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Mobile robots have garnered significant attention across various domains, 

including industrial automation, healthcare, logistics, and autonomous 

vehicles. However, effective navigation in dynamic and complex 

environments remains a critical challenge. This research introduces an 

improved deep Q-network algorithm for learning-based mobile robot 

navigation, addressing a multi-objective optimization problem that seeks 

to minimize path distance, energy consumption, and travel time within a 

grid-mapped complex environment. The deep Q-network algorithm was 

enhanced to improve its efficiency in determining the optimal path to a 

target point. Experimental validation using a learning robot demonstrated 

the effectiveness of the proposed approach, ensuring safe path generation 

with collision avoidance, optimized path distance, and practical 

implementability in mobile robot applications. Furthermore, training, 

simulation, and analysis results revealed less than 2% deviations between 

simulation and experimental outcomes, with a path distance error of only 

1.3765%. Finally, the proposed algorithm was benchmarked against 

existing approaches, including the A* algorithm, enhanced deep Q-

network, and dueling double deep Q-network, showcasing its superior 

performance. 
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1. Introduction  

 

Artificial intelligence technology nowadays 

utilizes learning to mobile robotics in different 

applications such as medicine, construction, 

automobile, food, fire service, underwater, etc. 

[1]. In recent years, there has been a growing use 

of artificial technology, particularly in the 

context of machine learning, classified into 

supervised learning, unsupervised learning, and 

reinforcement learning algorithms. This paper 

primarily focuses on the application of robotics 

in the automotive industry.  Autonomous mobile 

robots are employed for loading and unloading 

in various industries, while autonomous guided 

vehicles are utilized for path planning and 

navigation in diverse environmental conditions. 

These robots, designed to assist humans in 

settings such as homes or factories, face the 
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challenge of effectively and safely executing 

their tasks in these environments [2].  
Additionally, robots with human-like behavior 
in dynamic settings prove to be a different task. 
This metric holds significant importance as it 
directly influences variables such as energy 
consumption, time efficiency, and optimization 
of travel distance for multi-objective functions 
of mobile robotics [3]. Over the years, numerous 
studies have been conducted to enhance our 
understanding and improve this metric. When 
individuals operate within a specific 
environment, they instinctively choose a suitable 
course of action by subconsciously expecting 
changes in the surroundings and their subsequent 
states [4].  
This metric garnered attention in reinforcement 
learning as a technique frequently employed in 
real-world robotic applications [5]. Learning has 
long been the subject of considerable interest due 
to its ease of application in real robotics. 
Conversely, Q-learning presents certain 
challenges in that updating the Q-table 
necessitates a significant number of tables to 
effectively represent continuous states, such as 
the seamless motion of mobile robotics. 
Considering the magnitude of this, there was a 
drawback that real-time calculation cannot be 
performed [6]. Optimized path planning is found 
to be another problem that a robot does not 
manage well with changing purposes in 
reinforcement learning algorithms [7].   
As the requests made to robots diversify, the 
need to accomplish various purposes in robots 
continues to grow. In contrast, the deep Q-
network utilizes a convolutional neural network 
to calculate an estimate of the Q-value, allowing 
the acquisition of an approximate representation 
of the Q-value function. Deep Q-network 
modification of the proposed system. This paper 
proposes an algorithm that considers the 
effectiveness of incorporating deep q-network 
(DQN) into multi-objective optimization 
techniques [8].  
Kumaar et al. [9] reported that to create an 
optimization path for robotics in complex 
environments, further simulation and 
experimental validation of the proposed 
algorithm in terms of efficiency and 
effectiveness reached the target point. Zhang et 
al. [10] identified obtaining the optimal path 
planning as an improvement of the proposed 
algorithm. Xin et al. [11] proposed a path-
planning method that improves performance by 

