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1. Introduction 

 
The evaluation of transient dynamic responses 
using numerical methods is typically classified 
into two main categories. The first category 
comprises methods that directly solve the 
second-order equilibrium equations, while the 
second includes algorithms that transform the 
second-order equations into first-order 
equations in the state-space form. The primary 

challenges associated with these methods 
include conditional stability, period elongation 
errors, amplitude decay errors, and the 
emergence of spurious frequencies. In practical 
applications, second-order methods are widely 
employed, with certain approaches 
demonstrating greater popularity due to their 
computational efficiency and accuracy.  Among 
the second-order methods, the Newmark 
average acceleration method, despite its 
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unconditional stability status, has the error of 
spurious frequency, and it also does not have the 
capability to eliminate the undesirable effects of 
the higher modes [1].  
The order of the equation has been reduced and 
converted to a first-order equation, so-called 
precise integration method (PIM) in the state 
space, to solve the stability problem in second-
order methods. These methods also have 
stability, accuracy, and state matrix inversion 
errors. If the matrix is single or ill-conditioned, 
numerical errors appear. In recent years, 
comprehensive research has been conducted on 
precise integration methods.  
The PIM method was introduced by Zhang and 
William [2]. Due to the inverse matrix error and 
load simplification, the accuracy of this method 
is reduced when the equation of motion is 

inhomogeneous .  
Guangzhou et al. [3] proposed a new version of 
PIM to convert an inhomogeneous equation to 
a homogeneous one with a dimensional 
expansion method. Regardless of computing the 
inverse matrix, this method is computationally 
expensive.  
Wang and Zhou [4] demonstrated that this 
method has conditional stability. Wong and Au 
[5] have proposed the precise time step 
integration method (PTSIM) to solve the 
equilibrium equation with Gaussian techniques. 
The accuracy of the method depends only on the 
number of Gaussian points and the time step 
size; however, this method is conditionally 
stable.  
As well,  Wong and Au [5] presented the 
NICPIM method to resolve the inverse matrix. 
They further reported that this method is 
unconditionally stable. However, if the state 
matrix is singular or ill-conditioned, significant 
numerical errors appear in the calculations. 
Investigations in first-order PIM methods could 
be categorized into two-fold: the First area 
struggles in solving the accuracy and stability 
problems of the precise integration methods 
from the mathematical point of view. The 
second field is in the application of the PIM 
methods in structural dynamics and time-
varying areas.   
Many efforts have been made to improve the 
stability, accuracy, and elimination of the 
matrix inverse error. Many researchers have 
investigated the improvement of the PIM 

method from a mathematical point of view. Fu 
et al. [6] used this method to solve ill-condition 
algebraic equations; Zhang and Huang [7] in 
solving singular boundary value problems; Fu 
and Li [8] to resolve ill-conditioned linear 
equations. Besides, Goa et al.[9] used improved 
PIM to solve the Riccati differential equation. 
Finally, Tan et al. [10, 11] applied the Fourier 
series expansion in the improvement of PIM to 
solve differential equations.  
Many kinds of research have been 
accomplished in the structural dynamic area. 
Wang [12], Wu and Chuang [13, 14] applied the 
PIM method for solving the equilibrium 
equation of motion in structural dynamics. In 
other disciplines of civil and structural 
engineering, the PIM method is involved in 
various time-varying problems.  
Gao et al. [15, 16], Cai et al. [17], Yue et al. 
[18], Ding and Hu [19] used the precise 
integration method (PIM) and improved PIM 
for dynamic response and vibration analysis of 
large structures. Also, a vibration analysis of the 
footbridge is carried out by Caprani [20]. Modal 
analysis of ocean risers with PIM is carried out 
by Zhou et al. [21] Hu and Wang [22], applied 
the PIM for the time-history analysis of frame-
shear walls and tube-type structural systems. 
The PIM for dynamic load identification by 
Lingling and Yang [23] and also the Pseudo-
dynamic test of structures by Wang and Liu [24] 
are successfully applied. Besides, the PIM 
method is used by many researchers, e.g., Han 
et al.[25] for dynamic response of footing on 
soil; Qingguan [26] in dynamic analysis of gate 
chamber; Zhang et al. [27] to solve dynamic 
nonlinear behavior of wheel-rail contact; Du et 
al. [28] and Hu et al. [29] in the dynamic 
interaction of train and bridge; Fang et al.[30] 
in the modeling of wave propagation in the 
layered pavement; Zhang et al. [31, 32] in 
earthquake pounding model and elasto-plastic 
seismic analysis of adjacent structures.  
Wu et al. [33] in the modeling of periodic 
structures; Chen et al. [34] for sensitivity 
analysis in time domain response of 
transmission lines; Cui et al.[35] in the dynamic 
response of a beam with crack; and finally  
This study enhances the first-order PIM method 

