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This study presents a non-invasive method for detecting mechanical faults 

in a single-phase AC electromotor using processed acoustic signals. Sound 

data were collected via a USB-connected microphone installed in the motor's 

electrical casing under diverse operating conditions. Ten statistical features 

were extracted from the acoustic signals and used as input to three 

classification algorithms: Linear Discriminant Analysis (LDA), Quadratic 

Discriminant Analysis (QDA), and Support Vector Machine (SVM). Model 

performance was evaluated using confusion matrix metrics, including 

specificity, accuracy, precision, and sensitivity. Among the classifiers, SVM 

outperformed others, achieving average values of 99.5, 99.2, 97.1, and 96.7, 

respectively. The findings confirm  that acoustic signal analysis is a reliable 

and cost-effective tool for real-time fault diagnosis in electromotors. Defects 

may be accurately found in the electromotor by using acoustic analysis to 

monitor its status. The proposed framework is adaptable to other rotating 

machinery through retraining, offering a valuable solution for predictive 

maintenance in industrial applications.  
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1. Introduction  

 

To avoid significant faults in engineering 

systems, several researchers have looked at error 

detection and preventive maintenance in recent 

years. Numerous factors, including vibration, 

sound, and temperature, have been taken into 

account while analyzing machine failures. It is 

possible to evaluate the operational state of 

machines, which are often inaccessible, by using 

external data. Signal analysis is one of the most 

useful instruments that engineers and researchers 

have thought of [1]. 

One of the most widely used components in the 

industry is the electromotor, which is available 

in many forms. A breakdown of an electromotor 

in an industrial unit may cause the work to stop 

and increase the cost of repairs. Timely detection 

and repair of various defects in the electromotor 

prevents it from stopping suddenly and stopping 

the work process. In the usual method, this 

operation may cause more costs due to the lack 
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of a correct and early diagnosis of the defect. 

Therefore, new methods of fault diagnosis and 

monitoring the condition of machines can help to 

accurately diagnose the type of damage 

promptly and save on various costs. Today, 

employing sound analysis to monitor the 

condition of rotating industrial equipment is one 

way to reduce the cost of maintenance and 

repair. There could be differences in the health 

and failure states of the sound signals coming 

from various electromotor components [2]. 

So far, numerous techniques have been 

employed in machine troubleshooting, such as 

the use of acoustic emission techniques in 

internal combustion engines [3], current signal 

analysis for gearbox fault detection in induction 

motors [4, 5], and regular and continuous 

vibration and compressor noise measurement in 

internal combustion engine fault diagnosis [6]. 

Another study also investigated the early 

detection of defects in a single-phase 

electromotor using acoustic signals. The 

electromotor's conditions—healthy, with faulty 

bearings, and with both faulty bearings and a coil 

connection—were measured and examined by 

the authors [7]. 

In another study, Messi Ferguson's tractor starter 

motor fault was intelligently detected using 

vibration monitoring and an adaptive neuro-

fuzzy inference system (ANFIS). Vibration data 

were collected from the starter motor in health 

and failure conditions using a piezoelectric 

accelerometer sensor and a data-driven system. 

The results of classification with a confusion 

matrix showed that the accuracy of detection 

with this method was appropriate [8].  

A study has proposed the Fourier decomposition 

method (FDM) for fault detection based on 

acoustic signals for planetary gearboxes. The 

results showed that the accuracy of error 

detection in this proposed method reaches 

96.32%, which achieved a better fault detection 

effect compared to vibration signals [9]. In a 

research, electric locomotive bearing fault 

diagnosis was presented through a convolutional 

deep belief network (CDBN) with Gaussian 

visible units to learn the high-layer features. The 

proposed method was applied to the analysis of 

experimental signals collected for automatic and 

accurate identification of electric locomotive 

bearing faults [10]. Table 1 summarizes the 

numbers of studies discussed herein. 

Linear discriminant analysis (LDA) is a 

statistical method used in machine learning and 

pattern recognition to find the linear 

combination of properties that best distinguishes 

two or more classes of objects. The LDA method 

maximizes intergroup variance and minimizes 

intragroup variance in order to optimize 

segregation between groups. It is based on the 

assumption that each class can be modeled by 

a Gaussian distribution and that all the classes 

share the same covariance matrix. Quadratic 

discriminant analysis (QDA) is similar to LDA 

but without the assumption that the classes share 

the same covariance matrix, i.e., each class has 

its own covariance matrix. In this case, the 

boundary between classes is a quadratic surface 

instead of a hyperplane [11, 12]. 

A support vector machine (SVM) is one of the 

supervised learning methods used for 

classification and regression. The SVM 

algorithm is classified as a pattern recognition 

algorithm. This algorithm can be used wherever 

there is a need to identify patterns or classify 

objects in specific classes. SVM Classifier is 

based on linear data classification, and in this 

division, it tries to choose a line that has a more 

confident margin [13, 14]. 

In parallel with the advancement of machine 

learning techniques in engineering diagnostics, 

Artificial Neural Networks (ANNs) have 

demonstrated remarkable success across various 

mechanical engineering domains. For instance, 

in a recent comprehensive study by Sekban et al. 