avoiding barriers and achieving more goal 
points.  
Wu et al. [12] discussed the importance of the 
entire intended path being more efficient. In 
comparison to the deep Q-network and partially 
improved deep Q-network algorithms, the path 
length reduced by 15.6%, the cumulative 
radiation dose was reduced by 23.5%, the 
collision count reduced by 67.5%, and the 
algorithm score was improved by 717 times, 
allowing for the planning of a collision-free 
optimal path in a shorter training period.  
Hanh et al. [13] stated that ensuring the obstacle-
avoidance algorithm assists the robot in avoiding 
obstacles while remaining on the planned goal 
point. Quiroga et al. [14] deliberated the position 
of the mobile robot, obtaining the shortest time 
taken to reach the goal point in an environment 
with obstacle detection in the mobile robots. 
Song et al. [15] identified the auxiliary task of 
velocity estimation and further improved the 
implementation of learning in deep 
reinforcement learning.  
Zhu et al. [16] described deep a Q network-based 
navigation path planning. Yang [17] discussed 
collision path planning, environmental learning, 
and improving learning efficiency. Wenzel et al. 
[18] discussed the learning approach to sample 
efficiency in the training process, which is much 
faster than reaching the target point.  
The literature review highlights a significant gap 
in studies focusing on the incorporation of multi-
objective functions to enhance deep Q-networks.  
This research gap is addressed through the 
proposed approach, which effectively resolves 
learning challenges in mobile robots. The 
proposed algorithm is specifically designed to 
tackle mobile robot-related problems by 
incorporating three objective functions to 
manage multi-objective challenges.  
To validate its effectiveness, two experiments 
are conducted in a complex environment. 
Additionally, an improved deep Q-learning 
approach is implemented for obstacle avoidance, 
with simulation results analyzed at episode 
intervals of 1600, 1200, 800, and 400.  
A comparative evaluation is also performed, 

assessing the planned algorithm against existing 

approaches based on both experimental and 

simulation outcomes. The justification for using 

the proposed system lies in its ability to rapidly 

acquire knowledge about environmental 

conditions, efficiently reach target destinations, 
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determine optimal routes, and address complex 

problems.  
 

2. Proposed methodology 

2.1. Differential drive wheeled mobile robot 
 

The mobile robot used in our physical 

experiment is modeled as a differential drive 

wheeled robot, which inherently exhibits non-

holonomic constraints. These constraints mean 

that the robot cannot move sideways (i.e., it has 

restricted motion along certain directions), and 

its movement is governed by the kinematic Eq. 

(1). 

x=vcosθ, y =vsinθ, θ=ω              (1) 

where x and y are the Cartesian co-ordinates, θ 

is the heading angle, v is the linear velocity, and 

ω is the angular velocity.  

The proposed learning-based algorithm is 

specifically designed to incorporate non-

holonomic constraints by employing a discrete 

action space, such as forward, left-turn, and 

right-turn motions, that aligns with the robot’s 

kinematic model. It enables the learning of 

smooth and feasible trajectories that respect 

turning radius limitations and avoid abrupt 

changes in direction. Additionally, the algorithm 

simulates robot dynamics during training, 

allowing the reinforcement learning agent to 

implicitly learn paths that satisfy non-holonomic 

feasibility.  

As a result, the proposed algorithm is well-suited 

for non-holonomic wheeled mobile robots and is 

not restricted to a specific hardware platform. 

Furthermore, it can be adapted to other mobile 

platforms, such as car-like or skid-steer robots, 

by appropriately defining the action space and 

training environment. 

 

2.2. Deep Q-network  

 

The deep Q-network algorithm is a 

reinforcement learning method that combines Q-

learning with deep neural networks. First 

introduced by DeepMind, it has played a pivotal 

role in advancing reinforcement learning [19]. 

The component is q-learning, a model-free 

reinforcement learning algorithm that 

determines the optimal policy for a given finite 

Markov decision process [20]. Q-learning 

updates the Q-values, which represent the 

expected future rewards for state-action pairs, 

using the Bellman equation [21]. Experience 

replay is a mechanism utilized by the deep Q- 

network to enhance training stability, as shown 

in Table 1. 

 

Algorithm 1:  Deep Q-algorithm 

• Setting up the Q and target networks initially. 

• Interact with the environment using epsilon-

greedy policy (exploration and exploitation). 

