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Abstract
This study presents a non-invasive method for detecting mechanical faults
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1. Introduction useful instruments that engineers and researchers

have thought of [1].

To avoid significant faults in engineering
systems, several researchers have looked at error
detection and preventive maintenance in recent
years. Numerous factors, including vibration,
sound, and temperature, have been taken into
account while analyzing machine failures. It is
possible to evaluate the operational state of
machines, which are often inaccessible, by using
external data. Signal analysis is one of the most

One of the most widely used components in the
industry is the electromotor, which is available
in many forms. A breakdown of an electromotor
in an industrial unit may cause the work to stop
and increase the cost of repairs. Timely detection
and repair of various defects in the electromotor
prevents it from stopping suddenly and stopping
the work process. In the usual method, this
operation may cause more costs due to the lack



JCARME

of a correct and early diagnosis of the defect.
Therefore, new methods of fault diagnosis and
monitoring the condition of machines can help to
accurately diagnose the type of damage
promptly and save on various costs. Today,
employing sound analysis to monitor the
condition of rotating industrial equipment is one
way to reduce the cost of maintenance and
repair. There could be differences in the health
and failure states of the sound signals coming
from various electromotor components [2].

So far, numerous techniques have been
employed in machine troubleshooting, such as
the use of acoustic emission techniques in
internal combustion engines [3], current signal
analysis for gearbox fault detection in induction
motors [4, 5], and regular and continuous
vibration and compressor noise measurement in
internal combustion engine fault diagnosis [6].
Another study also investigated the early
detection of defects in a single-phase
electromotor using acoustic signals. The
electromotor's conditions—healthy, with faulty
bearings, and with both faulty bearings and a coil
connection—were measured and examined by
the authors [7].

In another study, Messi Ferguson's tractor starter
motor fault was intelligently detected using
vibration monitoring and an adaptive neuro-
fuzzy inference system (ANFIS). Vibration data
were collected from the starter motor in health
and failure conditions using a piezoelectric
accelerometer sensor and a data-driven system.
The results of classification with a confusion
matrix showed that the accuracy of detection
with this method was appropriate [8].

A study has proposed the Fourier decomposition
method (FDM) for fault detection based on
acoustic signals for planetary gearboxes. The
results showed that the accuracy of error
detection in this proposed method reaches
96.32%, which achieved a better fault detection
effect compared to vibration signals [9]. In a
research, electric locomotive bearing fault
diagnosis was presented through a convolutional
deep belief network (CDBN) with Gaussian
visible units to learn the high-layer features. The
proposed method was applied to the analysis of
experimental signals collected for automatic and
accurate identification of electric locomotive
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bearing faults [10]. Table 1 summarizes the
numbers of studies discussed herein.

Linear discriminant analysis (LDA) is a
statistical method used in machine learning and
pattern  recognition to find the linear
combination of properties that best distinguishes
two or more classes of objects. The LDA method
maximizes intergroup variance and minimizes
intragroup variance in order to optimize
segregation between groups. It is based on the
assumption that each class can be modeled by
a Gaussian distribution and that all the classes
share the same covariance matrix. Quadratic
discriminant analysis (QDA) is similar to LDA
but without the assumption that the classes share
the same covariance matrix, i.e., each class has
its own covariance matrix. In this case, the
boundary between classes is a quadratic surface
instead of a hyperplane [11, 12].

A support vector machine (SVM) is one of the
supervised learning methods used for
classification and regression. The SVM
algorithm is classified as a pattern recognition
algorithm. This algorithm can be used wherever
there is a need to identify patterns or classify
objects in specific classes. SVM Classifier is
based on linear data classification, and in this
division, it tries to choose a line that has a more
confident margin [13, 14].

In parallel with the advancement of machine
learning techniques in engineering diagnostics,
Artificial Neural Networks (ANNs) have
demonstrated remarkable success across various
mechanical engineering domains. For instance,
in a recent comprehensive study by Sekban et al.
(2024), the formability behavior of friction stir-
welded high-strength AH32 shipbuilding steel
was investigated using an integrated approach of
experimental methods, finite element analysis,
and ANNSs. Their research confirmed that ANN
models could achieve extremely consistent
results with experimental data, highlighting the
capability of such data-driven models to
accurately  predict complex mechanical
behaviors even in the absence of extensive
experimental studies. This underscores the
broader potential and reliability of machine
learning methods, including ANNs, for solving
intricate problems in mechanical system analysis
and fault diagnosis [20].
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Table 1. Summary of relevant studies on fault diagnosis methods.

