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Abstract
Mobile robots have garnered significant attention across various domains,
including industrial automation, healthcare, logistics, and autonomous
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1. Introduction

Artificial intelligence technology nowadays
utilizes learning to mobile robotics in different
applications such as medicine, construction,
automobile, food, fire service, underwater, etc.
[1]. In recent years, there has been a growing use
of artificial technology, particularly in the
context of machine learning, classified into

reinforcement learning algorithms. This paper
primarily focuses on the application of robotics
in the automotive industry. Autonomous mobile
robots are employed for loading and unloading
in various industries, while autonomous guided
vehicles are utilized for path planning and
navigation in diverse environmental conditions.
These robots, designed to assist humans in
settings such as homes or factories, face the
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challenge of effectively and safely executing
their tasks in these environments [2].
Additionally, robots with human-like behavior
in dynamic settings prove to be a different task.
This metric holds significant importance as it
directly influences variables such as energy
consumption, time efficiency, and optimization
of travel distance for multi-objective functions
of mobile robotics [3]. Over the years, numerous
studies have been conducted to enhance our
understanding and improve this metric. When
individuals  operate  within a  specific
environment, they instinctively choose a suitable
course of action by subconsciously expecting
changes in the surroundings and their subsequent
states [4].

This metric garnered attention in reinforcement
learning as a technique frequently employed in
real-world robotic applications [5]. Learning has
long been the subject of considerable interest due
to its ease of application in real robotics.
Conversely, Q-learning presents certain
challenges in that updating the Q-table
necessitates a significant number of tables to
effectively represent continuous states, such as
the seamless motion of mobile robotics.
Considering the magnitude of this, there was a
drawback that real-time calculation cannot be
performed [6]. Optimized path planning is found
to be another problem that a robot does not
manage well with changing purposes in
reinforcement learning algorithms [7].

As the requests made to robots diversify, the
need to accomplish various purposes in robots
continues to grow. In contrast, the deep Q-
network utilizes a convolutional neural network
to calculate an estimate of the Q-value, allowing
the acquisition of an approximate representation
of the Q-value function. Deep Q-network
modification of the proposed system. This paper
proposes an algorithm that considers the
effectiveness of incorporating deep g-network
(DQN) into multi-objective  optimization
techniques [8].

Kumaar et al. [9] reported that to create an
optimization path for robotics in complex
environments, further simulation and
experimental validation of the proposed
algorithm in terms of efficiency and
effectiveness reached the target point. Zhang et
al. [10] identified obtaining the optimal path
planning as an improvement of the proposed
algorithm. Xin et al. [11] proposed a path-
planning method that improves performance by
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avoiding barriers and achieving more goal
points.

Wu et al. [12] discussed the importance of the
entire intended path being more efficient. In
comparison to the deep Q-network and partially
improved deep Q-network algorithms, the path
length reduced by 15.6%, the cumulative
radiation dose was reduced by 23.5%, the
collision count reduced by 67.5%, and the
algorithm score was improved by 717 times,
allowing for the planning of a collision-free
optimal path in a shorter training period.

Hanh et al. [13] stated that ensuring the obstacle-
avoidance algorithm assists the robot in avoiding
obstacles while remaining on the planned goal
point. Quiroga et al. [14] deliberated the position
of the mobile robot, obtaining the shortest time
taken to reach the goal point in an environment
with obstacle detection in the mobile robots.
Song et al. [15] identified the auxiliary task of
velocity estimation and further improved the
implementation  of  learning in  deep
reinforcement learning.

Zhu et al. [16] described deep a Q network-based
navigation path planning. Yang [17] discussed
collision path planning, environmental learning,
and improving learning efficiency. Wenzel et al.
[18] discussed the learning approach to sample
efficiency in the training process, which is much
faster than reaching the target point.

The literature review highlights a significant gap
in studies focusing on the incorporation of multi-
objective functions to enhance deep Q-networks.
This research gap is addressed through the
proposed approach, which effectively resolves
learning challenges in mobile robots. The
proposed algorithm is specifically designed to
tackle mobile robot-related problems by
incorporating three objective functions to
manage multi-objective challenges.