• Sample and update for predicted Q-values, 

and target Q-values, and update the target 

network for the weight of the Q-network. 

 

2.3. Framework of proposed strategy  

        

As shown in Fig. 1, the framework proposed 

algorithm and its process depicted in Fig. 2, Q-

networks function as non-linear estimators, 

mapping states to action values, and the agent 

interacts with the environment to gather training 

data. Initially, the agent selects actions randomly 

but gradually relies on the approximated Q-

network, utilizing the ϵ-greedy method, which 

balances random exploration and policy-driven 

decision-making [23].  

Deep Q-learning extends Q-learning by 

incorporating components such as states, 

actions, rewards, agents, and environment 

interactions. 

 
Table 1. Comparison between deep q network and 

proposed algorithm [22]. 
DQN IDQN 

Basic deep neural 

network with a 

replay buffer 

More refined network with 

optimization (e.g., dynamic memory 

allocation) 

Double deep Q-

network mitigates 

it, but it is still 

present 

Better mechanisms to prevent 

overestimation (e.g., adaptive Q-

value updates) 

Fixed-size replay 

buffer 

Prioritized experience replays or 

improved sampling based on the 

importance 

Slower  complex 

environments 

Faster due to better exploration-

exploitation balance 

Manual tuning 

hyperparameters 

Automatic or adaptive tuning 

mechanism to optimize parameters 

like discount factor γ, learning rate β, 

and θ 

Basic deep neural 

network with a 

replay buffer 

More refined network with 

optimization (e.g., dynamic memory 

allocation) 
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Fig. 1. Framework of the proposed algorithm. 

 
Fig. 2. Step-by-step process of the proposed system. 

 

In complex environments, a mobile robot aims 

to reach its goal using nonlinear functions Q(St, 

At, θ), where the initial state (St) transitions to the 

next state (St+1), and actions (At) evolve 

accordingly [24]. The reward (R) and discount 

factor (γ) contribute to the learning process, with 

the deep Q-learning algorithm incorporated into 

the loss function F(θt), minimizing the squared 

difference between the goal value (θt+1) and the 

predicted value (θt) [25], as expressed in the 

following  Eq. (2).   
 

F(θt)=[R+γmaxAt+1 Q(St+1,At+1;Qt+1)-Q(St,At;θt)]2  (2) 
 

Formulation of the proposed algorithm improved 

deep q-network (IDQN): 

The developed is an enhancement over the 

traditional DQN, aiming to improve 

convergence stability and adaptability in 

dynamic environments. In the standard DQN, 

the q-value is updated using the following rule, 

Eq. (3):   

𝑄 (𝑆𝑡 , 𝐴𝑡) ← 𝑄 (𝑆𝑡 , 𝐴𝑡) + 𝛼 [𝑅𝑡 +

𝛾 max 𝑄 (𝑆𝑡 , 𝐴′) − 𝑄 (𝑆𝑡 , 𝐴𝑡)]                   (3) 
 

Double deep Q-network is given below, Eq. (4).  
  

Q (St, At) ← Q (St, At) + α [Rt +

γQ (St+1, arg max Q (St+1, A′; θ); θ′]         (4) 
 

In contrast, the IDQN modifies this with 

adaptive reward shaping, a dynamic learning 

rate, and noise-aware exploration. The updated 

formulation becomes Eq. (5).   
 

𝑄𝐼𝐷𝑄𝑁  (𝑆𝑡 , 𝐴𝑡) ← 𝑄 (𝑆𝑡 , 𝐴𝑡) + 𝛼𝑡  [𝑅̂𝑡 +

𝛾 max 𝑄  (𝑆𝑡+1, 𝐴′) − 𝑄 (𝑆𝑡 , 𝐴𝑡)]               (5) 
 

where 𝑅̂𝑡 = Rt + λ.f (St, At) is a shaped reward 

incorporating an auxiliary function f, αt is a 

time-varying learning rate adapting to 

reward variance, and λ is a tunable weight 

for reward shaping. For policy improvement, 

instead of the ε-greedy strategy used in 

DQN, IDQN introduces a decaying 

Gaussian noise model to encourage 

exploration in early stages and gradually 

shift to exploitation. The action selection is 

defined as below, Eq. (6):  
 

𝐴𝑡 = arg max 𝑄 (𝑆𝑡 , 𝐴) + 𝑁 (0, 𝜎𝑡
2)          (6) 

 

where σt decays over time, reducing exploration 

as the agent learns. The reward function in IDQN 

is also redesigned to be context aware, 

considering task-specific factors such as distance 

to goal, collision penalty, and path smoothness, 

Eq. (7).   
 