(2024), the formability behavior of friction stir-

welded high-strength AH32 shipbuilding steel 

was investigated using an integrated approach of 

experimental methods, finite element analysis, 

and ANNs. Their research confirmed that ANN 

models could achieve extremely consistent 

results with experimental data, highlighting the 

capability of such data-driven models to 

accurately predict complex mechanical 

behaviors even in the absence of extensive 

experimental studies. This underscores the 

broader potential and reliability of machine 

learning methods, including ANNs, for solving 

intricate problems in mechanical system analysis 

and fault diagnosis [20].  
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Table 1. Summary of relevant studies on fault diagnosis methods. 
Subject Method Result Reference 

Investigation of engine 

fault diagnosis 

Discrete wavelet transforms and 

neural network 

Sound emission signal can be used for fault 

diagnosis of various engine operating 

conditions. 

[15] 

Fault detection and 

diagnosis of an industrial 

steam turbine 

SVM (Support vector machine) 

and ANFIS (Adaptive neuro-

fuzzy inference system) 

The experimental operation of the SVM 

classifier was better than the ANFIS classifier 

operation through a fusion strategy. 

[16] 

Fault conditions 

classification of automotive 

generator 

ANFIS 
The proposed system has potential in fault 

diagnosis of the automotive generator 
[17] 

Assessment of gearbox 

fault detection 

Vibration signal analysis and 

acoustic emission technique 

Vibration signature analysis and acoustic 

emission are two very efficient techniques for 

early fault detection. 

[5] 

Fault classification of a 

kind of clutch mechanism 

retainer 

Vibration analysis using the 

ANFIS 

Total classification accuracy was 100% in all 

models. 
[18] 

Fault detection of bearings 

and stators in a single-phase 

induction motor 

Sound analysis and machine 

learning methods 

Total efficiency of acoustic signal recognition 

for three classifiers of nearest neighbor, nearest 

mean and gaussian mixture were 91.6, 95.3, and 

88.8, respectively. 

[7] 

Fault diagnosis of rotating 

electrical machines 

Vibration analysis and machine 

learning methods and the 

application of multiple 

classifications 

The possibility of electromotor fault detection. [19] 

Fault detection based on 

acoustic signals for 

planetary gearboxes 

Fourier decomposition method 

(FDM) 

The accuracy of error detection reaches 96.32% 

and better than vibration signals. 
[9] 

 

While LDA, QDA, and SVM are established 

classification methods, the novelty of this work 

lies in their integrated application to develop a 

cost-effective and non-invasive diagnostic 

framework. This framework successfully 

discriminates between multiple concurrent 

mechanical faults (bearing failure, shaft 

imbalance, and shaft wear) in a single-phase AC 

motor using only commercially available 

acoustic sensors, demonstrating a practical and 

accessible alternative to vibration-based 

monitoring for industrial settings. The 

performance of the proposed approaches was 

rigorously evaluated using confusion matrix 

metrics, including sensitivity, specificity, 

precision, and accuracy. Although based on a 

laboratory test bench, the methodology shows 

strong potential for generalization to other 

rotating machinery through model retraining. 

 

2. Materials and methods 

 

This research was performed on a single-phase 

low-power AC electromotor MOTOGEN 

TABRIZ-IRAN with an output power of 1.1 kW, 

rated voltage of 220 V, speed in the rated load of 

1420 rpm, rated current of 7.4 A, and rated 

torque of 7.4 N.m. Sound waves were measured 

at WAV format using a YW-001 wired sound 

microphone with a frequency range of 15-30 

kHz, impedance of 2.2 kΩ, and sensitivity of 

52±5 dB, which was connected to a laptop 

through the USB interface. The sensor was 

placed in the electrical circuit housing 

(distribution box) of the electromotor. An RM-

1501 laser tachometer was also utilized to 

measure the rotation speed of the electromotor 

(Fig. 1). 
 

 
Fig. 1. Experimental tools and equipment. 
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The present study was performed to detect and 

identify common mechanical defects of an AC 

single-phase electromotor (including bearing 

failure, shaft imbalance, and shaft surface wear), 

at two common operating speeds (500 and 1400 

rpm) by processing acoustic signals. Acoustic 

data were collected using the sound card of a 

laptop device and the application of the AD 

Sound Recorder software. According to Fig. 2, 

data were collected from one healthy condition 

(H) and three separate electromotor failure 

modes, including bearing failure (FB), shaft 

unbalance (USH), and shaft surface wear 

(WSH). The number of electromotor rotation 

speeds, total number of test modes, and 

repetitions of the tests were 2 (500 and 1400 

rpm), 4 modes (H, FB, USH, and WSH), and 30 

times, resulting in a total of 240 data points (2 × 

4 × 30). In this study, the failures were in the 

form of damage and wear of the inner ring of the 

bearing, reduction of the shaft diameter by 10%, 

and unbalance using a 20 g load (Fig. 2). 
 

2.1. Signal processing 
 

Signal processing is one of the most important 

and widely used topics in engineering fields. 

Signal processing was performed using the tools 

in the MATLAB software digital processing 

toolbox to convert analog signals in the time 

domain to digital data in the frequency domain. 

In order to process the received acoustic signals, 

they must be intelligible to the computer (digital 

signals only). Because the microphone output 

was an analog output, it could not enter the 

computer system directly; Therefore, connect 

the microphone to the laptop sound card, and the 

signals were recorded and stored in each of the 

health and failure modes. An example of the 

electromotor sound spectrum is illustrated in 

Fig. 3 (USH mode and 1400 rpm). 

Audio signal processing refers to the purposeful 

transformation of acoustic data, usually done by 

Audio Effects or Audio Units. Since it is possible 

to display audio signals in both digital and 

analog formats, signal processing is possible in 

both areas. Analog processors operate directly 

on electronic signals, while digital processors 

mathematically operate on a digital instance of 

that signal.  