To validate its effectiveness, two experiments
are conducted in a complex environment.
Additionally, an improved deep Q-learning
approach is implemented for obstacle avoidance,
with simulation results analyzed at episode
intervals of 1600, 1200, 800, and 400.

A comparative evaluation is also performed,
assessing the planned algorithm against existing
approaches based on both experimental and
simulation outcomes. The justification for using
the proposed system lies in its ability to rapidly
acquire  knowledge about environmental
conditions, efficiently reach target destinations,
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determine optimal routes, and address complex
problems.

2. Proposed methodology
2.1. Differential drive wheeled mobile robot

The mobile robot used in our physical
experiment is modeled as a differential drive
wheeled robot, which inherently exhibits non-
holonomic constraints. These constraints mean
that the robot cannot move sideways (i.e., it has
restricted motion along certain directions), and
its movement is governed by the kinematic Eq.

(D).
x=vcosh, y =vsinb, 0=w @

where x and y are the Cartesian co-ordinates, 0
is the heading angle, v is the linear velocity, and
o is the angular velocity.

The proposed learning-based algorithm is
specifically designed to incorporate non-
holonomic constraints by employing a discrete
action space, such as forward, left-turn, and
right-turn motions, that aligns with the robot’s
kinematic model. It enables the learning of
smooth and feasible trajectories that respect
turning radius limitations and avoid abrupt
changes in direction. Additionally, the algorithm
simulates robot dynamics during training,
allowing the reinforcement learning agent to
implicitly learn paths that satisfy non-holonomic
feasibility.

As aresult, the proposed algorithm is well-suited
for non-holonomic wheeled mobile robots and is
not restricted to a specific hardware platform.
Furthermore, it can be adapted to other mobile
platforms, such as car-like or skid-steer robots,
by appropriately defining the action space and
training environment.

2.2. Deep Q-network

The deep Q-network algorithm is a
reinforcement learning method that combines Q-
learning with deep neural networks. First
introduced by DeepMind, it has played a pivotal
role in advancing reinforcement learning [19].
The component is g-learning, a model-free
reinforcement  learning  algorithm  that
determines the optimal policy for a given finite
Markov decision process [20]. Q-learning
updates the Q-values, which represent the
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expected future rewards for state-action pairs,
using the Bellman equation [21]. Experience
replay is a mechanism utilized by the deep Q-
network to enhance training stability, as shown
in Table 1.

Algorithm 1: Deep Q-algorithm

e Setting up the Q and target networks initially.
Interact with the environment using epsilon-
greedy policy (exploration and exploitation).

e Sample and update for predicted Q-values,
and target Q-values, and update the target
network for the weight of the Q-network.

2.3. Framework of proposed strategy

As shown in Fig. 1, the framework proposed
algorithm and its process depicted in Fig. 2, Q-
networks function as non-linear estimators,
mapping states to action values, and the agent
interacts with the environment to gather training
data. Initially, the agent selects actions randomly
but gradually relies on the approximated Q-
network, utilizing the e-greedy method, which
balances random exploration and policy-driven
decision-making [23].

Deep Q-learning extends Q-learning by
incorporating components such as states,
actions, rewards, agents, and environment
interactions.

Table 1. Comparison between deep g network and
proposed algorithm [22].

DQN IDQN

Basic deep neural More  refined  network  with
network with a Optimization (e.g., dynamic memory

replay buffer allocation)

Double deep Q- petter mechanisms to  prevent
network mitigates  ,yerestimation (e.g., adaptive Q-

it, but it is still value updates)
present

Prioritized experience replays or
improved sampling based on the
importance

Fixed-size replay
buffer

Faster due to better exploration-

Slower complex - a
exploitation balance

environments
Automatic or adaptive  tuning

Manual ~ tuning Mechanism to optimize parameters

hyperparameters like discount factor vy, learning rate f3,
and 0
Basic deep neural More refined network with

network with a Optimization (e.g., dynamic memory
replay buffer allocation)
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Fig. 1. Framework of the proposed algorithm.
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Fig. 2. Step-by-step process of the proposed system.