𝑅𝑡 =  𝑅𝑔𝑜𝑎𝑙 −  𝛽1. 𝑑𝑡 − 𝛽2. 𝑐𝑡 + 𝛽3. 𝑠𝑡           (7) 
 

where dt, ct, and st represent the distance to the 

goal, collision penalty, and smoothness score, 

respectively, with β1, β2, and β3 being their 

respective weights.  

Differences from existing methods are 

summarized as follows: DQN and dueling 

double deep q-network (D3QN) use fixed 

learning rates and ε-greedy strategies, while 

IDQN employs adaptive learning rates and 

Gaussian noise for exploration. DQN lacks 

reward shaping, and D3QN introduces dueling 

networks for value/advantage separation. In 

contrast, IDQN incorporates task-aware 

auxiliary shaping to boost learning in complex 

scenarios. As a result, IDQN shows faster 

convergence and reduced performance variance 

due to its adaptive mechanisms. 
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Algorithm 2: Improved deep Q-network learning 

• Initial replay buffer memory D to  capacity N. 

• Initial action-based value function Q with 

goal value (θt+1). 

• Selecting an action can be an approach. In 

this approach, an action is chosen with the 

probability ϵ, whereby a random action, 

denoted as A, is selected. Conversely, with a 

probability of 1 − ϵ, an action that possesses 

the highest q-value is chosen. 

• Next, selected to action A, the agent achieves 

the chosen action in a state S to move to the 

next state St+1, and obtain reward R. 

• Replay buffers should store transitions as (St, 

At, R, St+1). 

• Next, choose random transition samples from 

the replay buffer and use the algorithm to 

determine the loss in Eq. (2). 

• To reduce this loss, apply gradient descent to 

the real network parameters.  

• Copy our actual network weights to the goal 

network weights after each k step. Continue 

in the same way for M episodes. 

The proposed method is based on reinforcement 

learning using the improved deep Q-network 

(IDQN), enabling the robot to learn from 

interactions with a dynamic environment. To 

handle moving obstacles, the agent was trained 

in environments where obstacles change 

positions during each episode. The state input 

includes the robot’s position, goal, and real-time 

obstacle locations, allowing the agent to learn 

adaptive responses to dynamic hazards.  

Unlike traditional static-map methods such as 

A* or standard DQNs, our approach adjusts 

paths in real time to avoid collisions. 

Simulations showed successful re-routing and 

collision avoidance in dynamic scenarios. This 

confirms that our method supports moving 

obstacles. Validation through additional 

experiments shows strong adaptability and 

robustness, making it ideal for real-world use 

cases like autonomous navigation in crowds or 

warehouses. 
 

2.4. Multi-objective functions 

2.4.1. Path distance 
 

Minimizing the total distance encourages the 

robot to take the shortest path, which often also 

contributes to reduced time and energy as 

follows, Eq. (8): 
 

min 𝐷 = ∑ || 𝑝𝑡
𝑁
𝑡=1 −  𝑝𝑡−1||          (8) 

 

where D is the total path length, pt is the position 

of the robot at time t, and N is the total steps in 

the episode. 

 

2.4.2. Energy consumption 

 

This objective promotes energy-efficient paths, 

reducing battery consumption and prolonging 

robot operation, which is important for battery-

operated or autonomous systems as below, Eq. 