Subject

Method

Result

Reference

Investigation of
fault diagnosis

engine

Fault detection and
diagnosis of an industrial
steam turbine

Fault conditions
classification of automotive
generator

Assessment
fault detection

of gearbox

Fault classification of a
kind of clutch mechanism
retainer

Fault detection of bearings
and stators in a single-phase
induction motor

Fault diagnosis of rotating
electrical machines

Fault detection based on
acoustic signals for
planetary gearboxes

Discrete wavelet transforms and
neural network

SVM (Support vector machine)
and ANFIS (Adaptive neuro-
fuzzy inference system)

ANFIS

Vibration signal analysis and

acoustic emission technique
Vibration analysis the
ANFIS

using

Sound analysis and machine

learning methods

Vibration analysis and machine

learning methods and  the
application of multiple
classifications

Fourier decomposition method
(FDM)

Sound emission signal can be used for fault
diagnosis of various engine operating
conditions.

The experimental operation of the SVM
classifier was better than the ANFIS classifier
operation through a fusion strategy.

[15]

[16]

The proposed system has potential in fault

. . . 1
diagnosis of the automotive generator (171

Vibration signature analysis and acoustic
emission are two very efficient techniques for [5]
early fault detection.

Total classification accuracy was 100% in all

models. [18]

Total efficiency of acoustic signal recognition
for three classifiers of nearest neighbor, nearest
mean and gaussian mixture were 91.6, 95.3, and
88.8, respectively.

(7]

The possibility of electromotor fault detection. [19]

The accuracy of error detection reaches 96.32%
and better than vibration signals.

[]

While LDA, QDA, and SVM are established
classification methods, the novelty of this work
lies in their integrated application to develop a
cost-effective and non-invasive diagnostic
framework. This framework successfully
discriminates between multiple concurrent
mechanical faults (bearing failure, shaft
imbalance, and shaft wear) in a single-phase AC
motor using only commercially available
acoustic sensors, demonstrating a practical and
accessible alternative to  vibration-based
monitoring for industrial settings. The
performance of the proposed approaches was
rigorously evaluated using confusion matrix
metrics, including sensitivity, specificity,
precision, and accuracy. Although based on a
laboratory test bench, the methodology shows
strong potential for generalization to other
rotating machinery through model retraining.

2. Materials and methods

This research was performed on a single-phase
low-power AC electromotor MOTOGEN
TABRIZ-IRAN with an output power of 1.1 kW,
rated voltage of 220 V, speed in the rated load of

1420 rpm, rated current of 7.4 A, and rated
torque of 7.4 N.m. Sound waves were measured
at WAV format using a YW-001 wired sound
microphone with a frequency range of 15-30
kHz, impedance of 2.2 kQ, and sensitivity of
52+5 dB, which was connected to a laptop
through the USB interface. The sensor was
placed in the electrical circuit housing

(distribution box) of the electromotor. An RM-
1501 laser tachometer was also utilized to
measure the rotation speed of the electromotor

(Fig. 1).

& L
5 ._" | Housing for placement
‘F;'ngllom;rcx [ R, = ol microphone

Fig. 1. Experimental tools and equipment.



JCARME

The present study was performed to detect and
identify common mechanical defects of an AC
single-phase electromotor (including bearing
failure, shaft imbalance, and shaft surface wear),
at two common operating speeds (500 and 1400
rpm) by processing acoustic signals. Acoustic
data were collected using the sound card of a
laptop device and the application of the AD
Sound Recorder software. According to Fig. 2,
data were collected from one healthy condition
(H) and three separate electromotor failure
modes, including bearing failure (FB), shaft
unbalance (USH), and shaft surface wear
(WSH). The number of electromotor rotation
speeds, total number of test modes, and
repetitions of the tests were 2 (500 and 1400
rpm), 4 modes (H, FB, USH, and WSH), and 30
times, resulting in a total of 240 data points (2 x
4 x 30). In this study, the failures were in the
form of damage and wear of the inner ring of the
bearing, reduction of the shaft diameter by 10%,
and unbalance using a 20 g load (Fig. 2).