In complex environments, a mobile robot aims
to reach its goal using nonlinear functions Q(S,
A, 0), where the initial state (S;) transitions to the
next state (Sw1), and actions (A evolve
accordingly [24]. The reward (R) and discount
factor (y) contribute to the learning process, with
the deep Q-learning algorithm incorporated into
the loss function F(6;), minimizing the squared
difference between the goal value (6w+1) and the
predicted value (6 [25], as expressed in the
following Eq. (2).

F(0)=[R+ymaxAt+1 Q(St+1,A11;Qer1)-Q(St, A;0901% (2)
Formulation of the proposed algorithm improved
deep g-network (IDQN):

The developed is an enhancement over the
traditional DQN, aiming to improve
convergence stability and adaptability in
dynamic environments. In the standard DQN,
the g-value is updated using the following rule,
Eqg. (3):

Q (St Ap) <« Q(Sp,A) +a[R, +
ymaxQ (S, A") — Q (S, A)] (3)

Double deep Q-network is given below, Eq. (4).
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Q (St Ap <« Q(Sp,Ap) + o [Ry +
YQ (St+1,argmax Q (Se4q,A’; 6); 6'] %)

In contrast, the IDOQN modifies this with
adaptive reward shaping, a dynamic learning
rate, and noise-aware exploration. The updated
formulation becomes Eq. (5).

QIDQN (St Ap) < Q (54, Ap) + ay [ﬁt +
ymaxQ (Ser1,4") —Q (SpAp] (5)

where R, = Ri+ L.f (S, Ay) is a shaped reward
incorporating an auxiliary function f, oy IS a
time-varying learning rate adapting to
reward variance, and A is a tunable weight
for reward shaping. For policy improvement,
instead of the e-greedy strategy used in
DQN, IDQN introduces a decaying
Gaussian noise model to encourage
exploration in early stages and gradually
shift to exploitation. The action selection is
defined as below, Eq. (6):

A; = argmax Q (S;, A) + N (0,04) (6)

where o decays over time, reducing exploration
as the agent learns. The reward function in IDQN
is also redesigned to be context aware,
considering task-specific factors such as distance
to goal, collision penalty, and path smoothness,

Eq. (7).
Ry = Rgoar — B1-dy — Ba-ct + Ps.5¢ (7)

where d;, ¢;, and s: represent the distance to the
goal, collision penalty, and smoothness score,
respectively, with B1, B2, and B3 being their
respective weights.

Differences from existing methods are
summarized as follows: DQN and dueling
double deep g-network (D3QN) use fixed
learning rates and e-greedy strategies, while
IDQN employs adaptive learning rates and
Gaussian noise for exploration. DQN lacks
reward shaping, and D3QN introduces dueling
networks for value/advantage separation. In
contrast, IDQN incorporates task-aware
auxiliary shaping to boost learning in complex
scenarios. As a result, IDQN shows faster
convergence and reduced performance variance
due to its adaptive mechanisms.
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Algorithm 2: Improved deep Q-network learning

¢ Initial replay buffer memory D to capacity N.

e Initial action-based value function Q with
goal value (B+1).

e Selecting an action can be an approach. In
this approach, an action is chosen with the
probability €, whereby a random action,
denoted as A, is selected. Conversely, with a
probability of 1 — €, an action that possesses
the highest g-value is chosen.

o Next, selected to action A, the agent achieves
the chosen action in a state S to move to the
next state St.1, and obtain reward R.

¢ Replay buffers should store transitions as (S,
Ay R, Sta).

e Next, choose random transition samples from
the replay buffer and use the algorithm to
determine the loss in Eq. (2).

¢ To reduce this loss, apply gradient descent to
the real network parameters.

e Copy our actual network weights to the goal
network weights after each k step. Continue
in the same way for M episodes.

