efficiency, and lack of reliance on precious 
metals [1]. 
They are appropriate for use in mobile and 
stationary applications, catering to both small 
and large-scale systems [2, 3]. Hydrogen is an 
ideal fuel for SOFCs due to its high 
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electrochemical synthesis and the generation of 
only water vapor as the chemical reaction 
product. However, challenges associated with 
hydrogen fuel, such as its low energy density in 
the gaseous state, complicated storage, and 
limited portability, have led to the consideration 
of ammonia as a viable substitute fuel [4]. 
Ammonia's cost-effectiveness, ease of transport 
and storage, lack of carbon emissions and ability 
to be easily converted into a liquid form with a 
volume density approximately 1.4 times that of 
liquid hydrogen, have positioned it as a superior 
option for utilization in SOFCs as fuel [5-7]. 
Research has shown that the performance of 
ammonia-fed solid oxide fuel cells is influenced 
by various factors, including ammonia 
concentration, operating temperature, catalysts 
and materials, cell design, and configuration, 
fuel pre-processing and even system integration 
[8-20]. 
The solid oxide fuel cell is classified as a high-
temperature fuel cell, with operating 
temperatures typically ranging from 500 to 900 
degrees Celsius. An additional strategy for the 
advancement of the solid oxide fuel cell industry 
is to operate it at an intermediate temperature 
level. For this purpose, instead of employing the 
high-temperature kinetic model developed by 
Tamaro [14], it is imperative to utilize a kinetic 
model tailored for intermediate operating 
temperatures. The Temkin-Pyzhev kinetic 
model, as introduced by Vilekar et al. [21] in 
2012, is a pertinent framework for simulating 
ammonia decomposition under these operating 
conditions. 
Numerous investigations have been conducted to 
simulate appropriate models for comprehending 
the performance of SOFCs and predicting their 
behavior.  
These studies involve a variety of models, 
ranging from zero-dimensional to three-
dimensional, providing valuable insights into 
different aspects of the topic. They address 
fundamental factors including specific reactions 
[22], mass transport, porous media transport, and 
heterogeneous chemistry [23]. Additionally, 
they delve into more intricate data, including 
dynamic behavior [24, 25], spatial temperature, 
gas species, current density, and potential 
distribution [26]. 
Commercial CFD (computational fluid 
dynamics) software programs have commonly 
been utilized to analyze the behaviour of solid 

oxide fuel cells, necessitating precise selection 
of boundary conditions, and design parameters 
related to mass, heat and charge transport. While 
this approach offers accurate results for a 
specific fuel cell sample with unique 
characteristics, it may not be applicable to other 
fuel cell variations with differences in 
parameters such as electrode thickness and cell 
porosity. Therefore, the CFD software-based 
model requires additional time to simulate each 
distinct condition individually.  
To address this issue efficiently and prevent 
unnecessary expenditure of time and resources, 
machine learning algorithms-- a component of 
artificial intelligence-- have been employed. 
Machine learning is a mathematical technique 
that utilizes statistical algorithms to analyze 
sample or training data to predict and estimate 
system behaviour under varying circumstances 
[27]. This methodology demonstrates reliable 
accuracy in the field of fuel cells and facilitates 
result optimization [28-30]. Moreover, it 
expedites computational procedures. 
In 2002, Arriagada et al. [31] predicted the 
parameters of a planar solid oxide fuel cell using 
an artificial neural network (ANN). In this 
research, fuel cell outputs, such as electric 
current density and final temperature, were 
determined through the analysis of input data, 
including fuel composition, inlet gas 
temperature, voltage, and flow rate. 
The network was trained using the Levenberg–
Marquardt algorithm, an enhanced version of the 
backpropagation (BP) algorithm, resulting in 
accurate generation of output data. 
Subsequently, Milewski et al. [32] explored the 
performance of a solid oxide fuel cell with 
hydrogen fuel and a mixture of nitrogen and 
oxygen as oxidizers using an artificial neural 
network (ANN). 
The effective parameters considered in this study 
included the temperature of the fuel cell, the 
thickness of the electrolyte and anode, the 
porosity of the anode, and the composition of the 
fuel and oxidizer mixtures. The findings 
suggested that employing a limited number of 
neurons in the neural network led to 
discrepancies, whereas utilizing the optimal 
number of neurons enabled the prediction of 
electric current density with appropriate 
accuracy and high speed. Chaichana et al. [33] 
examined a direct internal reforming solid oxide 
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fuel cell (SOFC) using neural network 
technology. 
Their study focused on a fuel input comprising 
methane, carbon monoxide, carbon dioxide, 
hydrogen, and water vapor, employing the 
backpropagation (BP) methodology to forecast 
the current density output. The results revealed 
that elevating the operating temperature, 
pressure, steam/carbon ratio, and degree of pre-
reforming positively impacted the efficiency. 
Conversely, the influence of the inlet fuel molar 
flow rate exhibited a contrasting trend. 
Furthermore, the fuel cell’s electrical 
characteristics can be accurately estimated using 
the optimal structure of the neural network. 
In another study conducted by Xu et al. [34], the 
combination of multi-physics simulation and 
deep learning (DL) was considered to predict 
and optimize the performance of SOFCs. They 
utilized hydrogen fuel, water vapor, and 
laboratory data to perform artificial intelligence 
calculations, resulting in an acceptable 
prediction of SOFC performance. 
The performance of hydrogen-fueled SOFC was 
analyzed through Random Forest (RF) and 
Support Vector Machine (SVM) algorithms by 
Iskenderoglu et al. [35]. The performance of the 
fuel cell was assessed by 1122 laboratory data 
involving various mixtures of input fuel and 
operating temperature. The results showed that 
the electric current density of the fuel cell at 0.52 
seconds could be predicted with errors of 1.97% 
and 0.92% using the RF and SVR methods, 
respectively. 
Three different methods were employed in the 
study by Ba et al. [36] to predict the efficiency 
of fuel cells: RHNN, RHNN-GWO, and RBF. 
Based on the results, RHNN-GWO 
demonstrated higher accuracy in predicting 
SOFC performance compared to the other two 
algorithms. Li et al. [37] utilized deep 
reinforcement learning to effectively manage 
and analyze the solid oxide fuel cell 
performance, which was operated with hydrogen 
fuel at a temperature of 1273 K, at different 
voltage levels. 
The purpose of this simulation was to maintain a 
constant output flow of the fuel cell. In addition, 
the optimal performance of the solid oxide fuel 
cell was identified by Jia et al. [38] through a 
fusion of Elman Neural Network (ENN) and 
Quantum Pathfinder algorithm (QPF). 