 
Fig. 2. Electromotor failure modes. 

 

The processed signals were used to extract ten 

normalized statistical characteristics under both 

healthy and defective conditions. 
 

2.2. Calculation of statistical characteristics 
 

The feature vector that is selected as the network 

input represents a summary of the most 

important problem properties for identifying and 

classifying faults. The most important properties 

were calculated using some time and frequency 

domain parameters. Ten statistical 

characteristics of audio signals were calculated 

according to Table 2 [8]. Each of these properties 

was calculated using the corresponding 

formulas. Before using the statistical properties 

in the classification algorithm, they were 

normalized to have a uniform effect on the 

algorithm. 
 

2.3. Classification of defects 
 

After data collection and signal processing, the 

data were sorted into the states of healthy and 

failure modes by different approaches of LDA, 

QDA, and SVM. In the present study, 70% of the 

obtained data were used for model training, and 

30% for testing and evaluation. The inputs of the 

models included the calculated characteristics, 

and the outputs were different modes of the 

electromotor (Fig. 4). 
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Fig. 3. Frequency spectrum (a), time spectrum (b) of electromotor acoustic signals in USH mode and 1400 rpm.

Table 2. Calculated statistical properties. 
Property A1 A2 A3 A4 A5 

description mean median Std. deviation variance skewness 
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Property A6 A7 A8 A9 A10 

description kurtosis range minimum maximum sum 

Formula 
1

𝑛
∑ (

xi − x̅

s
)

4

 Max (x) − Min (x) x0 ≤ x x0 ≥ x ∑ x𝑖 

 

 

 
Fig. 4. Inputs and outputs of classification models. 
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The analysis obtained from the confusion matrix 
gave rise to four states of true positive (TP) or 
hit, true negative (TN) or correct rejection, false 
positive (FP) or underestimation, and false 
negative (FN) equivalent with miss or 
overestimation. The unscrambler X10.4 
software was used for LDA, QDA, and SVM 
analyses after preprocessing the data.  
Parameters such as sensitivity, specificity, 
precision, and accuracy (Eqs. 1-4) were used to 
analyze the performance of classifier models 
[21]. 
 

Sensitivity =
TP

TP + FN
 × 100                                (1) 

Specificity =
TN

TN + FP
 × 100                         (2) 

Precision =
TP

TP + FP
× 100                            (3) 

Accuracy =
TP + TN

TP + TN + FN + FP
× 100       (4) 

 
3. Results and discussion 

3.1. Results of linear discriminant analysis 
(LDA) 

 

In the present study, the LDA method was one 
of the methods used to diagnose and classify 
electromotor defects in 8 classes (H500, FB500, 
USH500, WSH500, H1400, FB1400, USH1400, 
and WSH1400). Each class had 30 replications,  

so 21 replications (70% of the data) were used 
randomly to train the model, and 9 replications 
(30% of the data) were used to evaluate and test 
it. The results of the confusion matrix (Table 3) 
showed that in the linear discriminant analysis, 
only 5 data points out of 168 training data were 
mistakenly placed in another group, and 4 data 
points from the test data were similar. The 
calculation of the performance parameters of this 
model is presented in Table 4. The findings 
indicated that the mean of accuracy, precision, 
specificity, and sensitivity for the whole data 
were 99.1, 96.6, 99.5, and 96.2, respectively. 
These results show the high reliability and 
accuracy of this model in the separation and 
classification of defects related to the 
electromotor. The weakest classifications were 
related to the USH1400 and WSH1400 classes. 
The precision of the USH1400 class and the 
sensitivity of the WSH1400 class for all data 
were 80.6 and 80.0, respectively. Due to the high 
rotational speed of the electromotor and the 
similarity of acoustic signals in these two 
classes, the model's performance declines under 
such conditions. 
Fig. 5 shows an example of classifying training 
data for different types of electromotor modes 
using the LDA approach. The plot visualizes the 
distribution of different classes in the two-
dimensional discriminant space, with LD1 (First 
Linear Discriminant) and LD2 (Second Linear 
Discriminant) as the coordinate axes.  

Table 3. Confusion matrix of the LDA model. 
Data type Classes H500 FB500 USH500 WSH500 H1400 FB1400 USH1400 WSH1400 
 H500 21 0 0 0 0 0 0 0 
 FB500 0 21 0 0 0 0 0 0 
 USH500 0 0 21 0 0 0 0 0 

Training 

data 
WSH500 0 0 0 21 0 0 0 0 

 H1400 0 0 0 0 20 0 0 0 
 FB1400 0 0 0 0 0 20 0 0 
 USH1400 0 0 0 0 1 0 20 2 
 WSH1400 0 0 0 0 0 1 1 19 
          

 H500 9 0 0 0 0 0 0 0 
 FB500 0 9 0 0 0 0 0 0 

Testing 

data 
USH500 0 0 9 0 0 0 0 0 

 WSH500 0 0 0 9 0 0 0 0 
 H1400 0 0 0 0 9 0 0 0 
 FB1400 0 0 0 0 0 9 0 0 
 USH1400 0 0 0 0 0 0 9 4 
 WSH1400 0 0 0 0 0 0 0 5 
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Table 4. Performance parameters of the LDA model. 