The proposed method is based on reinforcement
learning using the improved deep Q-network
(IDQN), enabling the robot to learn from
interactions with a dynamic environment. To
handle moving obstacles, the agent was trained
in environments where obstacles change
positions during each episode. The state input
includes the robot’s position, goal, and real-time
obstacle locations, allowing the agent to learn
adaptive responses to dynamic hazards.
Unlike traditional static-map methods such as
A* or standard DQNSs, our approach adjusts
paths in real time to avoid collisions.
Simulations showed successful re-routing and
collision avoidance in dynamic scenarios. This
confirms that our method supports moving
obstacles.  Validation through additional
experiments shows strong adaptability and
robustness, making it ideal for real-world use
cases like autonomous navigation in crowds or
warehouses.

2.4. Multi-objective functions
2.4.1. Path distance

Minimizing the total distance encourages the
robot to take the shortest path, which often also

An experimental and simulation . . .

Vol. 14, No. 2

contributes to reduced time and energy as
follows, Eq. (8):

minD = YL, || pe — pe-ll ®)

where D is the total path length, p: is the position
of the robot at time t, and N is the total steps in
the episode.

2.4.2. Energy consumption

This objective promotes energy-efficient paths,
reducing battery consumption and prolonging
robot operation, which is important for battery-
operated or autonomous systems as below, Eq.

(9):
minE = YL p, . Aty ©)

where E is the total energy consumption, p:is the
power consumed at time t, At is the time
duration for step t, and power may be determined
as follows, Eq. (10):

pe = a.v?+ B.a? (10)

where v; is the velocity at time t, a; is the
acceleration at time t, o, and f is an energy model
constant based on motor/ load characteristics.
2.4.3. Travel time

This objective minimizes the total time required
for the robot to reach its goal. In many real-world
applications, such as delivery or rescue, faster
task completion is critical, as shown in Eq. (11).
min T = Y, At, (11
where T is the total travel time, At;is the time
duration taken to move from step t-1 to step t,
and N is the total number of steps in the episode.
3. Results and discussion

The proposed algorithm training episodes, such
as 1600, 1200, 800, and 400 are measured in the
simulation, training, and analysis results.

3.1. Simulation results

Programming language: Python 3.2. Libraries:
Jupiter (for deep learning), NumPy, Matplotlib.
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Hardware: Simulations run on NVIDIA GPU
(e.g., RTX 3060). Random seed: Fixed seed
value used for all experiments for
reproducibility. Table 2 provides simulation
setup and environmental parameters.

Calculation and formulation methods:
(a) A* algorithm is given as below, Eq. (12):

f(n)=g(n)+h(n) (12)

where g(n) is the actual cost from start to node n,
and h(n) is the heuristic.

(b) DQN/IDQN formulation: State (S), the robot
grid position and nearby obstacles, action (a)
(up, down, left, right), and reward (R) as below,
Eq. (13):

+10 for reaching the goal
R= -10 for hitting an obstacle (13)
-0.1 for each step taken

Simulation approach steps:

1. Define the environment (20x20 and 30x30
grid)

2. Initialize obstacles randomly or predefined

3. Train RL agents IDQN) over episodes (e.g.,
1000+)

4. Save the best-performing policy

5. Execute path planning using each method

6. Visualize the paths (using Python)

In training experiment 1, Table 3 details the deep
Q-network parameters. Figs. 3 and 4 illustrate
the training process, where the initial learning
value is based on observed behaviors, with
results showing convergence to the minimum
number of steps. Transitions are analyzed using
two techniques. However, reinforcement
learning exhibits more randomness compared to
the proposed strategy due to its fixed exploration
ratio, whereas the proposed algorithm gradually
reduces exploration to zero. This confirms that
behavior is influenced by the exploration
strategy.

The training performance of reinforcement
learning agents uses episode rewards over time.
The x-axis denotes episode numbers, while the
y-axis represents cumulative rewards. In both
graphs, blue lines indicate raw episode rewards
with high variability, light blue lines mention the
individual episode reward value, while the
orange curve represents a smoothed average
reward, showing overall learning progress.
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Table 2. Simulation setup and environment
parameters.

