
273

J. Comp. App. Res. Mech. Eng. Vol. 14. No. 2, pp. 273-284, 2025 DOI:10.22061/jcarme.2025.11712.2562

Research paper

An experimental and simulation analysis of multi-objective techniques

for mobile robots using improved deep Q-network algorithm

Vengatesan Arumugam and Vasudevan Alagumalai*

Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai-602105, Tamil

Nadu, India

Article info:

Mobile robots have garnered significant attention across various domains,

including industrial automation, healthcare, logistics, and autonomous

vehicles. However, effective navigation in dynamic and complex

environments remains a critical challenge. This research introduces an

improved deep Q-network algorithm for learning-based mobile robot

navigation, addressing a multi-objective optimization problem that seeks

to minimize path distance, energy consumption, and travel time within a

grid-mapped complex environment. The deep Q-network algorithm was

enhanced to improve its efficiency in determining the optimal path to a

target point. Experimental validation using a learning robot demonstrated

the effectiveness of the proposed approach, ensuring safe path generation

with collision avoidance, optimized path distance, and practical

implementability in mobile robot applications. Furthermore, training,

simulation, and analysis results revealed less than 2% deviations between

simulation and experimental outcomes, with a path distance error of only

1.3765%. Finally, the proposed algorithm was benchmarked against

existing approaches, including the A* algorithm, enhanced deep Q-

network, and dueling double deep Q-network, showcasing its superior

performance.

Abstract

Article history:

Received: 31/01/2025

Revised: 08/08/2025

Accepted: 10/08/2025

Online: 12/08/2025

Keywords:

Learning mobile robots,

Multi-objective functions,

Deep Q-network,

Obstacle avoidance.

*Corresponding author:

vasudevana.sse@saveetha.com

1. Introduction

Artificial intelligence technology nowadays

utilizes learning to mobile robotics in different

applications such as medicine, construction,

automobile, food, fire service, underwater, etc.

[1]. In recent years, there has been a growing use

of artificial technology, particularly in the

context of machine learning, classified into

supervised learning, unsupervised learning, and

reinforcement learning algorithms. This paper

primarily focuses on the application of robotics

in the automotive industry. Autonomous mobile

robots are employed for loading and unloading

in various industries, while autonomous guided

vehicles are utilized for path planning and

navigation in diverse environmental conditions.

These robots, designed to assist humans in

settings such as homes or factories, face the

https://doi.org/10.22061/jcarme.2025.11712.2562

JCARME Vengatesan Arumugam, et al. Vol. 14, No. 2

274

challenge of effectively and safely executing

their tasks in these environments [2].
Additionally, robots with human-like behavior
in dynamic settings prove to be a different task.
This metric holds significant importance as it
directly influences variables such as energy
consumption, time efficiency, and optimization
of travel distance for multi-objective functions
of mobile robotics [3]. Over the years, numerous
studies have been conducted to enhance our
understanding and improve this metric. When
individuals operate within a specific
environment, they instinctively choose a suitable
course of action by subconsciously expecting
changes in the surroundings and their subsequent
states [4].
This metric garnered attention in reinforcement
learning as a technique frequently employed in
real-world robotic applications [5]. Learning has
long been the subject of considerable interest due
to its ease of application in real robotics.
Conversely, Q-learning presents certain
challenges in that updating the Q-table
necessitates a significant number of tables to
effectively represent continuous states, such as
the seamless motion of mobile robotics.
Considering the magnitude of this, there was a
drawback that real-time calculation cannot be
performed [6]. Optimized path planning is found
to be another problem that a robot does not
manage well with changing purposes in
reinforcement learning algorithms [7].
As the requests made to robots diversify, the
need to accomplish various purposes in robots
continues to grow. In contrast, the deep Q-
network utilizes a convolutional neural network
to calculate an estimate of the Q-value, allowing
the acquisition of an approximate representation
of the Q-value function. Deep Q-network
modification of the proposed system. This paper
proposes an algorithm that considers the
effectiveness of incorporating deep q-network
(DQN) into multi-objective optimization
techniques [8].
Kumaar et al. [9] reported that to create an
optimization path for robotics in complex
environments, further simulation and
experimental validation of the proposed
algorithm in terms of efficiency and
effectiveness reached the target point. Zhang et
al. [10] identified obtaining the optimal path
planning as an improvement of the proposed
algorithm. Xin et al. [11] proposed a path-
planning method that improves performance by