Data type Classes/ Parameters TP FP FN TN Specificity Accuracy Precision Sensitivity 
 H500 21 0 0 147 100.0 100.0 100.0 100.0 
 FB500 21 0 0 147 100.0 100.0 100.0 100.0 
 USH500 21 0 0 147 100.0 100.0 100.0 100.0 
 WSH500 21 0 0 147 100.0 100.0 100.0 100.0 

Training 

data 
H1400 20 0 1 147 100.0 99.4 100.0 95.2 

 FB1400 20 0 1 147 100.0 99.4 100.0 95.2 
 USH1400 20 3 1 144 98.0 97.6 87.0 95.2 
 WSH1400 19 2 2 145 98.6 97.6 90.5 90.5 
     Ave. 99.6 99.3 97.2 97.0 
 H500 9 0 0 63 100.0 100.0 100.0 100.0 
 FB500 9 0 0 63 100.0 100.0 100.0 100.0 

Testing 

data 
USH500 9 0 0 63 100.0 100.0 100.0 100.0 

 WSH500 9 0 0 63 100.0 100.0 100.0 100.0 
 H1400 9 0 0 63 100.0 100.0 100.0 100.0 
 FB1400 9 0 0 63 100.0 100.0 100.0 100.0 
 USH1400 9 4 0 59 93.7 94.4 69.2 100.0 
 WSH1400 5 0 4 63 100.0 94.4 100.0 55.6 
     Ave. 99.2 98.6 96.2 94.4 
 H500 30 0 0 210 100.0 100.0 100.0 100.0 
 FB500 30 0 0 210 100.0 100.0 100.0 100.0 

All data USH500 30 0 0 210 100.0 100.0 100.0 100.0 
 WSH500 30 0 0 210 100.0 100.0 100.0 100.0 
 H1400 29 0 1 210 100.0 99.6 100.0 96.7 
 FB1400 29 0 1 210 100.0 99.6 100.0 96.7 
 USH1400 29 7 1 203 96.7 96.7 80.6 96.7 
 WSH1400 24 2 6 208 99.0 96.7 92.3 80.0 
     Ave. 99.47 ± 1.47 98.62±1.77 96.61±7.7

3 

95.84±9.6

9 

 
Fig. 5. The classification plot of the linear discriminant analysis approach. 
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As verified by the confusion matrix in Table 3, 

specific misclassification patterns are visually 

identifiable: certain samples from both 

FB1400 and USH1400 classes are erroneously 

clustered within the WSH1400 region. These 

misclassified instances are explicitly marked 

with distinct symbols for clarity. The remaining 

correctly classified WSH1400 samples in this 

area demonstrate appropriate clustering, 

indicating regions of feature space overlap 

between classes that present classification 

challenges for the LDA model. 

In a study comparing the audio signals processed 

from gearbox gears in healthy and defective 

conditions, it was shown that the effect of the 

defect type can be seen by increasing the 

frequency range and its harmonics or creating 

sub-bands around the gear engagement 

frequency [2]. Also, in another study, using the 

obtained sound data and employing the decision 

tree algorithm, a model was developed to learn 

and classify the bearing condition. The inputs of 

the model were statistical parameters such as 

mean, median, and kurtosis. The model accuracy 

was 95.5% for classifying bearing conditions 

[22]. 

 

3.2. Results of quadratic discriminant analysis 

(QDA) 
 

In the QDA model, each class had 30 

replications, so 21 replications (70% of the data) 

were used randomly to train the model, and 9 

replications (30% of the data) were used to 

evaluate and test it. The results of data analysis 

of electromotor defects at different rotational 

speeds using the QDA approach are presented in 

Table 5. The results showed that in all 

classifications, the detection of acoustic signals 

related to USH500, WSH500, and H1400 was 

performed with complete accuracy and 

precision. The findings also indicated that the 

QDA approach had no sensitivity to the acoustic 

signals of the WSH1400 class, and all the signals 

of this class were mistakenly placed in other 

classes. Therefore, its sensitivity and precision in 

the training and testing data were zero, as well as 

all data. In this classification, all data related to 

the WSH1400 class were misclassified into the 

USH1400 or FB1400 classes. Consequently, the 

QDA approach demonstrated lower average 

precision and sensitivity compared to the LDA 

method. 

The complete failure of QDA in classifying 

WSH1400 samples (0% sensitivity/precision) 

reveals a key limitation of our feature set. It can 

be said that most likely, both shaft unbalance 

(USH) and wear (WSH) primarily excite 1x 

rotational frequency and harmonics at high 

speeds, making them spectrally similar. Our 

general statistical features, while effective for 

broader classification, cannot capture the subtle 

differences between these specific fault 

signatures. This finding clearly indicates the 

need for more specialized features (e.g., 

harmonic ratios, sideband analysis) to 

discriminate between mechanically different but 

spectrally similar faults. 

In a recent paper published by the present 

authors, similar results were obtained using 

similar data and a machine learning method for 

the detection and classification of electromotor 

defects. The results showed final classification 

sensitivity of 95.63% and an overall 

classification accuracy of 95.71% [23]. 

The performance drop observed in challenging 

classes like WSH1400 and USH1400 

underscores the limitation of using a simple 

train-test split with limited data. While the 70/30 

split provided initial performance estimates, this 

validation approach may introduce statistical 

variability due to the limited sample size per 

class. Employing k-fold cross-validation in 

future studies could yield more robust and 

reliable performance metrics by utilizing the 

entire dataset more effectively for both training 

and validation. 
 