to eliminate ill-conditioning and also inverse 

matrix errors. For this purpose, the single-value 

decomposition technique is combined with the 
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classic PIM method, and the proposed method 

is called PIMS. The technique has the desirable 

accuracy and stability to eliminate the matrix 

inverse error.  

The results show that the accuracy of the 

proposed method is better than the classic PIM 

and also the second-order Newmark average 

acceleration methods, which are inherently 

unconditionally stable. Several structural 

dynamic problems illustrate the robustness of 

the proposed method. The capabilities of the 

proposed PIM and the Newmark average 

acceleration method are experimentally 

evaluated. The results show that the estimation 

of dynamic responses of MDF structural 

systems under impulse loading required more 

investigations, and these methods could not be 

blindly used.  

 

2. Formulation of improved PIM 

2.1. Theory of classic PIM 

 

In this section, the theory of the classic precise 

integration method is presented. Consider a 

second-order dynamic equilibrium equation of 

a damped system as Eq. (1). 

 

 ( )  ( )  ( ) ( )t t t tM + C + K = Fx x x               (1)   

 

where M, C, and K are the mass, damping, and 

stiffness matrices of the system, respectively. 

F(t) is an external force vector. As well, X, 

𝑿̇, and 𝑿̈ refer to displacement, velocity, and 

acceleration vectors, respectively. The second-

order equation in Eq. (1) is transformed into a 

first-order equation in the state space as Eq. (2) 

for obtaining the PIM formulation.  
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where v is the state variable, Ac is the state 

matrix, D is the input-output coupling matrix, 

cE is called the input distribution matrix, I is the 

identity matrix, and F refers to the controller 

vector. If 
cE  becomes zero, there is no control 

over external force (F), and the problem is time-

independent.  The discrete form of Eq. (2) in the 

time domain is written as Eq. (3). 
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In Eq. (3), F is linearly interpolated between 

two sequential time intervals. teA is called the 

transformation state matrix, and the accuracy of 

the  method depends on the precision of 

calculating this matrix. T matrix in Eq. (3) is 

written as Eq. (4). 
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In this paper, 
Nm=2 as proposed by Molar and 

Van [36] and Wu and Chuang [13], suggests N 

= 5 or 4. T (τ) is calculated by using the Taylor 

series expansion as Eq. (5). 
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where I  refers to an identity matrix and, 

because only the first terms of the Taylor series 

expansion have adequate accuracy, the higher 

terms of the series are ignored. According to the 

research of Wang and Au [5], the calculation is 

carried out for L = 4 and is written as Eq. (6).  

 ( )
2

0( t)
N

a  +T I T  (6) 

 

Based on the recursive relationships, the 
aiT

matrix is written as Eq. (7). 
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The elements of the matrix 
aiT are exceedingly 

small. To reach better numerical accuracy, 

instead of directly adding 
aiT to the identity 

matrix, they are stored separately from the 

identity matrix I during the calculations. Thus, 

the computational accuracy of the T(Δt) matrix 

is increased by avoiding round-off errors during 

computer calculations.  

According to Eq. (3), the calculation of the 

structural response in the PIM requires the 

inverse calculation of the state matrix 
cA ; 

therefore, when the matrix is singular or ill-

conditioned, an error will occur in the 

calculations. In this study, to avoid this error, 

the inverse SVD method is implemented, as 

described in Section 2.2. In the state-space 

equations, the transfer function expresses the 

characteristics of any linear system.  