avoiding barriers and achieving more goal
points.
Wu et al. [12] discussed the importance of the
entire intended path being more efficient. In
comparison to the deep Q-network and partially
improved deep Q-network algorithms, the path
length reduced by 15.6%, the cumulative
radiation dose was reduced by 23.5%, the
collision count reduced by 67.5%, and the
algorithm score was improved by 717 times,
allowing for the planning of a collision-free
optimal path in a shorter training period.
Hanh et al. [13] stated that ensuring the obstacle-
avoidance algorithm assists the robot in avoiding
obstacles while remaining on the planned goal
point. Quiroga et al. [14] deliberated the position
of the mobile robot, obtaining the shortest time
taken to reach the goal point in an environment
with obstacle detection in the mobile robots.
Song et al. [15] identified the auxiliary task of
velocity estimation and further improved the
implementation of learning in deep
reinforcement learning.
Zhu et al. [16] described deep a Q network-based
navigation path planning. Yang [17] discussed
collision path planning, environmental learning,
and improving learning efficiency. Wenzel et al.
[18] discussed the learning approach to sample
efficiency in the training process, which is much
faster than reaching the target point.
The literature review highlights a significant gap
in studies focusing on the incorporation of multi-
objective functions to enhance deep Q-networks.
This research gap is addressed through the
proposed approach, which effectively resolves
learning challenges in mobile robots. The
proposed algorithm is specifically designed to
tackle mobile robot-related problems by
incorporating three objective functions to
manage multi-objective challenges.
To validate its effectiveness, two experiments
are conducted in a complex environment.
Additionally, an improved deep Q-learning
approach is implemented for obstacle avoidance,
with simulation results analyzed at episode
intervals of 1600, 1200, 800, and 400.
A comparative evaluation is also performed,

assessing the planned algorithm against existing

approaches based on both experimental and

simulation outcomes. The justification for using

the proposed system lies in its ability to rapidly

acquire knowledge about environmental

conditions, efficiently reach target destinations,

JCARME An experimental and simulation . . . Vol. 14, No. 2

275

determine optimal routes, and address complex

problems.

2. Proposed methodology

2.1. Differential drive wheeled mobile robot

The mobile robot used in our physical

experiment is modeled as a differential drive

wheeled robot, which inherently exhibits non-

holonomic constraints. These constraints mean

that the robot cannot move sideways (i.e., it has

restricted motion along certain directions), and

its movement is governed by the kinematic Eq.

(1).

x=vcosθ, y =vsinθ, θ=ω (1)

where x and y are the Cartesian co-ordinates, θ

is the heading angle, v is the linear velocity, and

ω is the angular velocity.

The proposed learning-based algorithm is

specifically designed to incorporate non-

holonomic constraints by employing a discrete

action space, such as forward, left-turn, and

right-turn motions, that aligns with the robot’s

kinematic model. It enables the learning of

smooth and feasible trajectories that respect

turning radius limitations and avoid abrupt

changes in direction. Additionally, the algorithm

simulates robot dynamics during training,

allowing the reinforcement learning agent to

implicitly learn paths that satisfy non-holonomic

feasibility.

As a result, the proposed algorithm is well-suited

for non-holonomic wheeled mobile robots and is

not restricted to a specific hardware platform.

Furthermore, it can be adapted to other mobile

platforms, such as car-like or skid-steer robots,

by appropriately defining the action space and

training environment.

2.2. Deep Q-network

The deep Q-network algorithm is a

reinforcement learning method that combines Q-

learning with deep neural networks. First

introduced by DeepMind, it has played a pivotal

role in advancing reinforcement learning [19].

The component is q-learning, a model-free

reinforcement learning algorithm that

determines the optimal policy for a given finite

Markov decision process [20]. Q-learning

updates the Q-values, which represent the

expected future rewards for state-action pairs,

using the Bellman equation [21]. Experience

replay is a mechanism utilized by the deep Q-

network to enhance training stability, as shown

in Table 1.

Algorithm 1: Deep Q-algorithm

• Setting up the Q and target networks initially.

• Interact with the environment using epsilon-

greedy policy (exploration and exploitation).

• Sample and update for predicted Q-values,

and target Q-values, and update the target

network for the weight of the Q-network.

2.3. Framework of proposed strategy

As shown in Fig. 1, the framework proposed

algorithm and its process depicted in Fig. 2, Q-

networks function as non-linear estimators,

mapping states to action values, and the agent

interacts with the environment to gather training

data. Initially, the agent selects actions randomly

but gradually relies on the approximated Q-

network, utilizing the ϵ-greedy method, which

balances random exploration and policy-driven

decision-making [23].

Deep Q-learning extends Q-learning by

incorporating components such as states,

actions, rewards, agents, and environment

interactions.

Table 1. Comparison between deep q network and

proposed algorithm [22].
DQN IDQN

Basic deep neural

network with a

replay buffer

More refined network with

optimization (e.g., dynamic memory

allocation)

Double deep Q-

network mitigates

it, but it is still

present

Better mechanisms to prevent

overestimation (e.g., adaptive Q-

value updates)

Fixed-size replay

buffer

Prioritized experience replays or

improved sampling based on the

importance

Slower complex

environments

Faster due to better exploration-

exploitation balance

Manual tuning

hyperparameters

Automatic or adaptive tuning

mechanism to optimize parameters

like discount factor γ, learning rate β,

and θ

Basic deep neural

network with a

replay buffer

More refined network with

optimization (e.g., dynamic memory

allocation)

JCARME Vengatesan Arumugam, et al. Vol. 14, No. 2

276

Fig. 1. Framework of the proposed algorithm.