3.3. Results of support vector machine (SVM) 
 

In the SVM model, each class had 30 

replications, so 21 replications (70% of the data) 

were used randomly to train the model, and 9 

replications (30% of the data) were used to 

evaluate and test it. To use the SVM approach, 

data were first entered into the software to train 

it, and the optimal model settings were obtained 

from its grid search capability as follows: SVM 

type of classification (nu-SVC), kernel type of 

polynomial degree 2, gamma of 0.1, offset of 0, 

nu value of 0.255, and input weights of 1. 



JCARME                                                                                                                                  Vol. X, No. X  

 

Table 5. Performance parameters of the QDA model. 

Data type Classes/ Parameters TP FP FN TN Specificity Accuracy Precision Sensitivity 
 H500 21 0 0 147 100.0 100.0 100.0 100.0 
 FB500 21 0 0 147 100.0 100.0 100.0 100.0 
 USH500 21 0 0 147 100.0 100.0 100.0 100.0 
 WSH500 21 0 0 147 100.0 100.0 100.0 100.0 

Training data H1400 21 0 0 147 100.0 100.0 100.0 100.0 
 FB1400 21 17 0 130 88.4 89.9 55.3 100.0 
 USH1400 21 4 0 143 97.3 97.6 84.0 100.0 
 WSH1400 0 0 21 147 100.0 87.5 00.0 00.0 
     Ave. 98.2 96.9 79.9 87.5 

 H500 9 8 0 55 87.3 88.9 52.9 100.0 
 FB500 1 0 8 63 100.0 88.9 100.0 11.1 

Testing data USH500 9 0 0 63 100.0 100.0 100.0 100.0 
 WSH500 9 0 0 63 100.0 100.0 100.0 100.0 
 H1400 9 0 0 63 100.0 100.0 100.0 100.0 
 FB1400 9 5 0 58 92.1 93.1 64.3 100.0 
 USH1400 9 4 0 59 93.7 94.4 69.2 100.0 
 WSH1400 0 0 9 63 100.0 87.5 00.0 00.0 
     Ave. 96.6 94.1 73.3 76.4 

 H500 30 8 0 202 96.2 96.7 78.9 100.0 
 FB500 22 0 8 210 100.0 96.7 100.0 73.3 

All data USH500 30 0 0 210 100.0 100.0 100.0 100.0 
 WSH500 30 0 0 210 100.0 100.0 100.0 100.0 
 H1400 30 0 0 210 100.0 100.0 100.0 100.0 
 FB1400 30 22 0 188 89.5 90.8 57.7 100.0 
 USH1400 30 8 0 202 96.2 96.7 78.9 100.0 
 WSH1400 0 0 30 210 100.0 87.5 00.0 00.0 
     Ave. 97.74±4.16 96.02±4.98 76.95±33.86 84.17±36.96 

 

The performance parameters of the SVM 

approach for the detection and classification of 

the electromotor defects in the three statuses of 

train, test, and all data are presented in Table 6. 

As can be seen, the most classification errors 

occurred in the WSH1400 and USH1400 classes 

and caused a downward trend for their precision 

and sensitivity parameters, especially in the test 

data. Four out of nine test data for WSH1400 are 

incorrectly placed in USH1400, so the precision 

for USH1400 class test data dropped sharply to 

the lowest value of 69.2. The sensitivity 

parameter was also estimated to be at its lowest 

value of 55.6 for the WSH1400 class due to the 

incorrect classification of some test data. The 

calculations of performance parameters for other 

classes show high accuracy. In the SVM 

approach, the average of specificity, accuracy, 

precision, and sensitivity for all data was 

calculated to be 99.5, 99.2, 97.1, and 96.7, 

respectively. An example of an SVM approach 

classification plot for training data is shown in 

Fig. 6. In the Support Vector Machine (SVM) 

decision boundary projection plot, the 

distribution pattern of data points in the two-

dimensional space clearly reveals 

misclassification cases. As illustrated in the 

figure, one sample from class FB1400 is 

incorrectly positioned within the region 

belonging to class WSH1400. Three samples 

from other classes are also erroneously located 

within the USH1400 class boundary. This 

unexpected dispersion of samples into other 

classes' territories directly corresponds with the 

values in the confusion matrix (Table 5). The 

position of these points in the projected space 

indicates that the extracted features of these 

particular samples have values that align more 

closely with the decision boundaries of other 

classes according to the SVM model. .  
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Table 6. Performance parameters of the SVM model. 

Data type Classes/ Parameters TP FP FN TN Specificity Accuracy Precision Sensitivity 
 H500 21 0 0 147 100.0 100.0 100.0 100.0 
 FB500 21 0 0 147 100.0 100.0 100.0 100.0 
 USH500 21 0 0 147 100.0 100.0 100.0 100.0 
 WSH500 21 0 0 147 100.0 100.0 100.0 100.0 

Training data H1400 20 0 1 148 100.0 99.4 100.0 95.2 
 FB1400 20 0 1 148 100.0 99.4 100.0 95.2 
 USH1400 21 3 0 144 98.0 98.2 87.5 100.0 
 WSH1400 19 1 2 148 99.3 98.2 95.0 90.5 
     Ave. 99.7 99.4 97.8 97.6 
 H500 9 0 0 63 100.0 100.0 100.0 100.0 
 FB500 9 0 0 63 100.0 100.0 100.0 100.0 