Parameter Values / Description

Environment 2D Grid World (static or dynamic)

20 x 20, 30 x 30

Static and randomly moving
obstacles

Differential drive (non-holonomic
constraints)

Fixed / Randomized in some
scenarios

{Up, down, left, right, stay} or
discrete angles

Grid size

Obstacle types
Robot type
Goal position

Action space

Reward at goal +100

Collision penalty -50

Episodes 1600

Max steps per episode 200

Batch size 64

Replay buffer size 10,000

;I'arget update Every 100 episodes
requency

Noise parameters (co) (1.0, 0.001)
Collision penalty -50

Step penalty -1 (to encourage shorter paths)

Table 3. Properties of the proposed system.

Properties Values
Learning rate 0.001
Discount factor 0.99
Epsilon delay 0.005
Minimum epsilon 0.01
Optimizer Adam
Gradient decay 0.9
Initial epsilon 1.0

500 [

Raw episode rewards  Average episode reward

450

400

350

300

250

200

Episode reward

150

100

0 200 400 600 800 1000 1200 1400 1600
Episode number

Fig. 3. Training for 1600 episodes.
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Fig. 4. Training for 1200 episodes.

The average reward steadily improves, despite
persistent variance, indicating effective learning
under dynamic or exploratory conditions.
Similar trends up to 1200 episodes, but with the
average reward after episode 800, suggesting
convergence. Both plots confirm that the agent is
learning; further tuning could improve reward
stability and final performance.

In training experiment 2, the analysis of the
proposed training algorithm is presented. Fig. 5
shows the training performance of an RL agent
over 800 episodes. The episode reward
fluctuates widely due to exploration and a
potentially dynamic environment. Despite this,
the average reward (orange line) increases
steadily, indicating that the agent is learning and
refining its policy. The high variance suggests
the need for further stability, but overall, the
learning trend is positive and effective, likely
using a standard or improved DQN variant.

Fig. 6 illustrates the learning performance of a
reinforcement learning (RL) agent over 400
episodes. Initially, rewards are low and highly
variable due to exploration. After episode 100,
both peak and average rewards improve steadily,
indicating the agent is learning an effective
policy. The orange line, representing the moving
average, rises consistently, confirming positive
convergence.

Despite some fluctuation in later episodes, the
agent adapts well to the environment. This trend
aligns with the behavior of a well-tuned IDQN
algorithm in a moderately complex environment
(Tables 4 and 5). Summarizing the results shows
an average reward of 152.8 and an average of
155.2 steps.

Fig. 7 illustrates the simulation, where the x-axis
value is 10, and the y-axis cumulative reward is
120. Each blue bar represents the episode reward
for a specific simulation, with the height
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indicating the reward magnitude. The chart
includes horizontal dashed lines to denote the
mean and standard deviation, providing insight
into the overall performance and variability of
the simulations. Notably, simulation 6 achieved
the highest reward, exceeding 100, while
simulations 3, 4, and 7 recorded the lowest
rewards, close to or below 10. Simulations 2, 6,
and 9 performed above the mean, indicating
better outcomes in those trials.

The inclusion of the mean and standard deviation
highlights the consistency and spread of the data,
which is essential for evaluating the stability and
reliability of the learning model used in the
simulations.

As shown in Fig. 8, it illustrates a 20 x 20 grid-
based environment designed for mobile robot
navigation and path planning. The structured
grid, with both the x-axis and y-axis labeled from
0to 20, includes obstacles (black squares), a start
point (green dot), a goal point (red dot), and a
computed path (blue dashed line). The random
distribution of obstacles creates a challenging
terrain for efficient path planning. A legend in
the upper right corner enhances clarity.

The computed path navigates around obstacles,
suggesting the application of a path-planning
algorithm such as A*, enhanced deep g-network
(EDQN), D3QN, and IDQN.

Episode reward
= —
;_‘__

100 200 300 400 500 600 700

Episode number

Fig. 5. Training for 800 episodes.

z =

2

& 5

Episode reward
2 3

Episode number

Fig. 6. Training for 400 episodes.
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The smooth trajectory of the path implies the use
of a post-processing technique, like a smoothing
algorithm, to optimize the final route.