Fig. 2. Step-by-step process of the proposed system.

In complex environments, a mobile robot aims

to reach its goal using nonlinear functions Q(St,

At, θ), where the initial state (St) transitions to the

next state (St+1), and actions (At) evolve

accordingly [24]. The reward (R) and discount

factor (γ) contribute to the learning process, with

the deep Q-learning algorithm incorporated into

the loss function F(θt), minimizing the squared

difference between the goal value (θt+1) and the

predicted value (θt) [25], as expressed in the

following Eq. (2).

F(θt)=[R+γmaxAt+1 Q(St+1,At+1;Qt+1)-Q(St,At;θt)]2 (2)

Formulation of the proposed algorithm improved

deep q-network (IDQN):

The developed is an enhancement over the

traditional DQN, aiming to improve

convergence stability and adaptability in

dynamic environments. In the standard DQN,

the q-value is updated using the following rule,

Eq. (3):

𝑄 (𝑆𝑡 , 𝐴𝑡) ← 𝑄 (𝑆𝑡 , 𝐴𝑡) + 𝛼 [𝑅𝑡 +

𝛾 max 𝑄 (𝑆𝑡 , 𝐴′) − 𝑄 (𝑆𝑡 , 𝐴𝑡)] (3)

Double deep Q-network is given below, Eq. (4).

Q (St, At) ← Q (St, At) + α [Rt +

γQ (St+1, arg max Q (St+1, A′; θ); θ′] (4)

In contrast, the IDQN modifies this with

adaptive reward shaping, a dynamic learning

rate, and noise-aware exploration. The updated

formulation becomes Eq. (5).

𝑄𝐼𝐷𝑄𝑁 (𝑆𝑡 , 𝐴𝑡) ← 𝑄 (𝑆𝑡 , 𝐴𝑡) + 𝛼𝑡 [𝑅̂𝑡 +

𝛾 max 𝑄 (𝑆𝑡+1, 𝐴′) − 𝑄 (𝑆𝑡 , 𝐴𝑡)] (5)

where 𝑅̂𝑡 = Rt + λ.f (St, At) is a shaped reward

incorporating an auxiliary function f, αt is a

time-varying learning rate adapting to

reward variance, and λ is a tunable weight

for reward shaping. For policy improvement,

instead of the ε-greedy strategy used in

DQN, IDQN introduces a decaying

Gaussian noise model to encourage

exploration in early stages and gradually

shift to exploitation. The action selection is

defined as below, Eq. (6):

𝐴𝑡 = arg max 𝑄 (𝑆𝑡 , 𝐴) + 𝑁 (0, 𝜎𝑡
2) (6)

where σt decays over time, reducing exploration

as the agent learns. The reward function in IDQN

is also redesigned to be context aware,

considering task-specific factors such as distance

to goal, collision penalty, and path smoothness,

Eq. (7).

𝑅𝑡 = 𝑅𝑔𝑜𝑎𝑙 − 𝛽1. 𝑑𝑡 − 𝛽2. 𝑐𝑡 + 𝛽3. 𝑠𝑡 (7)

where dt, ct, and st represent the distance to the

goal, collision penalty, and smoothness score,

respectively, with β1, β2, and β3 being their

respective weights.

Differences from existing methods are

summarized as follows: DQN and dueling

double deep q-network (D3QN) use fixed

learning rates and ε-greedy strategies, while

IDQN employs adaptive learning rates and

Gaussian noise for exploration. DQN lacks

reward shaping, and D3QN introduces dueling

networks for value/advantage separation. In

contrast, IDQN incorporates task-aware

auxiliary shaping to boost learning in complex

scenarios. As a result, IDQN shows faster

convergence and reduced performance variance

due to its adaptive mechanisms.

JCARME An experimental and simulation . . . Vol. 14, No. 2

277

Algorithm 2: Improved deep Q-network learning

• Initial replay buffer memory D to capacity N.

• Initial action-based value function Q with

goal value (θt+1).

• Selecting an action can be an approach. In

this approach, an action is chosen with the

probability ϵ, whereby a random action,

denoted as A, is selected. Conversely, with a

probability of 1 − ϵ, an action that possesses

the highest q-value is chosen.

• Next, selected to action A, the agent achieves

the chosen action in a state S to move to the

next state St+1, and obtain reward R.

• Replay buffers should store transitions as (St,

At, R, St+1).

• Next, choose random transition samples from

the replay buffer and use the algorithm to

determine the loss in Eq. (2).

• To reduce this loss, apply gradient descent to

the real network parameters.

• Copy our actual network weights to the goal

network weights after each k step. Continue

in the same way for M episodes.