2.1. Signal processing

Signal processing is one of the most important
and widely used topics in engineering fields.
Signal processing was performed using the tools
in the MATLAB software digital processing
toolbox to convert analog signals in the time
domain to digital data in the frequency domain.
In order to process the received acoustic signals,
they must be intelligible to the computer (digital
signals only). Because the microphone output
was an analog output, it could not enter the
computer system directly; Therefore, connect
the microphone to the laptop sound card, and the
signals were recorded and stored in each of the
health and failure modes. An example of the
electromotor sound spectrum is illustrated in
Fig. 3 (USH mode and 1400 rpm).

Audio signal processing refers to the purposeful
transformation of acoustic data, usually done by
Audio Effects or Audio Units. Since it is possible
to display audio signals in both digital and
analog formats, signal processing is possible in
both areas. Analog processors operate directly
on electronic signals, while digital processors
mathematically operate on a digital instance of
that signal.
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Bearing failure (FB)

Shaft unbalance (USH)

Shaft wear (WSH)

Fig. 2. Electromotor failure modes.

The processed signals were used to extract ten
normalized statistical characteristics under both
healthy and defective conditions.

2.2. Calculation of statistical characteristics

The feature vector that is selected as the network
input represents a summary of the most
important problem properties for identifying and
classifying faults. The most important properties
were calculated using some time and frequency
domain parameters. Ten statistical
characteristics of audio signals were calculated
according to Table 2 [8]. Each of these properties
was calculated using the corresponding
formulas. Before using the statistical properties
in the classification algorithm, they were
normalized to have a uniform effect on the
algorithm.

2.3. Classification of defects

After data collection and signal processing, the
data were sorted into the states of healthy and
failure modes by different approaches of LDA,
QDA, and SVM. In the present study, 70% of the
obtained data were used for model training, and
30% for testing and evaluation. The inputs of the
models included the calculated characteristics,
and the outputs were different modes of the
electromotor (Fig. 4).
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Fig. 3. Frequency spectrum (a), time spectrum (b) of electromotor acoustic signals in USH mode and 1400 rpm.

Table 2. Calculated statistical properties.

Property
description

Al
mean

A2
median

A3
Std. deviation

A4
variance

Formula

Property
description

Formula

Xn + Xn
lzxi 2 2*1
n

A6
kurtosis

1

n

Y (x—%)?

n—1
A9
maximum

2

A7
range

A8

minimum

X — X\ Max (x) — Min (x) Xq <X Xp = X X
%) :

S

Hcalthy mode (H),
Variance 500 rpm
‘,f“ Bearing failurc (FB),
500 rpm

/ ‘ Mean Mcdi-«mL S.td'.
deviation

Shaft unbalance

Skewness (USH), 500 rpm

Shaft wear (WSH),
500 rpm

Healthy mode (1),

Kurtosis 1400 rpm

Bearing failure (FB),
1400 rpm

. Shaft unbalance
4 (USLL), 1400 rpm

Range

Minimum Sum 4

Shaft wear (WSH),
1400 rpm

Fig. 4. Inputs and outputs of classification models.
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The analysis obtained from the confusion matrix
gave rise to four states of true positive (TP) or
hit, true negative (TN) or correct rejection, false
positive (FP) or underestimation, and false
negative (FN) equivalent with miss or
overestimation. ~The unscrambler X10.4
software was used for LDA, QDA, and SVM
analyses after preprocessing the data.
Parameters such as sensitivity, specificity,
precision, and accuracy (Egs. 1-4) were used to
analyze the performance of classifier models
[21].

oo TP

Sensitivity = TP T FN x 100 D
ificity = ——= x 1 2

Specificity Tl,\II,E;" TP 00 (2)
sion = — %

Precision TP T TP 100 3)

A TP + TN 100 4

= X
U = TP+ TN + FN + FP )

3. Results and discussion

3.1. Results of linear discriminant analysis
(LDA)

In the present study, the LDA method was one
of the methods used to diagnose and classify
electromotor defects in 8 classes (H500, FB500,
USH500, WSH500, H1400, FB1400, USH1400,
and WSH1400). Each class had 30 replications,