(9): 
 

𝑚𝑖𝑛 𝐸 =  ∑ 𝑝𝑡
𝑁
𝑡=1 . ∆𝑡𝑡                 (9) 

 

where E is the total energy consumption, pt is the 

power consumed at time t, Δtt is the time 

duration for step t, and power may be determined 

as follows, Eq. (10): 
 

𝑝𝑡 =  𝛼 . 𝑣𝑡
2 +  𝛽. 𝑎𝑡

2          (10) 

 

where vt is the velocity at time t, at is the 

acceleration at time t, α, and β is an energy model 

constant based on motor/ load characteristics. 

2.4.3. Travel time  

 

This objective minimizes the total time required 

for the robot to reach its goal. In many real-world 

applications, such as delivery or rescue, faster 

task completion is critical, as shown in Eq. (11). 

 

min  𝑇 =  ∑ ∆𝑡𝑡
𝑁
𝑡=1                    (11) 

 

where T is the total travel time, Δtt is the time 

duration taken to move from step t-1 to step t, 

and N is the total number of steps in the episode.  

 

 3. Results and discussion 
 

The proposed algorithm training episodes, such 

as 1600, 1200, 800, and 400 are measured in the 

simulation, training, and analysis results. 

 

3.1. Simulation results 

 
Programming language: Python 3.2. Libraries: 
Jupiter (for deep learning), NumPy, Matplotlib. 
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Hardware: Simulations run on NVIDIA GPU 
(e.g., RTX 3060). Random seed: Fixed seed 
value used for all experiments for 
reproducibility. Table 2 provides simulation 
setup and environmental parameters. 

Calculation and formulation methods:  

(a) A* algorithm is given as below, Eq. (12): 
 

f(n) = g (n) + h (n)                     (12) 
 

where g(n) is the actual cost from start to node n, 
and h(n) is the heuristic.  
(b) DQN/IDQN formulation: State (S), the robot 
grid position and nearby obstacles, action (a) 
(up, down, left, right), and reward (R) as below, 
Eq. (13): 
 

 +10 for reaching the goal 

R =   -10 for hitting an obstacle        (13) 
               -0.1 for each step taken  

 
Simulation approach steps: 

1. Define the environment (20×20 and 30×30 
grid) 
2. Initialize obstacles randomly or predefined 
3. Train RL agents IDQN) over episodes (e.g., 
1000+) 
4. Save the best-performing policy 
5. Execute path planning using each method 
6. Visualize the paths (using Python) 
In training experiment 1, Table 3 details the deep 
Q-network parameters. Figs. 3 and 4 illustrate 
the training process, where the initial learning 
value is based on observed behaviors, with 
results showing convergence to the minimum 
number of steps. Transitions are analyzed using 
two techniques. However, reinforcement 
learning exhibits more randomness compared to 
the proposed strategy due to its fixed exploration 
ratio, whereas the proposed algorithm gradually 
reduces exploration to zero. This confirms that 
behavior is influenced by the exploration 
strategy. 
The training performance of reinforcement 
learning agents uses episode rewards over time. 
The x-axis denotes episode numbers, while the 
y-axis represents cumulative rewards. In both 
graphs, blue lines indicate raw episode rewards 
with high variability, light blue lines mention the 
individual episode reward value, while the 
orange curve represents a smoothed average 
reward, showing overall learning progress.  
 

Table 2. Simulation setup and environment 

parameters. 

Parameter Values / Description 

Environment 2D Grid World (static or dynamic) 

Grid size 20 × 20, 30 × 30 

Obstacle types 
Static and randomly moving 

obstacles 

Robot type 
Differential drive (non-holonomic 

constraints) 

Goal position 
Fixed / Randomized in some 

scenarios 

Action space 
{Up, down, left, right, stay} or 

discrete angles 

Reward at goal +100 

Collision penalty -50 

Episodes 1600 

Max steps per episode 200 

Batch size 64 

Replay buffer size 10,000 

Target update 

frequency 
Every 100 episodes 

Noise parameters (σ₀) (1.0, 0.001) 

Collision penalty -50 

Step penalty -1 (to encourage shorter paths) 

 

Table 3. Properties of the proposed system. 