The findings indicated that the employed 
approach exhibited lower error rates compared 
to the ENN-PF and GWO-RHNN techniques 
and could accurately predict the power of fuel 
cell. 
Subotić et al. [39] applied artificial neural 
networks (ANNs) to predict SOFC performance, 
emphasizing prediction accuracy. By expanding 
the training data to encompass diverse operating 
conditions and increasing the dataset size, ANNs 
can predict performance for different fuel 
mixtures and operating scenarios, potentially 
averting failures and extending system lifetime. 
In a subsequent study, Mütter et al. [40] focused 
on optimizing SOFC operational parameters 
using an ANN and a genetic algorithm (GA). 
The combination of ANN-GA accelerates 
predictions significantly while upholding 
accuracy, facilitating the commercialization of 
SOFCs. Finally, Tofigh et al. [41] introduced a 
novel model, HY-CNN-NARX, capable of 
identifying the transient dynamic behavior of 
SOFCs. 
This model combines convolutional neural 
network (CNN) with a nonlinear autoregressive 
exogenous (NARX) network. Experimental data 
from lab-scale SOFCs validated the model, 
demonstrating improved accuracy and faster 
execution times compared to conventional 
models. 
Considering the growing demand for energy and 
environmental crises such as climate change and 
global warming, it is essential and vital to use 
sustainable and carbon-free fuels to replace 
fossil fuels. In this regard, the fuel cell with 
ammonia fuel is a promising option [7]. This is 
because ammonia can be easily produced, 
transported and distributed compared to 
hydrogen. Also, as a carbon-free fuel, it does not 
emit environmental pollutants at the point of 
consumption (net zero emissions) compared to 
fossil and traditional fuels [42, 43].  
According to the literature, no previous research 
has been conducted on three-dimensional tubular 
SOFC modeling with ammonia fuel at 
intermediate operating temperature using CFD 
simulation. The primary objective of this study 
is to perform a comparative investigation on 
various machine learning algorithms to predict 
the performance of the proposed SOFC systems. 
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Fig. 1. Simplified workflow of SOFC performance prediction. 
 
 

The steps undertaken for this research are 
outlined in Fig. 1. 
Initially, a CFD model is employed to generate a 
dataset, examining the impacts of operating 
temperature, flow inlet velocity, and electrode 
porosity on SOFC efficiency. After 
preprocessing, this data is used to configure and 
train machine learning algorithms (DNN, RFM, 
LASSO Regression). 
Both the CFD-simulated and machine learning 
models are validated against the study conducted 
by   Ranasinghe and Middleton [44]. 
Subsequently, the accuracy of different machine 
learning algorithms is compared to determine the 
most effective approach for predicting the 
performance of the introduced SOFC system. 
 
2. Model description 
 
This study investigates the three-dimensional 
structure of a tubular solid oxide fuel cell, as 
depicted in Fig. 2. The fuel cell receives 
ammonia fuel and air flow through its anode and 
cathode channels, respectively. 
The decomposition of ammonia fuel into 
hydrogen and nitrogen occurs after penetrating 
the anode channel. The simulation is based on 
the premise of operating at intermediate working 
temperatures, where the chemical reaction rate 
(rNH3

) for ammonia decomposition is evaluated 

using the Temkin-Pyzhev relationship [45]. 

 
Fig. 2. Configuration of 3D tubular SOFC a) front 
view b) layers. 
 