Table 3. Confusion matrix of the LDA model.
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so 21 replications (70% of the data) were used
randomly to train the model, and 9 replications
(30% of the data) were used to evaluate and test
it. The results of the confusion matrix (Table 3)
showed that in the linear discriminant analysis,
only 5 data points out of 168 training data were
mistakenly placed in another group, and 4 data
points from the test data were similar. The
calculation of the performance parameters of this
model is presented in Table 4. The findings
indicated that the mean of accuracy, precision,
specificity, and sensitivity for the whole data
were 99.1, 96.6, 99.5, and 96.2, respectively.
These results show the high reliability and
accuracy of this model in the separation and
classification of defects related to the
electromotor. The weakest classifications were
related to the USH1400 and WSH1400 classes.
The precision of the USH1400 class and the
sensitivity of the WSH1400 class for all data
were 80.6 and 80.0, respectively. Due to the high
rotational speed of the electromotor and the
similarity of acoustic signals in these two
classes, the model's performance declines under
such conditions.

Fig. 5 shows an example of classifying training
data for different types of electromotor modes
using the LDA approach. The plot visualizes the
distribution of different classes in the two-
dimensional discriminant space, with LD1 (First
Linear Discriminant) and LD2 (Second Linear
Discriminant) as the coordinate axes.

Datatype  Classes H500  FB500 USH500 WSHS00 HI1400 FB1400 USHI400  WSHI1400
H500 21 0 0 0 0 0 0 0
FB500 0 21 0 0 0 0 0 0
USH500 0 0 21 0 0 0 0 0
Training w9500 0 0 0 21 0 0 0 0
data
H1400 0 0 0 0 20 0 0 0
FB1400 0 0 0 0 0 20 0 0
USHI1400 0 0 0 0 1 0 20 2
WSH1400 0 0 0 0 0 1 | 19
H500 9 0 0 0 0 0 0 0
FB500 0 9 0 0 0 0 0 0
Testing ysHso0 o 0 9 0 0 0 0 0
data
WSH500 0 0 0 9 0 0 0 0
H1400 0 0 0 0 9 0 0 0
FB1400 0 0 0 0 0 9 0 0
USHI400 0 0 0 0 0 0 9 4
WSH1400 0 0 0 0 0 0 0 5
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Table 4. Performance parameters of the LDA model.
Datatype  Classes/ Parameters TP FP FN TN Specificity Accuracy Precision Sensitivity

H500 21 0 0 147 100.0 100.0 100.0 100.0
FB500 21 0 0 147 100.0 100.0 100.0 100.0
USH500 21 0 0 147 100.0 100.0 100.0 100.0
WSH500 21 0 0 147 100.0 100.0 100.0 100.0
Training H1400 20 0 1 147 100.0 99.4 100.0 95.2
FB1400 20 0 1 147 100.0 99.4 100.0 95.2
USH1400 20 3 1 144 98.0 97.6 87.0 95.2
WSH1400 19 2 2 145 98.6 97.6 90.5 90.5
Ave.  99.6 99.3 97.2 97.0
H500 9 0 0 63 100.0 100.0 100.0 100.0
FB500 9 0 0 63 100.0 100.0 100.0 100.0
Testing USH500 9 0 0 63 100.0 100.0 100.0 100.0
WSH3500 9 0 0 63 100.0 100.0 100.0 100.0
H1400 9 0 0 63 100.0 100.0 100.0 100.0
FB1400 9 0 0 63 100.0 100.0 100.0 100.0
USH1400 9 4 0 59 93.7 94.4 69.2 100.0
WSH1400 5 0 4 63 100.0 94.4 100.0 55.6
Ave.  99.2 98.6 96.2 94.4
H500 30 0 0 210 100.0 100.0 100.0 100.0
FB500 30 0 0 210 100.0 100.0 100.0 100.0
All data USH500 30 0 0 210 100.0 100.0 100.0 100.0
WSHS500 30 0 0 210 100.0 100.0 100.0 100.0
H1400 29 0 1 210 100.0 99.6 100.0 96.7
FB1400 29 0 1 210 100.0 99.6 100.0 96.7
USH1400 29 7 1 203 96.7 96.7 80.6 96.7
WSH1400 24 2 6 208 99.0 96.7 92.3 80.0