Properties Values 

Learning rate 0.001 

Discount factor 0.99 

Epsilon delay 0.005 

Minimum epsilon 0.01 

Optimizer Adam 

Gradient decay 0.9 

Initial epsilon 1.0 

 

 
Fig. 3. Training for 1600 episodes. 
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Fig. 4. Training for 1200 episodes. 

 

The average reward steadily improves, despite 

persistent variance, indicating effective learning 

under dynamic or exploratory conditions.  

Similar trends up to 1200 episodes, but with the 

average reward after episode 800, suggesting 

convergence. Both plots confirm that the agent is 

learning; further tuning could improve reward 

stability and final performance. 

In training experiment 2, the analysis of the 

proposed training algorithm is presented. Fig. 5 

shows the training performance of an RL agent 

over 800 episodes. The episode reward 

fluctuates widely due to exploration and a 

potentially dynamic environment. Despite this, 

the average reward (orange line) increases 

steadily, indicating that the agent is learning and 

refining its policy. The high variance suggests 

the need for further stability, but overall, the 

learning trend is positive and effective, likely 

using a standard or improved DQN variant. 

Fig. 6 illustrates the learning performance of a 

reinforcement learning (RL) agent over 400 

episodes. Initially, rewards are low and highly 

variable due to exploration. After episode 100, 

both peak and average rewards improve steadily, 

indicating the agent is learning an effective 

policy. The orange line, representing the moving 

average, rises consistently, confirming positive 

convergence. 

Despite some fluctuation in later episodes, the 

agent adapts well to the environment. This trend 

aligns with the behavior of a well-tuned IDQN 

algorithm in a moderately complex environment 

(Tables 4 and  5). Summarizing the results shows 

an average reward of 152.8 and an average of 

155.2 steps. 

Fig. 7 illustrates the simulation, where the x-axis 

value is 10, and the y-axis cumulative reward is 

120. Each blue bar represents the episode reward 

for a specific simulation, with the height 

indicating the reward magnitude. The chart 

includes horizontal dashed lines to denote the 

mean and standard deviation, providing insight 

into the overall performance and variability of 

the simulations. Notably, simulation 6 achieved 

the highest reward, exceeding 100, while 

simulations 3, 4, and 7 recorded the lowest 

rewards, close to or below 10. Simulations 2, 6, 

and 9 performed above the mean, indicating 

better outcomes in those trials. 

The inclusion of the mean and standard deviation 

highlights the consistency and spread of the data, 

which is essential for evaluating the stability and 

reliability of the learning model used in the 

simulations. 

As shown in Fig. 8, it illustrates a 20 × 20 grid-

based environment designed for mobile robot 

navigation and path planning. The structured 

grid, with both the x-axis and y-axis labeled from 

0 to 20, includes obstacles (black squares), a start 

point (green dot), a goal point (red dot), and a 

computed path (blue dashed line). The random 

distribution of obstacles creates a challenging 

terrain for efficient path planning. A legend in 

the upper right corner enhances clarity. 

The computed path navigates around obstacles, 

suggesting the application of a path-planning 

algorithm such as A*, enhanced deep q-network 

(EDQN), D3QN, and IDQN. 

 

 
Fig. 5. Training for 800 episodes. 

 

 
Fig. 6. Training for 400 episodes. 
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The smooth trajectory of the path implies the use 

of a post-processing technique, like a smoothing 

algorithm, to optimize the final route. 

As shown in Fig. 9, it presents a 30 × 30 grid-

based environment designed for navigation. A 

total of 100 obstacles (black squares) create a 

challenging terrain for the navigation algorithm.  

The start position is near the top-left corner (0,0), 

while the goal is near the bottom-right corner 

(28,28). This blue line indicates the robot's 

movement, avoiding obstacles to reach the target 

point.  

The computed path efficiently navigates around 

obstacles, suggesting the use of an advanced 

path-planning algorithm such as A*, EDQN, 

D3QN, and the proposed algorithm. The smooth 

curvature of the path indicates the application of 

path-smoothing techniques to minimize abrupt 

turns and improve efficiency. 