 
 

𝑟𝑁𝐻3

= 6 × 107𝑒𝑥𝑝 (−
95600

𝑅𝑇
) (

𝑝𝑁𝐻3

2

𝑝𝐻2

3 )

0.209

 

(1) 

 

 
In Eq. (1), PNH3

 and PH2
 represent the partial 

pressures of ammonia and hydrogen, 
respectively. Meanwhile, T and R denote the 
reaction temperature and the universal gas 
constant, respectively. After the decomposition 
of ammonia within the porous medium of the 
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Fig. 3. Chemical and electrochemical reactions of ammonia fuelled SOFC.

 
 
Anode, the generation of an electric current 
occurs through the conduction of protons from 
the electrolyte to the cathode during the 
electrochemical reaction. In Fig. 3, the species, 
as well as the chemical and electrochemical 
reactions in cell units, are shown in two 
dimensions. 
Table 1 displays the thickness of each layer 
within the introduced SOFC system. 
 
Table 1. The dimensions of various components of 

the tubular SOFC. 

Size (mm) Parameters 

0.175 Fuel channel radius 

0.35 Anode thickness 

0.01 Electrolyte thickness 

0.06 Cathode thickness 

0.35 Air channel thickness 

10 Fuel cell length 

 
 
2.1. Model equations 
 
To accurately simulate and analyze the solid 
oxide fuel cell, it is crucial to integrate and 
address the fundamental equations governing 
this system. These equations include 
electrochemical equations, mass transfer, 
thermophysical and fluid characteristics of 
mixtures, fluid flows and energy. These  
 

 
 
equations are solved in the steady state and the 
species within the SOFC are assumed to behave 
as ideal gases. 
The fluid behavior equation incorporates 
compressibility for accurate modeling, and the 
thermodynamic properties of species and 
mixtures are characterized by accounting for the 
influence of mole fraction, temperature, and 
pressure. 
The investigation of fuel and air flow within the 
anode and cathode channels is conducted by 
applying the principles of continuity and 
momentum equations, while considering a 
compressible (Mach number < 0.3) and laminar 
fluid. 
 

(2) 𝛻. (𝜌𝑉) = 0 

(3) 
 

𝜌(𝑉. 𝛻)𝑉 = 𝛻. [−𝑝𝐼 + 𝐾] + 𝐹 

(4) 
 

𝐾 = 𝜇(𝛻𝑉 + (𝛻𝑉)𝑇) −
2

3
𝜇(𝛻. 𝑉)𝐼 

 
In Eqs. (2-4), the variables V, ρ, F, p and μ 
represent the velocity field, fluid density, applied 
volumetric force to the fluid, pressure field, and 
dynamic viscosity of the fluid flow mixture, 
respectively. The Darcy-Brinkman relation is 
employed to address the preservation of 
momentum in fluid flow within porous media. 
Consequently, the equations defining the fluid 
flow within the porous medium of the electrodes 
are as follows: 
 

(5) 𝛻. (𝜌𝑉) = 𝑄𝑚 
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(6) 

1

𝜀𝑝
𝜌(𝑉. 𝛻)𝑉

1

𝜀𝑝
= 𝛻. [−𝑝𝐼 + 𝐾1] + 𝐹

− (𝜇𝜅−1 +
𝑄𝑚

𝜀𝑃
2 ) 𝑉 

(7) 

𝐾1 =
1

𝜀𝑝
𝜇(𝛻𝑉 + (𝛻𝑉)𝑇)

−
2

3
𝜇

1

𝜀𝑝

(𝛻. 𝑉)𝐼 

 
The quantities 𝑄𝑚, 𝜀𝑝 and κ represent mass 

source, medium porosity, and permeability, 
respectively. The air flow includes water vapor, 
oxygen and nitrogen, and the incoming fuel flow 
is pure ammonia. After decomposition, the 
ammonia gas transitions into a mixture of 
nitrogen, hydrogen, and ammonia. To evaluate 
the transfer of these species based on the 
mixture's thermophysical and fluid properties, 
the Maxwell-Stefan equation is employed, as 
depicted below. 𝑅𝑖, 𝜔𝑖 and 𝐽𝑖 are source term, 
mass fraction, and mass flux of species. 

(8) 𝛻. 𝐽𝑖 + 𝜌(𝑉. 𝛻)𝜔𝑖 = 𝑅𝑖 

To calculate the mass flux diffusion parameter, 
the following equations are used, in which the 
symbols 𝑑𝑘, 𝐷𝑒.𝑖𝑘, 𝑓𝑒, 𝜏𝐹, 𝐷𝑖𝑘, 𝑥𝑘, 𝑀𝑛, and 𝑀𝑖 

represent diffusional driving force, effective 
binary diffusion coefficient, effective transport 
factor, tortuosity, binary diffusion coefficient, 
molar fraction of species, average molar mass 
and molar mass of species, respectively. 
 