In general, the transfer function is defined as the 

ratio of the Laplace transform of the system 

output to that of the input, assuming all initial 

conditions are zero. Accordingly, by applying 

the Laplace transform to Eq. (2), the transfer 

function can be derived as expressed in Eq. (8). 
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where the rational function G(s) denotes the 

transfer function, Y(s) represents the Laplace 

transform of the output, and R(s) is the Laplace 

transform of the input. The denominator is 

called the characteristic equation of the state 

system. As well, the roots of the characteristic 

equation are called poles of the transfer 

function; the time response and the stability of 

the method depend on the poles of the transfer 

function. In the PIM, the eigenvalues 
cA are 

defined as Eq. (9). 
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where s are the eigenvalues of 
cA , M, and K 

are the mass and stiffness matrices, 

respectively. For a damped SDF system, Eq. (9) 

is written as Eq. (10). 
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where ω and  are the frequency and damping 

of the system, respectively. The method is 

stable if the spectral radius ρ(
cA ) is smaller 

than one. In the PIM, the eigenvalues of the 

matrix 
cA  are calculated as Eq. (11). 
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A single degree of freedom of structure under 

free vibration is considered to investigate the 

stability of the proposed method.  In the system, 

the mass of the system is 5000 (kg), and the 

stiffness is set to 3000 (kN/m). Fig. 1 presents 

the variations of spectral radius against dt⁄T, in 

which T is the fundamental period of the 

system.  

According to Fig. 1, this method is stable for N 

equal to or greater than 4 or 5. As well, Fig. 2 

shows that the PIM method is unconditionally 

stable when dt⁄T≤0.5 for all N values; However, 

the values of N are important when dt⁄T≥0.5,  

and PIM is unconditionally stable for N≥4.  
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Fig. 1. Variations of spectral radius vs. dt/T for classic PIM. 
 

2.2. Single value decomposition technique 

(SVD) 
 

One of the problems with the first-order method 

is calculating the inverse of the state matrix . If 

this matrix is ill-conditioned or singular, there 

is a significant error in the numerical 

computations. In this study, this weakness is 

resolved by the inverse matrix (SVD), even if 

the state matrix is singular or ill-conditioned, 

the calculations will be accurate.  

In the SVD, matrix Amxn can be decomposed 

into A = UDVT. Where Um × n = [u1… um]  and 

Vn × n = [v1… vn] are orthogonal matrices whose 

columns Umxn are  AAT matrix eigenvalues, Vn 

× n columns are ATA matrix eigenvectors, and 

according to Eq. (12) Dn ×n is a diagonal matrix 

whose diagonal elements are non-zero values of 

the square root of the eigenvalues of both AAT 

and ATA matrices. 

 

n×n 1

1 2 k k+1 p

D diag( ,...., ), p=min{m,n} 

... >0   , =... =0

p 

    

=

  
  (12)  

 

here σ1 and σk are the largest and smallest non-

zero singular values of matrix A. For Anxn 

square matrix, the inverse matrix is defined as 

Eq. (13). 
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where D-1 =diag(1 / σ1,1 / σ2, ..., 1 / σn). The 

accuracy of the improved method is also 

investigated for the structure of a damped single 

degree of freedom. Here, the mass of a system 

is 5000 kg, the stiffness is 3000 kN/m,   is 

0.05, and the harmonic excitation  

( ) 5000sin(2 )p t t= (N). The responses of the 

PIM without SVD and the PIM with SVD were 

compared with the analytical response. The 

equilibrium equation of an SDOF with 

boundary conditions is defined as Eq. (14) 

 

( ) ( ) ( )mx+cx+kx=p t  ; x 0 =0 , x 0 =0    (14)  

 

The displacements at times 0.10, 0.20, 0.30, 

0.40, and 0.50 s are presented in Table 1. The 

exact structural response is obtained as Eq. (15) 

by solving Eq. (14). The time step in numerical 

analysis is set to 0.05. 

 

 

( )

2

( ) ((exp [cos( )
2

sin( )] cos( ))
1

to
D

D

P
x t t

K

t t







 



−= +

−
−

        (15) 

 

where 21D  = − . According to Table 1, the 

singularity or ill-conditioning of the coefficient 

matrix in the PIM method causes an extreme 

error in the calculations. The responses of the 

system with the inverse of SVD are also shown 
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in Fig. 2. It can be seen that the proposed PIMS 

method is highly accurate, and the results have 

excellent agreement with the analytical 

responses. Hereafter, the PIM method using 

SVD will be called PIMS.  