Table 6 Comparison of the proposed and another 

existing algorithm, based on travel distance 

(cm), travel time (sec), and training duration 

(sec). Three algorithms already exist [26]. 
 

Table 4. Number of episode values for the proposed 

algorithm. 

Properties 
Episodes 

1600 1200 800 400 

Episode reward 35 118 117 200 

Episode steps 41 124 123 200 

Total agent steps 2688 1848 1192 3628 

Average reward 56.4 132.6 139.8 152 

Average steps 62.4 138.6 145.8 155 

Episode initial Q value 87.9 81.62 68.98 30 

 

Table 5. Analysis results. 

Layer Activation Output Learnable 

Linear Feature input 4 - 

Layer Fully connected 348 
348 × 4 

(weights) 

Dense Relu 348 - 

Layer Fully connected 348 
348 × 348 

(weights) 

Dense Relu 348 - 

Layer Fully connected 2 
2 × 348 

(weights) 

 
Fig. 7. Simulation results. 

 

 
Fig. 8. Robot navigation environment 1 (20 × 20 grid 

with 50 obstacles). 

 

 
Fig. 9. Robot navigation environment 2 (30 × 30 grid 

with 100 obstacles). 
 

A*, a conventional graph-based search method, 
does not require training but results in a travel 
distance of 30.9 cm and a travel time of 11 sec, 
making it the least efficient. EDQN enhances 
traditional DQN by incorporating reinforcement 
learning for decision-making.  
It achieves a shorter travel distance of 29.59 cm 
and a reduced travel time of 9 sec but requires 
1657 sec of training [27]. D3QN records a travel 
distance of 30.38 cm, a travel time of 12 sec, and 
a training duration of 1211 sec [28], showing 
slightly lower efficiency compared to EDQN 
and IDQN. Further optimizes IDQN, achieving 
the shortest travel distance (28.14 cm) and the 
fastest travel time (8 sec). Additionally, it 
reduces the training duration to 1600 sec.  
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Table 6. Comparison proposed method and another 

existing algorithm. 

Algorithm 
Travel distance 

(cm) 

Travel time 

(sec) 

Training duration 

(sec) 

A* [26] 30.9 11 - 

EDQN 

[27] 
29.59 09 1657 

D3QN [28] 30.38 12 1211 

IDQN 28.14 08 1600 

 

Additional simulation scenarios to evaluate the 

performance of the proposed method in static 

environments with varying obstacle densities. 

These scenarios more accurately reflect real-

world challenges, enabling the assessment of the 

robustness and adaptability of the proposed 

IDQN algorithm. To further support the 

evaluation, we included behavioural analysis by 

visualizing the path trajectories generated by A*, 

DQN, and IDQN in grid-based environments. 

These figures demonstrate how each method 

navigates obstacles and highlight differences in 

path efficiency, smoothness, and safety.  

The proposed method consistently produces 

shorter and smoother paths, especially in 

complex or dynamic settings. We also extended 

the result analysis beyond average values to 

include success rate, reward variance, collision 

count, and policy stability. These insights reveal 

that, unlike A*, which is limited to static 

conditions, IDQN adapts to environmental 

changes and continues to improve its policy. 

Overall, the enhanced analysis and visual 

comparisons demonstrate the practical 

advantages of the proposed method over 

classical approaches. 

The D3QN algorithm typically requires around 

400 sec of training duration, resulting in a 2-cm 

and 4-sec reduction in travel distance and travel 

time, respectively, due to its deeper architecture 

and improved network stability compared to the 

standard DQN. This training time is comparable 

to, or slightly less than, that required by the 

proposed method. In terms of performance, 

D3QN achieves moderate improvements over 

DQN, offering better policy efficiency and 

robustness. These gains, while not as significant 

as those achieved by more advanced approaches 

like IDQN, are still meaningful when compared 

to traditional methods.  

Unlike learning-based algorithms, A* does not 

require any training time and generates fixed, 

deterministic paths based on static maps, making 

it unsuitable for explaining the 400-sec training 

period. On the other hand, while DQN requires 

less training time than D3QN, it typically 

exhibits lower performance, particularly in 

complex or dynamic environments. Therefore, 

the observed training and performance metrics 

most closely align with D3QN as the existing 

baseline algorithm. 
 