(9) 𝐽𝑖 = −(𝜌𝜔𝑖 ∑ 𝐷𝑒.𝑖𝑘𝑑𝑘)

𝑘

 

(10) 𝐷𝑒.𝑖𝑘 = 𝑓𝑒(𝜀𝑝. 𝜏𝐹)𝐷𝑖𝑘 

(11) 
𝑑𝑘 = 𝛻𝑥𝑘 +

1

𝑝
[(𝑥𝑘 − 𝜔𝑘)𝛻𝑝] 

(12) 𝑥𝑘 =
𝜔𝑘

𝑀𝑘
𝑀𝑛 

(13) 𝑀𝑛 = (∑
𝜔𝑖

𝑀𝑖
𝑖

)−1 

 
The quantity 𝑓𝑒 is a function of two values: 
porosity and tortuosity, which in this research is 
determined by the assumption of Bragman's 
model regarding the effective transport factor. 
 

(14) 𝑓𝑒 =
𝜀𝑝

𝜏𝐹
 

(15) 𝜏𝐹 = 𝜀𝑃
−

1
2 

 
The ionic and electric currents produced as a 
result of electrochemical reactions are calculated 
using the charge conservation equation as 
follows: 
 

(16)  −𝛻. (𝜎𝑒𝛻𝜙𝑒) = 𝑗𝑒 

(17)  −𝛻. (𝜎𝑖𝛻𝜙𝑖) = 𝑗𝑖 

 
In Eqs. (16, 17), 𝜎𝑒, 𝜎𝑖, 𝜙𝑒, 𝜙𝑖 refer to electron 
and ion conductivity, and electron and ion 
potentials, respectively. The parameters 𝑗𝑒 and 𝑗𝑖 
identify the source of electric and ionic currents 
that are produced or consumed in fuel cell. The 
Butler-Volmer equation is employed to establish 
the correlation between the current and the 
Additional activation potential. In this relation, 
𝐴𝑎, 𝑖0, 𝛼𝑎, 𝛼𝑐, 𝐹, and 𝜂 represent 
electrochemical active surface per unit volume, 
exchange current density, anodic and cathodic 
charge transfer coefficient, Faraday constant and 
excess potential, respectively. 
 

(18) 
𝑗 = 𝐴𝑎𝑖0(𝐶𝑟 𝑒𝑥𝑝 (

𝛼𝑎𝐹

𝑅𝑇
𝜂)

− 𝐶0 𝑒𝑥𝑝 (
𝛼𝑐𝐹

𝑅𝑇
𝜂)) 

 
The terms 𝐶𝑟 and 𝐶0 are the reduced and 
oxidized ratios of species to reference values, 
respectively. The 𝜂 parameter is defined as 
follows: 
 

(19) 𝜂 = 𝜙
𝑒

− 𝜙
𝑖

− 𝑉𝑜𝑐𝑣 

 

𝑉𝑜𝑐𝑣 is the open circuit potential, which is zero in 
the anode catalytic layer. The value of this 
parameter in the cathode layer is determined by 
the following relation: 
 

(20) 

 𝑉𝑜𝑐𝑣 = 1.253 − 0.00024516𝑇

+
𝑅𝑇

2𝐹
𝑙𝑛

𝑝𝐻2
(𝑝𝑂2

)2

𝑝𝐻2𝑂
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The energy equation is used to compute the 
temperature distribution of gaseous fluids within 
fuel and air channels, as well as in porous 
electrode environments that encompass both 
solid and fluid components in the solid oxide 
fuel cell systems. 
 

(21)  𝜌𝐶𝑝𝑉. 𝛻𝑇 + 𝛻. (−𝑘𝑒𝑓𝑓𝛻𝑇) = 𝑄ℎ 

 
In Eq. (21), 𝐶𝑝, T, 𝑄ℎ and 𝑘𝑒𝑓𝑓 are respectively 

the specific heat capacity of gas mixture, 
temperature, heat source resulting from chemical 
and electrochemical reactions and effective 
thermal conductivity. 𝑘𝑒𝑓𝑓 is defined as follows: 

 

(22)  𝑘𝑒𝑓𝑓 = 𝜀𝑝𝑘𝑓 + (1 − 𝜀𝑝)𝑘𝑠 

 
The heat source includes the heat produced or 
consumed in various parts of the fuel cell, which 
is defined as follows: 
 

𝑄𝑒 = 𝜎𝑖
𝑒𝑙(𝛻𝜙𝑒

𝑒𝑙)
2

+ 𝑄𝑒𝑙𝑒𝑐  

(23)  𝑄𝑐 = 𝜎𝑖
𝑐(𝛻𝜙𝑒

𝑐)2 + 𝜎𝑒
𝑐(𝛻𝜙𝑒

𝑐)2 + 𝑖𝜂 

 𝑄𝑎 = 𝜎𝑖
𝑎(𝛻𝜙𝑒

𝑎)2 + 𝜎𝑒
𝑎(𝛻𝜙𝑒

𝑎)2 + 𝑖𝜂

+ 𝑄𝑐ℎ𝑒𝑚 

 
The heat generated by electrochemical reactions, 
ohmic heat loss, excess potential heat loss, and 
chemical reaction resulting from the 
decomposition of ammonia are denoted by 𝑄𝑒𝑙𝑒𝑐, 

𝜎𝑖
𝑒𝑙(𝛻𝜙𝑒

𝑒𝑙)
2
, 𝑖𝜂, and 𝑄𝑐ℎ𝑒𝑚, respectively, in 

Eq. (23). In this study, the thermal enthalpy of 
the endothermic reaction of ammonia 
decomposition is considered equal to 46 kJ/mol. 
To analyze the problem, the 
aforementionedequations are defined, coupled, 
and solved using a computational fluid dynamics 
code implemented based on the finite element 
method [46].  
 