Testing data USH500 9 0 0 63 100.0 100.0 100.0 100.0 
 WSH500 9 0 0 63 100.0 100.0 100.0 100.0 
 H1400 9 0 0 63 100.0 100.0 100.0 100.0 
 FB1400 9 0 0 63 100.0 100.0 100.0 100.0 
 USH1400 9 4 0 59 93.7 94.4 69.2 100.0 
 WSH1400 5 0 4 67 100.0 94.7 100.0 55.6 
     Ave. 99.2 98.6 96.2 94.4 
 H500 30 0 0 210 100.0 100.0 100.0 100.0 
 FB500 30 0 0 210 100.0 100.0 100.0 100.0 

All data USH500 30 0 0 210 100.0 100.0 100.0 100.0 
 WSH500 30 0 0 210 100.0 100.0 100.0 100.0 
 H1400 29 0 1 211 100.0 99.6 100.0 96.7 
 FB1400 29 0 1 211 100.0 99.6 100.0 96.7 
 USH1400 30 7 0 203 96.7 97.1 81.1 100.0 
 WSH1400 24 1 6 215 99.5 97.2 96.0 80.0 
     Ave. 99.54±1.45 99.16±1.65 97.15±7.49 96.17±9.76 

 

 

Fig. 6. The classification plot of the support vector machine approach. 
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This phenomenon could stem from either 

intrinsic overlap in feature distributions among 

different classes or the presence of outliers in the 

training dataset. 

In a study, the vibration signals in different 

directions (axial, horizontal, or vertical) and the 

SVM were used together for mechanical fault 

diagnosis and online monitoring of the induction 

motor. The results presented a 96% of hits [24]. 

Another study employs a multi-sensor system 

(acoustic, vibration, and current) for the 

eccentricity and bearing fault diagnosis of 

induction motors. Data analysis was performed 

using combined and multi-step methods of LDA, 

QDA, and SVM. The results showed that the 

average accuracy was 95% [25]. 
 

3.4. Models’ comparison results 
 

Comparison of the performance parameters of 

all three models showed the higher capability of 

the SVM approach in all cases. The accuracy and 

sensitivity of the SVM approach were 99.2 and 

96.7, respectively. While the QDA approach 

exhibited the accuracy and the sensitivity of 96.0 

and 84.2, respectively, it was the weakest 

approach (Table 7). The results of the LDA 

approach revealed that its performance 

parameters were close to those of the SVM 

method, with a slight difference.  Out of 240 data 

point, the SVM, LDA, and QDA methods led to 

8, 9, and 38 misclassification cases, respectively. 

Notably, the average performance parameters 

were the results obtained in the 8 categories, not 

the mean value of the data. The comparison of 

LDA, QDA, and SVM was conducted as a 

validation step to assess the effectiveness of 

machine learning techniques in classifying 

defects based on acoustic features.  

Our results demonstrate that acoustic-based 

diagnosis, when paired with proper classifiers, 

can achieve high accuracy and offer a cost-

effective alternative to vibration-based systems 

in industrial settings. 

To ensure a robust evaluation of classifier 

performance, this study employed both a 

conventional 70/30 hold-out method and a more 

rigorous 10-fold cross-validation (CV) 

approach. Cross-validation provides a 

significant advantage over simple data splitting 

by utilizing the entire dataset for both training 

and validation through multiple iterations, 

thereby yielding more reliable and generalizable 

performance estimates while reducing the 

variance of the results. 

A comparative summary of the model 

performances under both validation schemes is 

presented in Table 7. While the initial 70/30 split 

indicated high performance for all models, the 

cross-validation results provided a more nuanced 

and trustworthy assessment. The key 

improvement was observed with the QDA 

classifier; the CV approach, coupled with 

pseudo-quadratic discriminant analysis, 

effectively resolved its initial failure to classify 

specific fault conditions, which was masked in 

the simpler split. Furthermore, the CV revealed 

the superior consistency and stability of the 

SVM model, as evidenced by its minimal 

performance variation across different data 

folds. In contrast, the LDA classifier showed 

higher performance variability under CV, 

suggesting its estimates from the single 70/30 

split were less reliable. 

In conclusion, the cross-validation methodology 

not only strengthened the credibility of our 

performance metrics but also confirmed SVM as 

the most robust and consistent classifier for the 

task of acoustic-based fault diagnosis, making it 

the recommended choice for practical industrial 

applications. 

The high diagnostic accuracy demonstrated by 

the SVM classifier (99.2%) confirms the strong 

potential of acoustic-based monitoring for 

industrial implementation. This research 

provides a practical framework for several 

applications,   including   real  -  time   condition  

 

monitoring of electromotors, predictive 

maintenance systems to reduce unplanned 

downtime, and cost-effective solutions suitable 

for small-to-medium enterprises using low-cost 

microphones and standard hardware. 

Furthermore, the methodology exhibits excellent 

scalability, being adaptable to other rotating 

machinery such as pumps, fans, and compressors 

through model retraining with domain-specific 

data, and can be integrated with IoT platforms 

for remote fault diagnosis. The superior 

performance of the non-linear SVM classifier 
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indicates complex, non-linear relationships in 

the acoustic data, necessitating curved decision 

boundaries for optimal fault separation. 