The proposed method is based on reinforcement

learning using the improved deep Q-network

(IDQN), enabling the robot to learn from

interactions with a dynamic environment. To

handle moving obstacles, the agent was trained

in environments where obstacles change

positions during each episode. The state input

includes the robot’s position, goal, and real-time

obstacle locations, allowing the agent to learn

adaptive responses to dynamic hazards.

Unlike traditional static-map methods such as

A* or standard DQNs, our approach adjusts

paths in real time to avoid collisions.

Simulations showed successful re-routing and

collision avoidance in dynamic scenarios. This

confirms that our method supports moving

obstacles. Validation through additional

experiments shows strong adaptability and

robustness, making it ideal for real-world use

cases like autonomous navigation in crowds or

warehouses.

2.4. Multi-objective functions

2.4.1. Path distance

Minimizing the total distance encourages the

robot to take the shortest path, which often also

contributes to reduced time and energy as

follows, Eq. (8):

min 𝐷 = ∑ || 𝑝𝑡
𝑁
𝑡=1 − 𝑝𝑡−1|| (8)

where D is the total path length, pt is the position

of the robot at time t, and N is the total steps in

the episode.

2.4.2. Energy consumption

This objective promotes energy-efficient paths,

reducing battery consumption and prolonging

robot operation, which is important for battery-

operated or autonomous systems as below, Eq.

(9):

𝑚𝑖𝑛 𝐸 = ∑ 𝑝𝑡
𝑁
𝑡=1 . ∆𝑡𝑡 (9)

where E is the total energy consumption, pt is the

power consumed at time t, Δtt is the time

duration for step t, and power may be determined

as follows, Eq. (10):

𝑝𝑡 = 𝛼 . 𝑣𝑡
2 + 𝛽. 𝑎𝑡

2 (10)

where vt is the velocity at time t, at is the

acceleration at time t, α, and β is an energy model

constant based on motor/ load characteristics.

2.4.3. Travel time

This objective minimizes the total time required

for the robot to reach its goal. In many real-world

applications, such as delivery or rescue, faster

task completion is critical, as shown in Eq. (11).

min 𝑇 = ∑ ∆𝑡𝑡
𝑁
𝑡=1 (11)

where T is the total travel time, Δtt is the time

duration taken to move from step t-1 to step t,

and N is the total number of steps in the episode.

 3. Results and discussion

The proposed algorithm training episodes, such

as 1600, 1200, 800, and 400 are measured in the

simulation, training, and analysis results.

3.1. Simulation results

Programming language: Python 3.2. Libraries:
Jupiter (for deep learning), NumPy, Matplotlib.

JCARME Vengatesan Arumugam, et al. Vol. 14, No. 2

278

Hardware: Simulations run on NVIDIA GPU
(e.g., RTX 3060). Random seed: Fixed seed
value used for all experiments for
reproducibility. Table 2 provides simulation
setup and environmental parameters.

Calculation and formulation methods:

(a) A* algorithm is given as below, Eq. (12):

f(n) = g (n) + h (n) (12)

where g(n) is the actual cost from start to node n,
and h(n) is the heuristic.
(b) DQN/IDQN formulation: State (S), the robot
grid position and nearby obstacles, action (a)
(up, down, left, right), and reward (R) as below,
Eq. (13):

 +10 for reaching the goal

R = -10 for hitting an obstacle (13)
 -0.1 for each step taken

Simulation approach steps:

1. Define the environment (20×20 and 30×30
grid)
2. Initialize obstacles randomly or predefined
3. Train RL agents IDQN) over episodes (e.g.,
1000+)
4. Save the best-performing policy
5. Execute path planning using each method
6. Visualize the paths (using Python)
In training experiment 1, Table 3 details the deep
Q-network parameters. Figs. 3 and 4 illustrate
the training process, where the initial learning
value is based on observed behaviors, with
results showing convergence to the minimum
number of steps. Transitions are analyzed using
two techniques. However, reinforcement
learning exhibits more randomness compared to
the proposed strategy due to its fixed exploration
ratio, whereas the proposed algorithm gradually
reduces exploration to zero. This confirms that
behavior is influenced by the exploration
strategy.
The training performance of reinforcement
learning agents uses episode rewards over time.
The x-axis denotes episode numbers, while the
y-axis represents cumulative rewards. In both
graphs, blue lines indicate raw episode rewards
with high variability, light blue lines mention the
individual episode reward value, while the
orange curve represents a smoothed average
reward, showing overall learning progress.

Table 2. Simulation setup and environment

parameters.

Parameter Values / Description

Environment 2D Grid World (static or dynamic)

Grid size 20 × 20, 30 × 30

Obstacle types
Static and randomly moving

obstacles

Robot type
Differential drive (non-holonomic

constraints)

Goal position
Fixed / Randomized in some

scenarios

Action space
{Up, down, left, right, stay} or

discrete angles

Reward at goal +100

Collision penalty -50

Episodes 1600

Max steps per episode 200

Batch size 64

Replay buffer size 10,000

Target update

frequency
Every 100 episodes

Noise parameters (σ₀) (1.0, 0.001)

Collision penalty -50

Step penalty -1 (to encourage shorter paths)

Table 3. Properties of the proposed system.