2.2. Machine learning algorithms 
 
The essential information needed to train 
practical, and well-known machine learning 
models, including Deep neural network (DNN), 
Random Forest (RF), and LASSO regression 
[47], is obtained through numerical simulation 
results. A DNN is a statistical method that draws 

inspiration from biological neural networks. It 
consists different components, including the 
input layer, hidden layers, and an output layer. 
Each layer contains multiple processing units 
known as neurons. These neurons receive inputs, 
or information, from other neurons through 
specific connection weights. In the middle-
hidden layers, the information received from the 
input layer is processed using an activation 
function. Each neuron receives all information 
from the previous layer. The simplified DNN 

algorithm is illustrated in Fig. 4. [48]. 
 
 

 
Fig. 4. Simplified structure of deep neural network 
algorithm. 

 
 
DNN selected for its ability to model complex 
non-linear relationships via deep layers, 
outperforming shallow networks in capturing 
multi-scale dependencies. Chosen over simpler 
networks (e.g., ANN) due to higher accuracy in 
high-dimensional data. 
To find the optimal mode of the network, various 
modes have been used for data analysis. Four 
activation functions for data processing, 
including the rectified linear unit (ReLU), 
identity, logistic, and hyperbolic tangent, are 
considered. In the neural network, each neuron 
can have a special weight and importance in 
predicting the objective function. 
The calculation and optimization of the weight 
of each neuron is performed using a solver. In 
this research, the effects of three common 
solvers, including the Limited- Memory 
Broyden–Fletcher–Goldfarb–Shanno algorithm 

(LBFGS) which belongs to the family of the 
quasi- Newton Method, Stochastic Gradient 
Descent (SGD), and Adaptive Moment 
Estimation Method (ADAM), are examined. 
Eighty-five percent of the data is allocated for 
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training the machine and the rest is used for 
testing the machine. 
The Random Forest algorithm creates multiple 
decision trees during the training phase. 
Each tree is constructed by utilizing a random 
subset of the dataset to evaluate a random subset 
of features within each partition, as shown in 
Fig. 5. This incorporation of randomness 
introduces diversity among the individual trees, 
reducing the risk of overfitting and improving 
overall prediction performance. During the 
prediction phase, the algorithm combines the 
results of all the trees, by either using voting (for 
classification tasks) or averaging (for regression 
tasks). 
 
 

 
Fig. 5. Simplified structure of random forest model. 

 
 
RF Preferred over other tree-based like decision 
tree for its robustness to overfitting in moderate 
datasets (601 cases) and inherent feature 
importance analysis. Its ensemble approach 
handles variable interactions better than single 
decision trees. 
LASSO regression is a widely used algorithm in 
statistics and machine learning to perform 
feature selection and regularization. It operates 
by adding a penalty term, typically the L1 norm 
of the coefficients, to the ordinary least squares 
(OLS) regression loss function, which 
constraining the sum of the absolute values of 
the coefficients. 
This encourages sparsity in the coefficient 
vector, leading to feature selection by shrinking 
less important coefficients to zero. By 
effectively reducing the number of predictors, 
LASSO regression can improve model 
interpretability, reduce overfitting and enhance 
prediction accuracy. 

The algorithm is particularly useful when 
dealing with high-dimensional datasets where 
there are potentially many irrelevant or 
redundant features [49]. Also, LASSO Chosen 
over standard linear regression for its L1 
regularization, which automates feature 
selection (e.g., isolating inlet temperature’s 
dominance) while penalizing irrelevant 
variables, unlike non-regularized regression 
prone to overfitting. 
The target parameters for predicting SOFC 
performance with machine learning algorithms 
are power  density and maximum temperature of 
the fuel cell. To achieve this objective, various 
input parameters have been selected, that can 
vary and impact the target parameters. These 
input parameters include the initial temperature 
of the fuel cell, the porosity levels of both the 
anode and cathode, as well as the fuel and air 
flow velocities. 
The applied voltage of the fuel cell for 
calculating different modes is set at 0.7 V. After 
modifying the input parameters, the governing 
equations and output parameters are calculated. 
A comprehensive analysis has been conducted, 
encompassing a total of 601 distinct modes. 
 