As shown in Fig. 9, it presents a 30 x 30 grid-
based environment designed for navigation. A
total of 100 obstacles (black squares) create a
challenging terrain for the navigation algorithm.
The start position is near the top-left corner (0,0),
while the goal is near the bottom-right corner
(28,28). This blue line indicates the robot's
movement, avoiding obstacles to reach the target
point.

The computed path efficiently navigates around
obstacles, suggesting the use of an advanced
path-planning algorithm such as A*, EDQN,
D3QN, and the proposed algorithm. The smooth
curvature of the path indicates the application of
path-smoothing technigques to minimize abrupt
turns and improve efficiency.

Table 6 Comparison of the proposed and another
existing algorithm, based on travel distance
(cm), travel time (sec), and training duration
(sec). Three algorithms already exist [26].

Table 4. Number of episode values for the proposed
algorithm.

) Episodes

Properties

1600 1200 800 400
Episode reward 35 118 117 200
Episode steps 41 124 123 200
Total agent steps 2688 1848 1192 3628
Average reward 56.4 132.6 139.8 152
Average steps 62.4 138.6 1458 155

Episode initial Q value 879 81.62 68.98 30

Table 5. Analysis results.

Layer  Activation Output  Learnable
Linear  Feature input 4

348 x 4
Layer  Fully connected 348 (weights)
Dense  Relu 348 -

348 x 348
Layer  Fully connected 348 (weights)
Dense  Relu 348 -

2 %348
Layer  Fully connected 2 (weights)
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Simulation results
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Fig. 7. Simulation results.
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Fig. 8. Robbt névigétion.envi-ronn'went.l (20 x 20 grid
with 50 obstacles).

Fig. 9. Robot navigation environment 2 (30 x 30 grid
with 100 obstacles).

A*, a conventional graph-based search method,
does not require training but results in a travel
distance of 30.9 cm and a travel time of 11 sec,
making it the least efficient. EDQN enhances
traditional DQN by incorporating reinforcement
learning for decision-making.

It achieves a shorter travel distance of 29.59 cm
and a reduced travel time of 9 sec but requires
1657 sec of training [27]. D3QN records a travel
distance of 30.38 cm, a travel time of 12 sec, and
a training duration of 1211 sec [28], showing
slightly lower efficiency compared to EDQN
and IDQN. Further optimizes IDQN, achieving
the shortest travel distance (28.14 cm) and the
fastest travel time (8 sec). Additionally, it
reduces the training duration to 1600 sec.
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Table 6. Comparison proposed method and another
existing algorithm.

An experimental and simulation . . .

. Travel distance Travel time Training duration
Algorithm

(cm) (sec) (sec)
A*[26] 309 11 -
EDQN
[27] 29.59 09 1657
D3QN [28] 30.38 12 1211
IDON 28.14 08 1600

Additional simulation scenarios to evaluate the
performance of the proposed method in static
environments with varying obstacle densities.
These scenarios more accurately reflect real-
world challenges, enabling the assessment of the
robustness and adaptability of the proposed
IDQN algorithm. To further support the
evaluation, we included behavioural analysis by
visualizing the path trajectories generated by A*,
DQN, and IDQN in grid-based environments.
These figures demonstrate how each method
navigates obstacles and highlight differences in
path efficiency, smoothness, and safety.

The proposed method consistently produces
shorter and smoother paths, especially in
complex or dynamic settings. We also extended
the result analysis beyond average values to
include success rate, reward variance, collision
count, and policy stability. These insights reveal
that, unlike A*, which is limited to static
conditions, IDQN adapts to environmental
changes and continues to improve its policy.
Overall, the enhanced analysis and visual
comparisons  demonstrate  the  practical
advantages of the proposed method over
classical approaches.

The D3QN algorithm typically requires around
400 sec of training duration, resulting in a 2-cm
and 4-sec reduction in travel distance and travel
time, respectively, due to its deeper architecture
and improved network stability compared to the
standard DQN. This training time is comparable
to, or slightly less than, that required by the
proposed method. In terms of performance,
D3QN achieves moderate improvements over
DQON, offering better policy efficiency and
robustness. These gains, while not as significant
as those achieved by more advanced approaches
like IDQN, are still meaningful when compared
to traditional methods.