 

2.3. Spurious frequencies in the proposed PIM 

(PIMS)  
 

When analyzing systems with a substantial 

number of degrees of freedom (DOFs), higher 

modes that are artificially introduced by the 

finite element model must be appropriately 

filtered during direct response calculations. 

Numerical methods that introduce controlled 

damping to suppress these higher modes—

without significantly influencing the behavior 

of the lower modes—are generally preferred.  

So far, the accuracy of the method has been 

studied when the equilibrium equations are 

homogeneous. Few studies have investigated 

the robustness of the algorithm under external 

loading. A new numerical study is introduced 

by Paramount [37] under external excitation. In 

his method, a separate equation transfer 

function was introduced. A comparison 

between the calculated transfer function of the 

analytical method and the numerical method 

shows that the transfer function gives 

comprehensive information for the accuracy of 

the method and the demonstration of spurious 

frequencies. The transfer function for f(t)=

exp( )ni t  is calculated from Eq. (16) [1]. 
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H
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The relation between the external force and the 

system response at a particular time is 

considered as Eq. (17). 

 

x H
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Fig. 2. Free vibration response of the damped system for proposed PIM (PIMS). 

 
Table 1. Comparing the responses of a damped SDF system (units are mm). 

Time (s) Method of 

calculations 0.50 0.40 0.30 0.20 0.10 

0.0086 0.0123 0.0188 0.0157 0.00117 Exact 

0.0085 0.0121 0.0186 0.0156 0.00116 Proposed PIM 

2333 5799 7878 9423 2014 Classic PIM 

1.16 1.62 1.06 0.64 0.85 Proposed PIM error (%) 

2.7e7 4.7e7 4.1e7 6.0e7 1.7e8 Classic PIM error (%) 
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xH is the displacement transfer function, and 

xH  is the velocity transfer function. By 

substituting Eq. (17)  into Eq. (2), Eq. (18) is 

obtained. 
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xH is the PIM transfer function and is 

calculated by using Eq. (18), where 0E and 1E

are defined in Eq. (3). When H / 1Hx x = |, it 

means that the numerical values are equal to the 

analytical ones, and no spurious frequencies are 

generated in the method. In the presence of 

external loading, the period elongation and the 

amplitude decay errors do not indicate the 

accuracy of the method. The ratio of the analytic 

transfer function to the numerical transfer 

function shows the accuracy of the method. The 

variations of /x xH H against /n n  for the 

PIMS and average acceleration Newmark 

methods are presented in Fig. 3. The time step 

Δt = 0.1×T is considered for the SDF system 

studied in Section 2.4. 

Fig. 3 shows that the proposed PIMs method 

does not have a spurious frequency, and also, 

when / 1n n   , or more precisely, it is less 

than 0.6, the response of the method is very 

close to the analytical method. However, in the 

Newmark average acceleration method, when 

/ 1n n  = , the spurious frequency appears, and 

a discontinuity is seen.  However, there are 

many transfer functions for the appropriate 

estimation of responses in time and frequency 

domains [38]. 
 

2.4. Filtering high-frequency spurious 

responses 
 

In addressing dynamic problems, numerical 

methods often exhibit relative period errors in 

the representation of higher modes. 

Consequently, the high-frequency responses 

predicted by numerical models are likely to be 

spurious, thereby diminishing the overall 

accuracy of the numerical response analysis. 

Therefore, only the first few predominant 

modes have a significant influence on the 

responses, and the contribution of the higher-

order frequency responses is sometimes 

spurious and inaccurate.  
They reduce the accuracy of the calculations 
and also cause numerical instability. As a result, 
these frequencies are not desirable, and they 
should be filtered. If linear systems are 
controllable, the internal stability of the system 
can be guaranteed by designing a controller 
based on the system's feedback. It reduces 
model sensitivity and eliminates disturbance 
effects. In linear time-invariant systems (LTI), 
this controller is considered a linear function 
[14].  
By calculating the feedback of the system and 
optimal pole placement, the effect of 
perturbation and spurious responses is 
considerably reduced.  In the PIM, a matrix is 
added to the damping matrix (C) by calculating 
the feedback; it is called 

aC  [11]. According to 

Eq. (19), the matrix 
aC  is a function of the 

stiffness matrix K and ∆t.  
 