Properties Values

Learning rate 0.001

Discount factor 0.99

Epsilon delay 0.005

Minimum epsilon 0.01

Optimizer Adam

Gradient decay 0.9

Initial epsilon 1.0

Fig. 3. Training for 1600 episodes.

JCARME An experimental and simulation . . . Vol. 14, No. 2

279

Fig. 4. Training for 1200 episodes.

The average reward steadily improves, despite

persistent variance, indicating effective learning

under dynamic or exploratory conditions.

Similar trends up to 1200 episodes, but with the

average reward after episode 800, suggesting

convergence. Both plots confirm that the agent is

learning; further tuning could improve reward

stability and final performance.

In training experiment 2, the analysis of the

proposed training algorithm is presented. Fig. 5

shows the training performance of an RL agent

over 800 episodes. The episode reward

fluctuates widely due to exploration and a

potentially dynamic environment. Despite this,

the average reward (orange line) increases

steadily, indicating that the agent is learning and

refining its policy. The high variance suggests

the need for further stability, but overall, the

learning trend is positive and effective, likely

using a standard or improved DQN variant.

Fig. 6 illustrates the learning performance of a

reinforcement learning (RL) agent over 400

episodes. Initially, rewards are low and highly

variable due to exploration. After episode 100,

both peak and average rewards improve steadily,

indicating the agent is learning an effective

policy. The orange line, representing the moving

average, rises consistently, confirming positive

convergence.

Despite some fluctuation in later episodes, the

agent adapts well to the environment. This trend

aligns with the behavior of a well-tuned IDQN

algorithm in a moderately complex environment

(Tables 4 and 5). Summarizing the results shows

an average reward of 152.8 and an average of

155.2 steps.

Fig. 7 illustrates the simulation, where the x-axis

value is 10, and the y-axis cumulative reward is

120. Each blue bar represents the episode reward

for a specific simulation, with the height

indicating the reward magnitude. The chart

includes horizontal dashed lines to denote the

mean and standard deviation, providing insight

into the overall performance and variability of

the simulations. Notably, simulation 6 achieved

the highest reward, exceeding 100, while

simulations 3, 4, and 7 recorded the lowest

rewards, close to or below 10. Simulations 2, 6,

and 9 performed above the mean, indicating

better outcomes in those trials.

The inclusion of the mean and standard deviation

highlights the consistency and spread of the data,

which is essential for evaluating the stability and

reliability of the learning model used in the

simulations.

As shown in Fig. 8, it illustrates a 20 × 20 grid-

based environment designed for mobile robot

navigation and path planning. The structured

grid, with both the x-axis and y-axis labeled from

0 to 20, includes obstacles (black squares), a start

point (green dot), a goal point (red dot), and a

computed path (blue dashed line). The random

distribution of obstacles creates a challenging

terrain for efficient path planning. A legend in

the upper right corner enhances clarity.

The computed path navigates around obstacles,

suggesting the application of a path-planning

algorithm such as A*, enhanced deep q-network

(EDQN), D3QN, and IDQN.

Fig. 5. Training for 800 episodes.

Fig. 6. Training for 400 episodes.

JCARME Vengatesan Arumugam, et al. Vol. 14, No. 2

280

The smooth trajectory of the path implies the use

of a post-processing technique, like a smoothing

algorithm, to optimize the final route.

As shown in Fig. 9, it presents a 30 × 30 grid-

based environment designed for navigation. A

total of 100 obstacles (black squares) create a

challenging terrain for the navigation algorithm.

The start position is near the top-left corner (0,0),

while the goal is near the bottom-right corner

(28,28). This blue line indicates the robot's

movement, avoiding obstacles to reach the target

point.

The computed path efficiently navigates around

obstacles, suggesting the use of an advanced

path-planning algorithm such as A*, EDQN,

D3QN, and the proposed algorithm. The smooth

curvature of the path indicates the application of

path-smoothing techniques to minimize abrupt

turns and improve efficiency.

Table 6 Comparison of the proposed and another

existing algorithm, based on travel distance

(cm), travel time (sec), and training duration

(sec). Three algorithms already exist [26].

Table 4. Number of episode values for the proposed

algorithm.

Properties
Episodes

1600 1200 800 400

Episode reward 35 118 117 200

Episode steps 41 124 123 200

Total agent steps 2688 1848 1192 3628

Average reward 56.4 132.6 139.8 152

Average steps 62.4 138.6 145.8 155

Episode initial Q value 87.9 81.62 68.98 30

Table 5. Analysis results.

Layer Activation Output Learnable

Linear Feature input 4 -

Layer Fully connected 348
348 × 4

(weights)

Dense Relu 348 -

Layer Fully connected 348
348 × 348

(weights)

Dense Relu 348 -

Layer Fully connected 2
2 × 348

(weights)

Fig. 7. Simulation results.