3. Results and discussion 
 
According to CFD modeling results, the 
temperature is highest at the fuel cell inlet and 
gradually decreases as it progresses through the 
fuel cell. This temperature reduction results from 
the endothermic ammonia decomposition 
reaction. The maximum temperature, maximum 
current, and power of the fuel cell are directly 
related to the operating temperature and the input 
flow velocities. The temperature of the fuel cell 
is not significantly influenced by the porosity of 
the electrodes; however, it does result in a 
reduction in both the maximum power and 
current of the fuel cell. 
 
3.1. Model validation 
 

To analyze the problem and generate the 
necessary data, the thermodynamic properties of 
species, mixtures and the conservation equations 
of mass, momentum, energy, electric charge and 
species have been defined in a finite element 
numerical code and coupled with each other. For 
the numerical solution of the equations and to 
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control instability, four steps are defined as 
follows:  

• Solving the electric and ion flux 
conservation equations to calculate the 
electric current distribution 

• Solving the continuity and momentum 
conservation equations to calculate pressure 
and velocity fields. 

• Solving the species survival equation 
(Maxwell-Stefan) to calculate the species 
distribution  

• Solving the energy equation to calculate the 
temperature field 

After solving the mentioned steps, all the 
equations are solved simultaneously and coupled 
together. Additionally, based on the chemical 
and electrochemical reactions that cause changes 
in mole fraction, temperature, and pressure, 
thermophysical properties of species and 
mixture are calculated and used in the equations. 

 
 

 
Fig. 6. Mesh independence. 

 
 
To choose the appropriate mesh, the flow 
velocity in the air channel and along the 
transverse axis was analyzed in four 
computational grid modes. The results of the 
velocity magnitude in the four states are shown 
in Fig. 6. To choose the appropriate mesh, the 
flow velocity in the air channel and along the 
transverse axis was analyzed in four 
computational grid modes. The results of the 
velocity magnitude in the four states are shown 
in Fig. 6. Therefore, the computational grid 
consisting of 30,108 cells is used as the basis for 
subsequent calculations. The network includes 

28852 triangular cells and 1256 quadrilateral 
cells, with more distribution in the contact area 
between electrolyte and electrodes. In total, the 
results obtained from the independence of the 
computing mesh and the average quality of the 
network more than 0.85 in the domain of the 
problem indicate the sufficient and appropriate 
accuracy of the numerical solution.  
To solve the equations, it is necessary to define 
the boundary conditions. Therefore, to solve the 
conservation equations for energy and species, 
the boundary condition of constant value and 
dominance of convection are set at the inlet and 
outlet of the channels, respectively. To solve the 
electrochemical equation, the initial electric 
potential of the electrolyte and anode is zero 
while that the cathode is 0.7 V. To solve the 
continuity and momentum equations,  assuming 
no-slip in the walls, the fully developed flow and 
constant pressure are defined at the inlets and 
outlets of the channels, respectively. 
In the following, to validate our numerical 
model, we compare its results with those 
obtained by Ranasinghe and Middleton [44]. 
In this regard, the accuracy and precision of the 
numerical solution are compared with the 
research conducted by Ranasinghe and 
Middleton. In their study, the effects of counter 
and radial flows on the performance of a SOFC 
were investigated numerically. For this purpose, 
a three-dimensional geometry fueled by 
hydrogen was simulated at three different 
operating temperatures using COMSOL 
Multiphysics software. To solve the species and 
momentum conservation equations, specific 
boundary conditions were applied: the mass 
fraction and flow rate were set at the inlet of the 
channels, while the dominant convection over 
diffusion and constant pressure were defined at 
the outlet. Additionally, no-slip conditions and 
zero species diffusion were imposed at the walls 
of the channels and the interfaces between the 
electrolyte and electrodes.  

In Fig. 7, the power density versus current 
density profiles from both studies are compared, 
demonstrating the reasonable accuracy of the 
numerical solution method employed in this 
study. The close agreement between the results 
validates the reliability of the computational 
approach used here [44]. 
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Fig. 7. The comparison of power density-electric 
current density diagram at present study and 
ranasinghe and middleton [44]. 
 
 

3.2. Numerical Modelling 
 
After simulating and numerically verifying of 
solid oxide tubular fuel cell with ammonia as an 
inlet fuel and at intermediate working 
temperatures, the effects of changes in the input 
terms on the output terms is investigated and 
studied. The most effective input terms are the 
velocity of fuel and air flows, working 
temperature and anode and cathode porosity, 
while the output terms of the research are the 
power density and the maximum temperature of 
the fuel cell. Fig. 8 illustrates the quantitative 
and qualitative statistics of the selected input 
terms.  
 
 
 

 

Fig. 8. Input parameters distribution. 
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As can be seen, the terms of electrodes porosity 
and the velocity of air and fuel flows have been 
selected in the conventional and practical range 
of 0.3 to 0.5 m/s. Also, the inlet temperature has 
been selected in the range of 610 to 873 K, 
according to the operating temperature range of 
the fuel cell and the Temkin-Pizhev kinetic 
model. 
As can be seen in Fig. 8, the values of input 
parameters have been selected to include 
applicable values. For example, considering that 
the operating temperature of the fuel cell is 
average, major changes in temperatures have 
been studied around 773 K. Also, for other 
parameters, the values are chosen so that the 
entire range is properly covered. Fig. 9, displays 
the three-dimensional contour of temperature 
distribution and anode is lower than the air inlet 
channel and cathode, which is caused by the heat 
source of ammonia decomposition. Fig. 9 shows 
a temperature drop due to the endothermic 
reactions occurring along the fuel cell. It can also 
be observed that the temperature around the fuel 
inlet channel is lower. 
 