Ave. 99.47+1.47  98.62+1.77 96.61+£7.7  95.84+9.6

First linear discriminant (USH1400)
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Second linear discriminan tFB1400

-200
OHS00 <©FB500 USH500 OWSHS00 mH1400 FB1400 USH1400 e WSH1400

Fig. 5. The classification plot of the linear discriminant analysis approach.
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As verified by the confusion matrix in Table 3,
specific misclassification patterns are visually
identifiable: certain samples from both
FB1400 and USH1400 classes are erroneously
clustered within the WSH1400 region. These
misclassified instances are explicitly marked
with distinct symbols for clarity. The remaining
correctly classified WSH1400 samples in this
area demonstrate  appropriate  clustering,
indicating regions of feature space overlap
between classes that present classification
challenges for the LDA model.

In a study comparing the audio signals processed
from gearbox gears in healthy and defective
conditions, it was shown that the effect of the
defect type can be seen by increasing the
frequency range and its harmonics or creating
sub-bands around the gear engagement
frequency [2]. Also, in another study, using the
obtained sound data and employing the decision
tree algorithm, a model was developed to learn
and classify the bearing condition. The inputs of
the model were statistical parameters such as
mean, median, and kurtosis. The model accuracy
was 95.5% for classifying bearing conditions
[22].

3.2. Results of quadratic discriminant analysis

(ODA)

In the QDA model, each class had 30
replications, so 21 replications (70% of the data)
were used randomly to train the model, and 9
replications (30% of the data) were used to
evaluate and test it. The results of data analysis
of electromotor defects at different rotational
speeds using the QDA approach are presented in
Table 5. The results showed that in all
classifications, the detection of acoustic signals
related to USH500, WSH500, and H1400 was
performed with complete accuracy and
precision. The findings also indicated that the
QDA approach had no sensitivity to the acoustic
signals of the WSH1400 class, and all the signals
of this class were mistakenly placed in other
classes. Therefore, its sensitivity and precision in
the training and testing data were zero, as well as
all data. In this classification, all data related to
the WSH1400 class were misclassified into the
USH1400 or FB1400 classes. Consequently, the
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QDA approach demonstrated lower average
precision and sensitivity compared to the LDA
method.

The complete failure of QDA in classifying
WSH1400 samples (0% sensitivity/precision)
reveals a key limitation of our feature set. It can
be said that most likely, both shaft unbalance
(USH) and wear (WSH) primarily excite 1x
rotational frequency and harmonics at high
speeds, making them spectrally similar. Our
general statistical features, while effective for
broader classification, cannot capture the subtle
differences between these specific fault
signatures. This finding clearly indicates the
need for more specialized features (e.g.,
harmonic  ratios, sideband analysis) to
discriminate between mechanically different but
spectrally similar faults.

In a recent paper published by the present
authors, similar results were obtained using
similar data and a machine learning method for
the detection and classification of electromotor
defects. The results showed final classification
sensitivity of 95.63% and an overall
classification accuracy of 95.71% [23].

The performance drop observed in challenging
classes like WSH1400 and USH1400
underscores the limitation of using a simple
train-test split with limited data. While the 70/30
split provided initial performance estimates, this
validation approach may introduce statistical
variability due to the limited sample size per
class. Employing k-fold cross-validation in
future studies could yield more robust and
reliable performance metrics by utilizing the
entire dataset more effectively for both training
and validation.

3.3. Results of support vector machine (SVM)

In the SVM model, each class had 30
replications, so 21 replications (70% of the data)
were used randomly to train the model, and 9
replications (30% of the data) were used to
evaluate and test it. To use the SVM approach,
data were first entered into the software to train
it, and the optimal model settings were obtained
from its grid search capability as follows: SVM
type of classification (nu-SVC), kernel type of
polynomial degree 2, gamma of 0.1, offset of 0,
nu value of 0.255, and input weights of 1.
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Table 5. Performance parameters of the QDA model.