Fig. 8. Robot navigation environment 1 (20 × 20 grid

with 50 obstacles).

Fig. 9. Robot navigation environment 2 (30 × 30 grid

with 100 obstacles).

A*, a conventional graph-based search method,
does not require training but results in a travel
distance of 30.9 cm and a travel time of 11 sec,
making it the least efficient. EDQN enhances
traditional DQN by incorporating reinforcement
learning for decision-making.
It achieves a shorter travel distance of 29.59 cm
and a reduced travel time of 9 sec but requires
1657 sec of training [27]. D3QN records a travel
distance of 30.38 cm, a travel time of 12 sec, and
a training duration of 1211 sec [28], showing
slightly lower efficiency compared to EDQN
and IDQN. Further optimizes IDQN, achieving
the shortest travel distance (28.14 cm) and the
fastest travel time (8 sec). Additionally, it
reduces the training duration to 1600 sec.

JCARME An experimental and simulation . . . Vol. 14, No. 2

281

Table 6. Comparison proposed method and another

existing algorithm.

Algorithm
Travel distance

(cm)

Travel time

(sec)

Training duration

(sec)

A* [26] 30.9 11 -

EDQN

[27]
29.59 09 1657

D3QN [28] 30.38 12 1211

IDQN 28.14 08 1600

Additional simulation scenarios to evaluate the

performance of the proposed method in static

environments with varying obstacle densities.

These scenarios more accurately reflect real-

world challenges, enabling the assessment of the

robustness and adaptability of the proposed

IDQN algorithm. To further support the

evaluation, we included behavioural analysis by

visualizing the path trajectories generated by A*,

DQN, and IDQN in grid-based environments.

These figures demonstrate how each method

navigates obstacles and highlight differences in

path efficiency, smoothness, and safety.

The proposed method consistently produces

shorter and smoother paths, especially in

complex or dynamic settings. We also extended

the result analysis beyond average values to

include success rate, reward variance, collision

count, and policy stability. These insights reveal

that, unlike A*, which is limited to static

conditions, IDQN adapts to environmental

changes and continues to improve its policy.

Overall, the enhanced analysis and visual

comparisons demonstrate the practical

advantages of the proposed method over

classical approaches.

The D3QN algorithm typically requires around

400 sec of training duration, resulting in a 2-cm

and 4-sec reduction in travel distance and travel

time, respectively, due to its deeper architecture

and improved network stability compared to the

standard DQN. This training time is comparable

to, or slightly less than, that required by the

proposed method. In terms of performance,

D3QN achieves moderate improvements over

DQN, offering better policy efficiency and

robustness. These gains, while not as significant

as those achieved by more advanced approaches

like IDQN, are still meaningful when compared

to traditional methods.

Unlike learning-based algorithms, A* does not

require any training time and generates fixed,

deterministic paths based on static maps, making

it unsuitable for explaining the 400-sec training

period. On the other hand, while DQN requires

less training time than D3QN, it typically

exhibits lower performance, particularly in

complex or dynamic environments. Therefore,

the observed training and performance metrics

most closely align with D3QN as the existing

baseline algorithm.

3.2. Performance analysis

The performance analysis has been extended to

include main evaluation metrics such as success

rate, average path length, computational time,

and obstacle avoidance efficiency. A

comparative study was conducted between the

proposed algorithm and existing methods,

including A*, EDQN, IDQN, and D3QN. The

results are summarized as follows in Table 7.

3.3. Experimental results and discussion

In environment result 1, the robot successfully

navigated from start to goal within 16 sec, while

in environment result 2, the task was completed

in 17 sec. A comparison of simulation and

experimental results is provided. Figs. 10 and 11

illustrate two environmental results used to

validate the robot’s ability to reach its goal

efficiently. These results confirm that the

proposed algorithm effectively and efficiently

achieved the three objective functions,

demonstrating its success in optimizing path

planning, travel time, and navigation efficiency.

Experimental results indicate that our approach

surpasses the method in terms of localization

accuracy, achieving higher precision in complex

environments. As shown in Table 8, there is a

path distance error of 1.3765% and a travel time

deviation of 2%.

Three objective functions, such as energy

consumption, minimum path distance, and travel

time, along with their normalized objective

values [27]. These objectives are plotted on a

normalized scale from 0 to 1, representing the

level of optimization for each function.

JCARME Vengatesan Arumugam, et al. Vol. 14, No. 2

282

Table 7. Performance metrics analysis.

Algorithm
Success

rate (%)

Path

length

(cm)

Computational

time (sec)

Obstacle

avoidance

(%)

A* 85.4 17.9 0.72 82.0

EDQN 91.3 16.3 0.65 88.9

D3QN 92.1 15.9 0.51 93.2

IDQN 94.7 15.8 0.58 91.4

(All dimensions are in cm).