Conversely, the strong performance of the linear 

LDA model reveals that a significant linear 

component also exists, allowing effective class 

separation through linear discrimination. The 

initial failure of QDA was not due to 

methodological weakness but resulted from the 

"curse of dimensionality"- where limited 

samples (n=30) made covariance matrices 

singular. This was resolved using 

pseudoQuadratic discriminant analysis, 

demonstrating QDA's effectiveness when 

numerical stability is ensured. Therefore, SVM 

emerges as the optimal classifier due to its ability 

to handle both the linear and non-linear 

characteristics of the acoustic fault signatures. 
 

4. Conclusions 

 

This study successfully demonstrates the 

effectiveness of acoustic signal analysis 

combined with machine learning for fault 

diagnosis in single-phase AC electromotors. The 

main findings are summarized as follows: 

1. Acoustic monitoring effectiveness: 
 

Acoustic signals provide a reliable, non-

invasive method for detecting mechanical 

faults in electromotors, serving as a viable 

alternative to vibration-based monitoring 

systems. 

2. SVM superior performance:  

Among the three classifiers evaluated, 

Support Vector Machine (SVM) achieved 

the highest performance with average values 

of: 

- Specificity: 99.5% 

- Accuracy: 99.2% 

- Precision: 97.1% 

- Sensitivity: 96.7% 

The superior and most consistent performance of 

the Support Vector Machine, validated through 

rigorous 10-fold cross-validation, confirms its 

high potential for reliable real-time fault 

diagnosis in industrial environments. 

3. Comparative algorithm performance:  

- SVM demonstrated the best overall 

performance 

- LDA showed competitive results close 

to SVM 

- QDA exhibited the weakest 

performance among the three methods 

4. Challenging fault conditions:  

The WSH1400 class (shaft wear at 1400 

rpm) presented the most significant 

classification challenge due to acoustic 

signal similarity with the USH1400 and 

FB1400 classes.  This indicates that standard 

statistical features cannot distinguish 

between certain mechanical faults 

(particularly unbalance and shaft wear) that 

generate similar harmonic responses at high 

rotational speeds. 

5. Industrial applicability:  

The proposed method offers: 

- Cost-effective solution using low-cost 

microphones 

- Real-time fault detection capability 

- Scalability to other rotating machinery 

- Potential for predictive maintenance 

systems 

 

Table 7. Comparative Model Performance Evaluation. 

Classifier Validation method Specificity Accuracy Precision Sensitivity 

LDA 70/30 Split 99.47% ± 1.47 98.62% ± 1.77 96.61% ± 7.73 95.84% ± 9.69 
 10-Fold CV 99.29% ± 1.19 95.00% ± 3.83 96.40% ± 6.14 95.00% ± 7.13 

QDA 70/30 Split 97.74% ± 4.16 96.02% ± 4.98 76.95% ± 33.86 84.17% ± 36.96 
 10-Fold CV 99.76% ± 0.36 98.33% ± 2.15 98.75% ± 1.89 98.33% ± 2.52 

SVM 70/30 Split 99.54% ± 1.45 99.16% ± 1.65 97.15% ± 7.49 96.17% ± 9.76 
 10-Fold CV 99.88% ± 0.22 99.17% ± 1.76 99.37% ± 1.16 99.17% ± 1.54 
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6. Future research directions: 
- Extension to electrical faults and 

combined fault conditions 

- Implementation of online monitoring 

systems 

- Integration with IoT platforms for 

remote diagnostics 

- Exploration of deep learning approaches 

for enhanced accuracy 

The methodology presents a practical framework 

for industrial condition monitoring, with SVM 

emerging as the most robust classifier for 

acoustic-based fault diagnosis in rotating 

machinery. 

 

Data availability statement 

 

All data generated or analyzed during this study 

are included in this published article [and its 

supplementary information files]. 

 

Acknowledgments 

 

The authors thank all those who helped them in 

this research, especially the vice chancellor for 

research and technology of Razi University. 

 

Conflict of interest 

 

The above research has no conflict of interest 

with organizations and individuals. 

 

References 

 

[1]  J. Rafiee, F. Arvani, A. Harifi and M. 

Sadeghi, "Intelligent condition monitoring of 

a gearbox using artificial neural network", 

MSSP, Vol. 21, No. 4, pp. 1746-1754, (2007).  

[2]  M. Zamani, M. Aboonajmi and S. Hassan-

Beygi, "Design, development and test of the 

gearbox condition monitoring system using 

sound signal processing", J. Agric. Mach., 

Vol. 6, No. 2, pp. 322-335, (2016). [In 

Persian] 

[3]  J. A. Steel and R. L. Reuben, "Recent 

developments in monitoring of engines using 

acoustic emission", J. Strain Anal. Eng. Des., 

Vol. 40, No. 1, pp. 45-57, (2005).  

[4]  J. J. Saucedo-Dorantes, M. Delgado-Prieto, 

J.A. Ortega-Redondo, R.A. Osornio-Rios and 

R.d.J. Romero-Troncoso, "Multiple-fault 

detection methodology based on vibration 

and current analysis applied to bearings in 

induction motors and gearboxes on the 

kinematic chain", Shock and Vibration, Vol. 

2016, No. 1, pp. 5467643, (2016).  

[5]  V. Saxena, N. Chowdhury and S. 

Devendiran, "Assessment of gearbox fault 

detection using vibration signal analysis and 

acoustic emission technique", J. Mech. Civ. 

Eng., Vol. 7, No. 4, pp. 52-60, (2013).  

[6]  L. Barelli, G. Bidini, C. Buratti and R. 

Mariani, "Diagnosis of internal combustion 

engine through vibration and acoustic 

pressure non-intrusive measurements", Appl. 