Vol. X, No. X

Data type Classes/ Parameters TP FP FN TN Specificity ~ Accuracy Precision Sensitivity
H500 21 0 O 147 100.0 100.0 100.0 100.0
FB500 21 0 0 147 100.0 100.0 100.0 100.0
USHS500 21 0 0 147 100.0 100.0 100.0 100.0
WSHS500 21 0 0 147 100.0 100.0 100.0 100.0
Training data H1400 21 0 0 147 100.0 100.0 100.0 100.0
FB1400 21 17 0 130 88.4 89.9 553 100.0
USH1400 21 4 0 143 97.3 97.6 84.0 100.0
WSH1400 0 21 147 100.0 87.5 00.0 00.0
Ave. 98.2 96.9 79.9 87.5
H500 9 8 0 55 87.3 88.9 529 100.0
FB500 1 0 8 63 100.0 88.9 100.0 11.1
Testing data ~ USH500 9 0 O 63 100.0 100.0 100.0 100.0
WSHS500 9 0 O 63 100.0 100.0 100.0 100.0
H1400 9 0 O 63 100.0 100.0 100.0 100.0
FB1400 9 5 0 58 92.1 93.1 64.3 100.0
USH1400 9 4 0 59 93.7 94.4 69.2 100.0
WSH1400 0o 0 9 63 100.0 87.5 00.0 00.0
Ave. 96.6 94.1 73.3 76.4
H500 30 8 0 202 96.2 96.7 78.9 100.0
FB500 22 0 8 210 100.0 96.7 100.0 73.3
All data USHS500 30 0 O 210 100.0 100.0 100.0 100.0
WSHS500 30 0 O 210 100.0 100.0 100.0 100.0
H1400 30 0 O 210 100.0 100.0 100.0 100.0
FB1400 30 22 0 188 89.5 90.8 57.7 100.0
USH1400 30 8 0 202 96.2 96.7 78.9 100.0
WSH1400 0 0 30 210 100.0 87.5 00.0 00.0
Ave.  97.74+4.16 96.02+4.98 76.95+33.86 84.17+36.96

The performance parameters of the SVM
approach for the detection and classification of
the electromotor defects in the three statuses of
train, test, and all data are presented in Table 6.
As can be seen, the most classification errors
occurred in the WSH1400 and USH1400 classes
and caused a downward trend for their precision
and sensitivity parameters, especially in the test
data. Four out of nine test data for WSH1400 are
incorrectly placed in USH1400, so the precision
for USH1400 class test data dropped sharply to
the lowest value of 69.2. The sensitivity
parameter was also estimated to be at its lowest
value of 55.6 for the WSH1400 class due to the
incorrect classification of some test data. The
calculations of performance parameters for other
classes show high accuracy. In the SVM
approach, the average of specificity, accuracy,
precision, and sensitivity for all data was
calculated to be 99.5, 99.2, 97.1, and 96.7,

respectively. An example of an SVM approach
classification plot for training data is shown in
Fig. 6. In the Support Vector Machine (SVM)
decision boundary projection plot, the
distribution pattern of data points in the two-
dimensional space clearly reveals
misclassification cases. As illustrated in the
figure, one sample from class FB1400 is
incorrectly positioned within the region
belonging to class WSH1400. Three samples
from other classes are also erroneously located
within the USH1400 class boundary. This
unexpected dispersion of samples into other
classes' territories directly corresponds with the
values in the confusion matrix (Table 5). The
position of these points in the projected space
indicates that the extracted features of these
particular samples have values that align more
closely with the decision boundaries of other
classes according to the SVM model. .
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Table 6. Performance parameters of the SVM model.