Fig. 10. Experimental result for environment 1.

(All dimensions are in cm).

Fig. 11. Experimental result for environment 2.

Fig. 12. Multi-objective functions.

Table 8. Comparison between simulation and

experimental results.

Environments 1 2

Simulation distance (cm) 3.10 3.24

Experimental distance (cm) 3.13 3.27

Error (%) 1.42 1.33

Simulation time (sec) 13 16

Experimental time (sec) 16 17

Deviation +3 +1

Fig. 12, each axis corresponds to a different

objective: energy consumption (top-left),

minimum path distance (right), and travel time

(bottom-left). The chart consists of concentric

circles, where 0 represents the worst

performance (highest value), and 1 represents

the best performance (lowest value) for each

objective. A blue polygon in the shaded area

illustrates the actual performance across the

three objectives, with closer proximity to the

outer ring (1.0) indicating better optimization.

4. Conclusions

The proposed method employed the IDQN

algorithm, focusing on three main objective

functions: minimum path distance, energy

consumption, and minimum travel time. The

proposed algorithm demonstrated its efficiency

by finding the most optimal path to the target.

Consequently, the simulation paths in the

proposed algorithm were found to be

satisfactory, with a deviation of less than 2%

between the simulation and experiment. The

error value was calculated to be 1.3765%. The

proposed strategy emerges as the most efficient

algorithm, achieving the shortest path and fastest

travel time with a slightly lower training

requirement than EDQN. While A* requires no

training, its longer travel distance and time make

it less effective.

The results demonstrate that reinforcement

learning algorithm-based approaches (EDQN,

D3QN, and IDQN) outperform traditional

algorithms like A* in dynamic or complex

environments. Improving the DQN algorithm,

performance, and overall efficiency is better than

other existing algorithms. In future work, the

JCARME An experimental and simulation . . . Vol. 14, No. 2

283

multi-objective function will be enhanced, and

multiple mobile robots will be employed across

various applications, including the food industry,

military, space exploration, medical field,

automotive industry, etc.

Acknowledgment

The authors sincerely thank the Department of

Mechanical Engineering, SIMATS, for

providing the research facility to complete this

work.

References

[1] K. Winkle, P. Caleb-Solly, A. Turton and

P. Bremner, “Mutual shaping in the design

of socially assistive robots: a case study

on social robots for therapy,” Int. J. Social

Rob., Vol. 12, No. 4, pp. 847–866, (2019).

[2] L. Sheng, H. Chen and X. Chen, “A multi-

agent centralized strategy gradient

reinforcement learning algorithm based

on state transition algorithms,” J. Algor.,

Vol. 17, No. 12, pp.579,(2024).

[3] M. Morgan, T. Holzer, and T. Eveleigh,

“Synergizing model‐based systems

engineering, modularity, and software

container concepts to manage

obsolescence,” Syst. Eng., Vol. 24, No. 5,

pp. 369–380, (2021).

[4] F. Yuan, G. Ren, Q. Deng, and X. Wang,

“Steam generator maintenance robot

design and obstacle avoidance path

planning,” J. Sens., Vol. 25, No. 2,

pp.514,(2025).

[5] J. Rodano, O. Obada, J. Parron, R. Li, M.

Zhu, and W. Wang, “Teaching humanoid

robots to assist humans for collaborative

tasks,” IEEE -ICOSC, Vol. 27, pp.344-

348, (2023).

[6] H. El-Husseini, “Dynamic modeling and

task-space control of vine-like soft

growing robots,” 62nd Ann. Conf. -
SICE, Vol. 14, pp.1220–1225,(2023).

[7] M. Ali, S. Das and S. Townley, “Robot

differential drive navigation through

probabilistic roadmap and pure pursuit,”

IEEE Acc., Vol. 13, pp. 22118–22132,

(2025).

[8] Y. Liu, C. Wang, H. Wu and Y. Wei,

“Mobile robot path planning based on

kinematically constrained A-star

algorithm and DWA fusion algorithm,”

Mathemat., Vol. 11, No. 21, pp. 4552,

(2023).

[9] A. A. N. Kumaar and S. Kochuvila,

“Mobile service robot path planning using

deep reinforcement learning,” IEEE Acc.,

Vol. 11, pp. 100083–100096,(2023).

[10] J. Zhang and H. Zhao, “Mobile robot path

planning based on improved deep

reinforcement learning algorithm,” 4th

Int. Conf. -NNIC , Vol. 30, pp. 1758–

1761,(2024).

[11] J. Gao, W. Ye, J. Guo, and Z. Li, “Deep

reinforcement learning for indoor mobile

robot path planning,” Sensors, Vol. 20,

No. 19, pp. 5493, (2020),

[12] Z. Wu, Y. Yin, J. Liu, D. Zhang, J. Chen,

and W. Jiang, “A novel path planning

approach for mobile robot in a radioactive

environment based on improved deep Q

network algorithm,” J. Symmetry, Vol. 15,

No. 11, pp. 2048, (2023).