Vol. 14, No. 2

Unlike learning-based algorithms, A* does not
require any training time and generates fixed,
deterministic paths based on static maps, making
it unsuitable for explaining the 400-sec training
period. On the other hand, while DQN requires
less training time than D3QN, it typically
exhibits lower performance, particularly in
complex or dynamic environments. Therefore,
the observed training and performance metrics
most closely align with D3QN as the existing
baseline algorithm.

3.2. Performance analysis

The performance analysis has been extended to
include main evaluation metrics such as success
rate, average path length, computational time,
and obstacle avoidance efficiency. A
comparative study was conducted between the
proposed algorithm and existing methods,
including A*, EDQN, IDQN, and D3QN. The
results are summarized as follows in Table 7.

3.3. Experimental results and discussion

In environment result 1, the robot successfully
navigated from start to goal within 16 sec, while
in environment result 2, the task was completed
in 17 sec. A comparison of simulation and
experimental results is provided. Figs. 10 and 11
illustrate two environmental results used to
validate the robot’s ability to reach its goal
efficiently. These results confirm that the
proposed algorithm effectively and efficiently
achieved the three objective functions,
demonstrating its success in optimizing path
planning, travel time, and navigation efficiency.
Experimental results indicate that our approach
surpasses the method in terms of localization
accuracy, achieving higher precision in complex
environments. As shown in Table 8, there is a
path distance error of 1.3765% and a travel time
deviation of 2%.

Three objective functions, such as energy
consumption, minimum path distance, and travel
time, along with their normalized objective
values [27]. These objectives are plotted on a
normalized scale from 0 to 1, representing the
level of optimization for each function.

281



JCARME

Vengatesan Arumugam, et al.

Table 7. Performance metrics analysis.
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Table 8. Comparison between simulation and
experimental results.

Success Path Computational Obstacle

Algorithm rate (%) length timeF(]sec) avoidance
(cm) (%)
A* 85.4 179 0.72 82.0
EDQN 91.3 16.3 0.65 88.9
D3QN 92.1 159 051 93.2
IDQN 94.7 158 0.58 91.4
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Fig. 10. Experimental result for environment 1.
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Fig. 11. Experimental result for environment 2.

Three objective functions vs normalized objective values

Energy consumption

Travel time

Fig. 12. Multi-objective functions.
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Mini path di

Environments 1 2
Simulation distance (cm) 310 324
Experimental distance (cm) 313 397
Error (%) 1.42 1.33
Simulation time (sec) 13 16
Experimental time (sec) 16 17
Deviation +3 +1

Fig. 12, each axis corresponds to a different
objective: energy consumption (top-left),
minimum path distance (right), and travel time
(bottom-left). The chart consists of concentric
circles, where 0 represents the worst
performance (highest value), and 1 represents
the best performance (lowest value) for each
objective. A blue polygon in the shaded area
illustrates the actual performance across the
three objectives, with closer proximity to the
outer ring (1.0) indicating better optimization.

4. Conclusions

The proposed method employed the IDQN
algorithm, focusing on three main objective
functions: minimum path distance, energy
consumption, and minimum travel time. The
proposed algorithm demonstrated its efficiency
by finding the most optimal path to the target.
Consequently, the simulation paths in the
proposed algorithm were found to be
satisfactory, with a deviation of less than 2%
between the simulation and experiment. The
error value was calculated to be 1.3765%. The
proposed strategy emerges as the most efficient
algorithm, achieving the shortest path and fastest
travel time with a slightly lower training
requirement than EDQN. While A* requires no
training, its longer travel distance and time make
it less effective.

The results demonstrate that reinforcement
learning algorithm-based approaches (EDQN,
D3QN, and IDQN) outperform traditional
algorithms like A* in dynamic or complex
environments. Improving the DQN algorithm,
performance, and overall efficiency is better than
other existing algorithms. In future work, the
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multi-objective function will be enhanced, and
multiple mobile robots will be employed across
various applications, including the food industry,
military, space exploration, medical field,
automotive industry, etc.
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