Data type Classes/ Parameters TP FP FN TN Specificity  Accuracy Precision Sensitivity
H500 21 0 O 147  100.0 100.0 100.0 100.0
FB500 21 0 O 147 100.0 100.0 100.0 100.0
USHS500 21 0 O 147 100.0 100.0 100.0 100.0
WSHS500 21 0 O 147 100.0 100.0 100.0 100.0
Training data H1400 20 0 1 148 100.0 99.4 100.0 95.2
FB1400 20 0 1 148 100.0 99.4 100.0 95.2
USH1400 21 3 0 144 98.0 98.2 87.5 100.0
WSH1400 19 1 2 148 99.3 98.2 95.0 90.5
Ave. 99.7 99.4 97.8 97.6
H500 9 0 0 63 100.0 100.0 100.0 100.0
FB500 9 0 0 63 100.0 100.0 100.0 100.0
Testing data ~ USH500 9 0 0 63 100.0 100.0 100.0 100.0
WSHS500 9 0 0 63 100.0 100.0 100.0 100.0
H1400 9 0 0 63 100.0 100.0 100.0 100.0
FB1400 9 0 0 63 100.0 100.0 100.0 100.0
USH1400 9 4 0 59 93.7 94.4 69.2 100.0
WSH1400 5 0 4 67 100.0 94.7 100.0 55.6
Ave. 99.2 98.6 96.2 94.4
H500 30 0 0 210 100.0 100.0 100.0 100.0
FB500 30 0 0 210  100.0 100.0 100.0 100.0
All data USHS500 30 0 0 210  100.0 100.0 100.0 100.0
WSHS500 30 0 O 210 100.0 100.0 100.0 100.0
H1400 29 0 1 211 100.0 99.6 100.0 96.7
FB1400 29 0 1 211 100.0 99.6 100.0 96.7
USH1400 30 7 0 203 96.7 97.1 81.1 100.0
WSH1400 24 1 6 215 995 97.2 96.0 80.0

Ave. 99.54+1.45 99.16+1.65 97.15+£7.49 96.17+9.76
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Fig. 6. The classification plot of the support vector machine approach.
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This phenomenon could stem from either
intrinsic overlap in feature distributions among
different classes or the presence of outliers in the
training dataset.

In a study, the vibration signals in different
directions (axial, horizontal, or vertical) and the
SVM were used together for mechanical fault
diagnosis and online monitoring of the induction
motor. The results presented a 96% of hits [24].
Another study employs a multi-sensor system
(acoustic, vibration, and current) for the
eccentricity and bearing fault diagnosis of
induction motors. Data analysis was performed
using combined and multi-step methods of LDA,
QDA, and SVM. The results showed that the
average accuracy was 95% [25].

3.4. Models’ comparison results

Comparison of the performance parameters of
all three models showed the higher capability of
the SVM approach in all cases. The accuracy and
sensitivity of the SVM approach were 99.2 and
96.7, respectively. While the QDA approach
exhibited the accuracy and the sensitivity of 96.0
and 84.2, respectively, it was the weakest
approach (Table 7). The results of the LDA
approach revealed that its performance
parameters were close to those of the SVM
method, with a slight difference. Out of 240 data
point, the SVM, LDA, and QDA methods led to
8, 9, and 38 misclassification cases, respectively.
Notably, the average performance parameters
were the results obtained in the 8 categories, not
the mean value of the data. The comparison of
LDA, QDA, and SVM was conducted as a
validation step to assess the effectiveness of
machine learning techniques in classifying
defects based on acoustic features.

Our results demonstrate that acoustic-based
diagnosis, when paired with proper classifiers,
can achieve high accuracy and offer a cost-
effective alternative to vibration-based systems
in industrial settings.

To ensure a robust evaluation of classifier
performance, this study employed both a
conventional 70/30 hold-out method and a more
rigorous  10-fold  cross-validation (CV)
approach.  Cross-validation  provides a
significant advantage over simple data splitting
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by utilizing the entire dataset for both training
and validation through multiple iterations,
thereby yielding more reliable and generalizable
performance estimates while reducing the
variance of the results.

A comparative summary of the model
performances under both validation schemes is
presented in Table 7. While the initial 70/30 split
indicated high performance for all models, the
cross-validation results provided a more nuanced
and trustworthy assessment. The key
improvement was observed with the QDA
classifier; the CV approach, coupled with
pseudo-quadratic discriminant analysis,
effectively resolved its initial failure to classify
specific fault conditions, which was masked in
the simpler split. Furthermore, the CV revealed
the superior consistency and stability of the
SVM model, as evidenced by its minimal
performance variation across different data
folds. In contrast, the LDA classifier showed
higher performance variability under CV,
suggesting its estimates from the single 70/30
split were less reliable.

In conclusion, the cross-validation methodology
not only strengthened the credibility of our
performance metrics but also confirmed SVM as
the most robust and consistent classifier for the
task of acoustic-based fault diagnosis, making it
the recommended choice for practical industrial
applications.