[13] L. D. Hanh and V. D. Cong, “Path

following and avoiding obstacle for a

mobile robot under dynamic

environments using reinforcement

learning,” J. Rob. And Cont., Vol. 4, No.

2, pp.157–164,(2023).

[14] F. Quiroga, G. Hermosilla, G. Farias, E.

Fabregas, and G. Montenegro, “Position

control of a mobile robot through deep

reinforcement learning,” Appl. Sci., Vol.

12, No. 14, pp. 7194, (2022).

[15] H. Song, A. Li, T. Wang, and M. Wang,

“Multimodal deep reinforcement learning

with the auxiliary task for obstacle

avoidance of indoor mobile robot,” J.

Sens., Vol. 21, No. 4, pp. 1363,(2022).

[16] K. Zhu and T. Zhang, “Deep

reinforcement learning based mobile

robot navigation: A review,” Tsinghua

Sci. Technol., Vol. 26, No. 5, pp.674–

691,(2021).

[17] Y. Yang, L. Juntao, and P. Lingling,

“Multi‐robot path planning based on a

deep reinforcement learning DQN

algorithm,” CAAI Trans. Intell. Technol.,

Vol. 5, No. 3, pp. 177–183, (2020).

[18] S. Yoon, K. Shik Roh, and Y. Shim,

“Vision-based obstacle detection and

JCARME Vengatesan Arumugam, et al. Vol. 14, No. 2

284

avoidance: application to robust indoor

navigation of mobile robots,” Adv. Rob.,

Vol. 22, No. 4, pp. 477–492, (2008).

[19] Z. Wu, Y. Yin, J. Liu, D. Zhang, J. Chen,
and W. Jiang, “A Novel Path Planning
Approach for Mobile Robot in
Radioactive Environment Based on
Improved Deep Q Network Algorithm,” J.
Symmetry, Vol. 15, No. 11, pp. 2048,

(2023).

[20] L. Sun. X. Duan, K. Zhang, P. Xu, X.
Zheng, Q. Yu and Y. Luo, “Improved path
planning algorithm for mobile robots,”
Soft Comp., Vol. 27, No. 20, pp. 15057–

15073,(2023).

[21] L. Lv, S. Zhang, D. Ding, and Y.
Wang, “Path Planning via an Improved
DQN Based Learning Policy,” IEEE Acc.,
Vol. 7, pp. 67319–67330, (2019).

[22] H. Qin, S. Shao, T. Wang, X. Yu, Y. Jiang,
and Z. Cao, “Review of Autonomous Path
Planning Algorithms for Mobile Robots,”
Drones, Vol. 7, No. 3, pp. 211, (2023),

[23] Y. Chen, Z.-M. Lu, J.-L. Cui, H. Luo, and
Y.-M. Zheng, “A complete coverage path
planning algorithm for lawn mowing
robots based on deep reinforcement

learning,” J. Sens., Vol. 25, No. 2, p.416,

(2025).

[24] Y. Yang, “Path planning under high-

dimensional input states based on deep q-

network,” High. in Sci., Engg. and Tech.,

Vol. 120, pp. 576–585, (2024),

[25] J. Li, Y. Chen, X. Zhao, and J. Huang, “An

improved DQN path planning algorithm,”

The J. of Supercom., Vol. 78, No. 1, pp.

616–639, (2021),

[26] C. Chen, J. Cai, Z. Wang, F. Chen, and W.

Yi, “An improved A* algorithm for

searching the minimum dose path in

nuclear facilities,” Prog. Nucl. Energy,

Vol. 126, pp. 103394, (2020).

[27] A. Vengatesan, V. Alagumalai and S.

Rajendran. “Simulation analysis of multi-

objective functions in mobile robot

navigation based on enhanced deep q-

network algorithm,” SAE Tech. Paper,

No. 2024-01-5110, (2024).

[28] G. Mehmet. “Dynamic path planning via

dueling double deep q-network (D3QN)

with prioritized experience replay”, Appl.

Soft Comput., Vol. 158, pp. 111503,

(2024).

Copyrights ©2025 The author(s). This is an open access article

distributed under the terms of the Creative Commons Attribution (CC BY

4.0), which permits unrestricted use, distribution, and reproduction in any

medium, as long as the original authors and source are cited. No

permission is required from the authors or the publishers.

How to cite this paper:

Vengatesan Arumugam and Vasudevan Alagumalai, “An experimental

and simulation analysis of multi-objective techniques for mobile robots

using improved deep Q-network algorithm”, J. Comput. Appl. Res. Mech.

Eng., Vol. 14, No. 2, pp. 273-284, (2025).

DOI: 10.22061/jcarme.2025.11712.2562

URL: https://jcarme.sru.ac.ir/?_action=showPDF&article=2384

https://doi.org/10.22061/jcarme.2025.11712.2562