 

 
Fig. 9. 3D Temperature distribution. 

 
 
Fig. 10 shows the mass fraction of ammonia at 
two different states of inlet temperature of 673 
and 773 K. An increase in temperature results in 
a higher amount of ammonia decomposition. 
 

 

 
Fig. 10. 2D Ammonia mass fraction distribution. 

 
Fig. 11 illustrates temperature variations along 
the center of the fuel cell assuming different 
electrodes porosity and air and fuel flows 
velocity. The base condition is assumed to have 
a porosity of 0.3 for the electrodes and a velocity 
of 0.3 m/s for the fuel and air inlet flows. In all 
cases, the inlet temperature is 673 K. The line 
graphs in Fig. 11 shows that changing the air 
flow velocity has a greater effect on the 
temperature change than other terms. It can also 
be seen that changing the porosity of the 
electrodes have the least effect on the 
temperature of the fuel cell compared to other 
terms. 
 
 

 
Fig. 11. Temperature changes in the direction of the 
center of the fuel cell assuming different states. 
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3.3. Comparison of machine learning algorithms 
 
Upon completion of data generation from 
computational fluid dynamic codes, a python 
program is utilized to prepare the structure of 
machine learning algorithms. The correlation 
 
 

 
between the data sets is illustrated in Fig. 12 
using the Pearson correlation coefficient (PCC). 
It is evident that the initial temperature of the 
fuel cell has a significant impact on its power 
density. 
 

 
Fig. 12. Correlation between different data.

 
 
The correlation coefficients (P.C.C) 
of 0.99 and 0.97 between the inlet temperature 
and the maximum temperature and power 
density of the fuel cell, respectively, indicate 
a very strong positive linear relationship, 
signifying that the inlet temperature is a 
dominant factor influencing both the thermal and 
electrical performance of the fuel cell. The near-
perfect correlation (0.99) between inlet 
temperature and maximum temperature 
highlights its critical role in controlling the fuel 
cell's thermal profile, while the strong 
correlation (0.97) with power density 
underscores its importance in optimizing power  

 
 
generation. These findings emphasize that 
Careful regulation of the inlet temperature is 
essential for enhancing fuel cell efficiency, 
guiding predictive modeling and informing 
design and control strategies to achieve optimal 
performance. Fig. 13 illustrates the relationship 
between variations in inlet temperature and fuel 
cell power density. It is evident that the inlet 
temperature has a direct relationship with the 
power density, and changes in temperature can 
lead to a significant variation in power density. 
Consequently, the effect of the inlet temperature 
on the target parameters is greater than other 
terms. 
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Fig. 13. Correlation between power density and inlet 
temperature. 

 
 
Variations in the inlet temperature significantly 
influence the performance of an IT-SOFC 
ammonia fueled. Elevating the inlet temperature 
within the range of 610–873 K enhances the 
ammonia decomposition kinetics, promoting 
higher hydrogen yield. This increased hydrogen 
availability accelerates the electrochemical 
reactions governing proton and oxygen-ion 
formation at the electrodes, thereby amplifying 
the current density and power density of the cell. 
Furthermore, higher inlet temperatures improve 
charge transport phenomena, including ionic and 
electronic conductivity in the electrolyte and 
electrodes, 
 

while simultaneously enhancing mass transfer 
processes such as species diffusion and 
convective transport. The intensified 
electrochemical activity, however, increases 
heat generation through ohmic overpotential and 
electrochemically driven exothermic processes, 
such as hydrogen oxidation at the anode. In this 
regard, the maximum temperature of the fuel cell 
will increase.   
Fig. 14 shows the performance of the artificial 
neural network in predicting two objective 
functions: including the maximum temperature 
and power density of the fuel cell. Actual and 
predicted values are plotted on the horizontal and 
vertical axes, respectively. In this context, the 
proximity of the points to the y=x line indicates 
the appropriate performance and accuracy of the 
neural network. The optimal neural network 
structure for training and then predicting the 
performance of a fuel cell includes an identity 
activation function, a Limited Memory Broyden-
Fletcher-Goldfarb-Shano algorithm solver 
(LBFGS) and at least five intermediate hidden 
layers. Fig. 15 presents a comparison between 
predicted values of power density in thirty cases 
obtained from various machine learning 
algorithms and the actual values obtained from 
numerical simulation. The results indicate that 
the power density of a solid oxide fuel cell 
operating with ammonia fuel can be accurately 
and reasonably approximated without the need 
for numerical or laboratory solutions. 
 