The high diagnostic accuracy demonstrated by
the SVM classifier (99.2%) confirms the strong
potential of acoustic-based monitoring for
industrial ~ implementation. This research
provides a practical framework for several
applications, including real - time condition

monitoring of electromotors, predictive
maintenance systems to reduce unplanned
downtime, and cost-effective solutions suitable
for small-to-medium enterprises using low-cost
microphones and  standard  hardware.
Furthermore, the methodology exhibits excellent
scalability, being adaptable to other rotating
machinery such as pumps, fans, and compressors
through model retraining with domain-specific
data, and can be integrated with IoT platforms
for remote fault diagnosis. The superior
performance of the non-linear SVM classifier
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indicates complex, non-linear relationships in
the acoustic data, necessitating curved decision
boundaries for optimal fault separation.
Conversely, the strong performance of the linear
LDA model reveals that a significant linear
component also exists, allowing effective class
separation through linear discrimination. The
initial failure of QDA was not due to
methodological weakness but resulted from the
"curse of dimensionality"- where limited
samples (n=30) made covariance matrices
singular. ~ This  was  resolved  using
pseudoQuadratic discriminant analysis,
demonstrating QDA's effectiveness when
numerical stability is ensured. Therefore, SVM
emerges as the optimal classifier due to its ability
to handle both the linear and non-linear
characteristics of the acoustic fault signatures.

4. Conclusions

This study successfully demonstrates the
effectiveness of acoustic signal analysis
combined with machine learning for fault
diagnosis in single-phase AC electromotors. The
main findings are summarized as follows:

1. Acoustic monitoring effectiveness:

Acoustic signals provide a reliable, non-
invasive method for detecting mechanical
faults in electromotors, serving as a viable
alternative to vibration-based monitoring
systems.

2. SVM superior performance:

Among the three classifiers evaluated,
Support Vector Machine (SVM) achieved
the highest performance with average values
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- Specificity: 99.5%
- Accuracy: 99.2%
- Precision: 97.1%
- Sensitivity: 96.7%

The superior and most consistent performance of
the Support Vector Machine, validated through
rigorous 10-fold cross-validation, confirms its
high potential for reliable real-time fault
diagnosis in industrial environments.

3. Comparative algorithm performance:

- SVM demonstrated the best overall

performance

- LDA showed competitive results close
to SVM

- QDA exhibited the weakest

performance among the three methods

4. Challenging fault conditions:

The WSH1400 class (shaft wear at 1400
rpm) presented the most significant
classification challenge due to acoustic
signal similarity with the USH1400 and
FB1400 classes. This indicates that standard
statistical ~ features cannot distinguish
between  certain  mechanical  faults
(particularly unbalance and shaft wear) that
generate similar harmonic responses at high
rotational speeds.

5. Industrial applicability:
The proposed method offers:

- Cost-effective solution using low-cost
microphones

- Real-time fault detection capability

- Scalability to other rotating machinery

- Potential for predictive maintenance

of: systems

Table 7. Comparative Model Performance Evaluation.

Classifier Validation method Specificity Accuracy Precision Sensitivity

LDA 70/30 Split 99.47% + 1.47 98.62% + 1.77 96.61% + 7.73 95.84% + 9.69
10-Fold CV 99.29% + 1.19 95.00% =+ 3.83 96.40% + 6.14 95.00% + 7.13

QDA 70/30 Split 97.74% + 4.16 96.02% + 4.98 76.95% + 33.86 84.17% + 36.96
10-Fold CV 99.76% + 0.36 98.33% + 2.15 98.75% + 1.89 98.33% + 2.52

SVM 70/30 Split 99.54% + 1.45 99.16% + 1.65 97.15% + 7.49 96.17% +9.76
10-Fold CV 99.88% + 0.22 99.17% + 1.76 99.37% + 1.16 99.17% + 1.54
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6. Future research directions:

- Extension to electrical
combined fault conditions

- Implementation of online monitoring
systems

- Integration with IoT platforms for
remote diagnostics

- Exploration of deep learning approaches
for enhanced accuracy

faults and

The methodology presents a practical framework
for industrial condition monitoring, with SVM
emerging as the most robust classifier for
acoustic-based fault diagnosis in rotating
machinery.
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