3.2. Performance analysis 
 

The performance analysis has been extended to 

include main evaluation metrics such as success 

rate, average path length, computational time, 

and obstacle avoidance efficiency. A 

comparative study was conducted between the 

proposed algorithm and existing methods, 

including A*, EDQN, IDQN, and D3QN. The 

results are summarized as follows in Table 7. 
 

3.3. Experimental results and discussion 
 

In environment result 1, the robot successfully 

navigated from start to goal within 16 sec, while 

in environment result 2, the task was completed 

in 17 sec. A comparison of simulation and 

experimental results is provided. Figs. 10 and 11 

illustrate two environmental results used to 

validate the robot’s ability to reach its goal 

efficiently. These results confirm that the 

proposed algorithm effectively and efficiently 

achieved the three objective functions, 

demonstrating its success in optimizing path 

planning, travel time, and navigation efficiency.  

Experimental results indicate that our approach 

surpasses the method in terms of localization 

accuracy, achieving higher precision in complex 

environments. As shown in Table 8, there is a 

path distance error of 1.3765% and a travel time 

deviation of 2%. 

Three objective functions, such as energy 

consumption, minimum path distance, and travel 

time, along with their normalized objective 

values [27]. These objectives are plotted on a 

normalized scale from 0 to 1, representing the 

level of optimization for each function. 
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Table 7. Performance metrics analysis. 

Algorithm 
Success 

rate (%) 

Path 

length 

(cm) 

Computational 

time (sec) 

Obstacle 

avoidance 

(%) 

A* 85.4 17.9 0.72 82.0 

EDQN 91.3 16.3 0.65 88.9 

D3QN 92.1 15.9 0.51 93.2 

IDQN 94.7 15.8 0.58 91.4 

 

 
(All dimensions are in cm). 

Fig. 10. Experimental result for environment 1. 
 

 
(All dimensions are in cm). 

Fig. 11. Experimental result for environment 2. 

 

 
Fig. 12. Multi-objective functions. 

 

Table 8. Comparison between simulation and 

experimental results.  

Environments 1 2 

Simulation distance (cm) 3.10 3.24 

Experimental distance (cm) 3.13 3.27 

Error (%) 1.42 1.33 

Simulation time (sec) 13 16 

Experimental time (sec) 16 17 

Deviation +3 +1 

 

Fig. 12, each axis corresponds to a different 

objective: energy consumption (top-left), 

minimum path distance (right), and travel time 

(bottom-left). The chart consists of concentric 

circles, where 0 represents the worst 

performance (highest value), and 1 represents 

the best performance (lowest value) for each 

objective. A blue polygon in the shaded area 

illustrates the actual performance across the 

three objectives, with closer proximity to the 

outer ring (1.0) indicating better optimization. 
 

4. Conclusions  

 

The proposed method employed the IDQN 

algorithm, focusing on three main objective 

functions: minimum path distance, energy 

consumption, and minimum travel time. The 

proposed algorithm demonstrated its efficiency 

by finding the most optimal path to the target.  

Consequently, the simulation paths in the 

proposed algorithm were found to be 

satisfactory, with a deviation of less than 2% 

between the simulation and experiment. The 

error value was calculated to be 1.3765%. The 

proposed strategy emerges as the most efficient 

algorithm, achieving the shortest path and fastest 

travel time with a slightly lower training 

requirement than EDQN. While A* requires no 

training, its longer travel distance and time make 

it less effective.  

The results demonstrate that reinforcement 

learning algorithm-based approaches (EDQN, 

D3QN, and IDQN) outperform traditional 

algorithms like A* in dynamic or complex 

environments. Improving the DQN algorithm, 

performance, and overall efficiency is better than 

other existing algorithms. In future work, the 
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multi-objective function will be enhanced, and 

multiple mobile robots will be employed across 

various applications, including the food industry, 

military, space exploration, medical field, 

automotive industry, etc. 
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