 

(a) (b) 

  
Fig. 14. Accuracy and performance of DNN in predicting a) power density and b) temperature.
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Fig. 15. Comparison chart of actual power density and predicted values by a) DNN, b) RFM and c) LASSO 
regression.
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Fig. 16 illustrates the investigation and 
assessment of another objective parameter, 
namely the maximum temperature of the fuel 
cell. The precision of the machine's performance 
in forecasting the maximum temperature is  
 
 
 

notably high based on the findings. Furthermore, 
the results indicate a higher level of accuracy 
compared to the power density prediction model. 
 
 
 
 

(a) 

 

(b) 

 
 

(c) 

 

Fig. 16. Comparison chart of actual power density and predicted values by a) DNN, b) RFM and c) LASSO 
regression. 
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Table 2 displays the various errors associated 
with the algorithms used to predict power 
density and maximum temperature of the fuel 
cell. The Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), and Coefficient of 
Determination (R2) show appropriate values for 
predicting the target parameters. The RFM and 
DNN algorithms have the highest accuracy in 

predicting the maximum temperature and power 
density of fuel cell, respectively. Additionally, 
considering that the R2 value of DNN  in this 
study is more than 98%, , compared to the results 
of other similar researches such as Milewski et 
al., Su et al. and  Subotić et al. [32, 34, 39], it 
indicates the suitable performance of the 
machine in predicting the objective functions. 

 
 
Table 2. Error-values and qualitative expressions of machine learning models in predicting objective functions. 

Parameters Model RMSE_train MAE_train R2_train RMSE_test MAE_test R2_test 

Maximum temperature 
RFM 

0.000000 0.000000 1.000000 0.121286 0.088353 0.999996 

Power density 0.000000 0.000000 1.000000 0.001152 0.000722 0.980176 

Maximum temperature 
DNN 

2.613388 2.064174 0.997817 2.811718 2.156971 0.998046 

Power density 0.001351 0.001091 0.96715 0.001093 0.000867 0.982156 

Maximum temperature 

LASSO 

2.613389 2.064252 0.997817 2.812093 0.000874 0.998045 

Power density 0.002015 0.001525 0.92695 0.0018 0.000874 0.951606 

 
 
4. Conclusions 
 
In this research, firstly, a tubular solid oxide fuel 
cell with ammonia fuel at intermediate operating 
temperature is simulated using Temkin-Pyzhev 
kinetic model. Then, considering the effects of 
variations in temperature, pressure, and mole 
fraction of species on thermophysical and fluid 
characteristics of flows, as well as thermal 
sources resulting from chemical and 
electrochemical reactions, the problem is solved 
steadily. To examine the two objective 
parameters, including the maximum temperature 
and power density of the fuel cell under different 
conditions, five input variables including inlet 
temperature, porosity of the cathode and anode, 
and the velocity of air and fuel flows are 
investigated and studied. In this regard, for 601 
different modes, the finite element code is 
executed and solved by changing the input data. 
Considering the significant time cost and 
complexity of solving mass, momentum, energy, 
species and electric flux conservation equations, 
machine learning tools are used. To evaluate the 
performance of the machine in optimal and  
 

 
 
suitable prediction of the target terms, three 
algorithms including DNN, RF and Lasso 
regression are used, with implementation in the 
python programming language. The most 
important results of the current research are 
briefly stated below: 

• Numerical analysis of the fuel cell shows 
that changing the inlet temperature has the 
most significant effect on the endothermic  
reaction of ammonia decomposition and as a 
result power generation in the fuel cell. It 
was also observed that along the length of 
the fuel cell, with the ammonia 
decomposition increases, the temperature 
decreases significantly. 

• Investigating the correlation between the 
data using the Pearson Correlation 
Coefficient (P.C.C) method shows that the 
inlet temperature has the highest correlation 
with the target expressions of maximum 
temperature and fuel cell power density, 
with correlation coefficientsof 0.99 and 
0.97, respectively. 

• The most effective configuration for training 
a neural network to predict the performance 
of a fuel cell involves using the Identity 



 

 

Activation Function, Limited- Memory 
Broyden–Fletcher–Goldfarb–Shanno 
(LBFGS) algorithm as solver, and 
incorporating at least five middle hidden 
layers take place. 

• The  highest level of accuracy in predicting 
the power density of a fuel cell is achieved 
using DNN, RF and Lasso Regression 
algorithms, respectively. Also, the R2 values 
for the algorithms are 0.9822, 0.9802 and 
0.9516, respectively. Results show that 
Lasso Regression is not as accurate as the 
other two algorithms in predicting the power 
density. 

• The  highest level of accuracy in predicting 
the maximum temperature of the fuel cell is 
achieved using DNN, RF and Lasso 
Regression algorithms, respectively. Also, 
the R2 values for these three algorithms are 
0.9999, 0.9980 and 0.9980, respectively. 
The results show that the prediction of the 
maximum temperature of the fuel cell with 
three algorithms is done with appropriate 
accuracy with RF having the most proper 
performance among all three algorithms. 
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