Therm. Eng., Vol. 29, No. 8-9, pp. 1707-

1713, (2009).  

[7]  A. Glowacz, W. Glowacz, Z. Glowacz and J. 

Kozik, "Early fault diagnosis of bearing and 

stator faults of the single-phase induction 

motor using acoustic signals", Measurement, 

Vol. 113, pp. 1-9, (2018).  

[8]  E. Ebrahimi and K. Mollazade, "Intelligent 

fault classification of a tractor starter motor 

using vibration monitoring and adaptive 

neuro-fuzzy inference system", Insight, Vol. 

52, No. 10, pp. 561-566, (2010).  

[9]  J. Yao, C. Liu, K. Song, C. Feng and D. Jiang, 

"Fault diagnosis of planetary gearbox based 

on acoustic signals", Appl. Acoust., Vol. 181, 

pp. 108151, (2021).  

[10]  H. Shao, H. Jiang, H. Zhang and T. Liang, 

"Electric locomotive bearing fault diagnosis 

using a novel convolutional deep belief 

network", ITIE, Vol. 65, No. 3, pp. 2727-

2736, (2017).  

[11]  G. McLachlan, "Discriminant analysis and 

statistical pattern recognition", John Wiley & 

Sons, 2005. 

[12]  A. Sanaeifar, S. S. Mohtasebi, M. Ghasemi-

Varnamkhasti and H. Ahmadi, "Application 

of MOS based electronic nose for the 

prediction of banana quality properties", 

Measurement, Vol. 82, pp. 105-114, (2016).  

[13]  M. Pardo and G. Sberveglieri, "Classification 

of electronic nose data with support vector 

machines", SeAcB, Vol. 107, No. 2, pp. 730-

737, (2005).  



JCARME                                                                                                                                  Vol. X, No. X  

 

[14]  A. Sanaeifar, S. S. Mohtasebi, M. Ghasemi-

Varnamkhasti and M. Siadat, "Application of 

an electronic nose system coupled with 

artificial neural network for classification of 

banana samples during shelf-life process", 

International Conference on Control, 

Decision and Information Technologies 

(CoDIT), IEEE, pp. 753-757, (2014).  

[15]  D. M. Sekban, E. U. Yaylacı, M. E. Özdemir, 

M. Yaylacı and A. Tounsi, "Investigating 

formability behavior of friction stir-welded 

high-strength shipbuilding steel using 

experimental, finite element, and artificial 

neural network methods", J. Mater. Eng. 

Perform., Vol. 34, No. 6, pp. 4942-4950, 

(2025).  

[16]  J. D. Wu and C. H. Liu, "Investigation of 

engine fault diagnosis using discrete wavelet 

transform and neural network", Expert Syst. 

Appl., Vol. 35, No. 3, pp. 1200-1213, (2008).  

[17] K. Salahshoor, M. Kordestani and M.S. 

Khoshro, "Fault detection and diagnosis of an 

industrial steam turbine using fusion of SVM 

(support vector machine) and ANFIS 

(adaptive neuro-fuzzy inference system) 

classifiers", Energy, Vol. 35, No. 12, pp. 

5472-5482, (2010).  

[18]  J.D. Wu and J.-M. Kuo, "Fault conditions 

classification of automotive generator using 

an adaptive neuro-fuzzy inference system", 

Expert Syst. Appl., Vol. 37, No. 12, pp. 7901-

7907, (2010).  

[19]  E. Ebrahimi, S. Bahrami, N. Astan and M.M. 

Jalilian, "Application of Neural Networks in 

Fault Classification of a kind of Clutch 

Mechanism Retainer", International 

Conference on Advanced Mechatronics 

Solutions, Springer, pp. 25-32, (2016).  

[20]  A. Dineva, A. Mosavi, M. Gyimesi, I. Vajda, 

N. Nabipour and T. Rabczuk, "Fault 

diagnosis of rotating electrical machines 

using multi-label classification", Appl. Sci., 

Vol. 9, No. 23, pp. 5086, (2019).  

[21]  K. Mahmodi, M. Mostafaei and E. Mirzaee-

Ghaleh, "Detection and classification of 

diesel-biodiesel blends by LDA, QDA and 

SVM approaches using an electronic nose", 

Fuel, Vol. 258, pp. 116114, (2019).  

[22]  M. Amarnath, V. Sugumaran and H. Kumar, 

"Exploiting sound signals for fault diagnosis 

of bearings using decision tree", 

Measurement, Vol. 46, No. 3, pp. 1250-1256, 

(2013).  

[23]  V. Samadi, M. Mostafaei and A. N. 

Lorestani, "Fault Diagnosis of Electromotor 

Acoustically Using Machine Learning 

Approach", Modares Mech. Eng., Vol. 21, 

No. 8, pp. 563-573, (2021). [In Persian]  

[24]  L. M. R. Baccarini, V. V. R. e Silva, B. R. de 

Menezes and W.M. Caminhas, "SVM 

practical industrial application for 

mechanical faults diagnostic", Expert Syst. 

Appl., Vol. 38, No. 6, pp. 6980-6984, (2011).  

[25]  E. T. Esfahani, S. Wang and V. Sundararajan, 

"Multisensor wireless system for eccentricity 

and bearing fault detection in induction 

motors", IEEE/ASME Trans. Mechatronics, 

Vol. 19, No. 3, pp. 818-826, (2013).  

 

 