2a t = + = + C C C KC                       (19)

  
According to the feedback of the system, the 
value of the spectral radius is obtained by Eq. 
(20). 
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where ω is the natural frequency of the system, 
the damping coefficient must be changed to the 

value of * , as defined by Eq. (21).  

 

2
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2 n

C K t t

M T


 
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 +  
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In the single degree of freedom (SDOF) system, 

  is defined as Eq. (22). 
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Fig. 3. Spurious frequency variations vs.  /n n  . 
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The variation of the spectral radius of the PIM 

with feedback was also calculated for the 

mentioned system described in Section 2.1. The 

spectral radius variations, including feedback 

control, are illustrated in  Fig. 4. According to 

this figure, the proposed PIM method with 

feedback is unconditionally stable, and its 

spectral radius for all values of N is smaller than 

one. Therefore, the presented method is 

unconditionally stable due to the feedback 

controller. 
 

2.5. The accuracy of the proposed method 
 

Similar to the second-order methods, the PIM 

method also has amplitude decay error (AD) 

and period elongation error (PE). These were 

calculated for a single degree of freedom 

structure under free vibration. The frequency of 

the structure in this method is calculated 

according to Eq. (23). 
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        (23) 

The period elongation error was obtained by 

comparing the natural frequency of the structure 

( ) and the PIM frequency (
* ) as it is defined 

in Eq. (24). 
 

1
*

PE



= −                                          (24)  

 

In this method, the amplitude decay error (AD) 

is also calculated as Eq. (25). 
 

22
* *

*

ln( )
   ,  2

2
AD

t


 



− +
= =


 (25) 

 

An undamped single degree of freedom system 

in Section 2.1 is again considered under free 

vibration to study the accuracy of the proposed 

method. The frequency error and the amplitude 

decay error are shown in Fig. 5. According to 

Fig. 5, the first-order methods for N = 2 have a 

period elongation error, and it decreases with 

increasing N value, and for N = 4, the error is 

negligible. The error of the method for 

amplitude decay is also shown in the Figure. 

The PIM amplitude error is also insignificant 

for N larger than 4.  

 

3. Results and discussion 

 

In this section, the performance of the proposed 

PIM (PIMS) is evaluated with several structural 

dynamics problems. For this purpose, three 

structural models are examined.  
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Fig. 4. Variations of spectral radius vs. dt/T including feedback on the system. 

 
Fig. 5. Amplitude and period elongation errors of the proposed PIM (PIMS). 
 

 

The first one is a damped SDOF system under 
the harmonic and rectangular impulse loadings. 
Its dynamic response was investigated by 
analytical, PIMS, and second-order Newmark 
average acceleration methods.  
The second case is a two-degree-of-freedom 
structural model to examine the feasibility of 
filtering high frequencies. The third case refers 
to an aluminum cantilever beam with a 
concentrated mass at the free end using the 
Euler-Bernoulli theory. 
The structural response of this beam was 
compared under a very short impulse load with 
experimental data and also the Newmark and 
PIMS methods. All procedures explained in this 
paper are programmed in the MATLAB 
environment [39].  
 
3.1. Case 1: A damped SDF system 
 
The objective is to investigate the dynamic 
responses of a single degree of freedom (SDOF) 

structure with the specifications presented in 
Table 2. The response of this system is 
evaluated by analytical, Newmark average 
acceleration, and the PIMS methods (see Table 
3). When the load frequency is close to the 
frequency of the structure, the results of the 
Newmark method have some errors. As seen in 
Table 3, it is observed that the response of the 
PIMS method is close to the analytical solution, 
whereas the Newmark method results have 
more substantial errors. The structural response 
of the mentioned SDF system under impulse-
loading with intensity P(t)=5000(kN) with 
time-duration 0.2 s, and the results of the above-
mentioned methods for times 0, 0.2, 0.4, 0.6, 
0.8, and 1 s are presented in Table 4. According 
to Table 4, it can be seen that the PIMS method 
shows better accuracy under impulse loading.   
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Table 2. Specification of a damped SDF system (harmonic excitation).
m (kg) k (kN/m)    (rad/s) p(t) (kN) 

5000 3000 0.05 22.5 2000sin( )t  

 

Table 3. Displacements of a damped SDF system under harmonic excitation (mm). 

Maximum Error 

(%) 

Time (second) Evaluation method 

4 3 2 1 0  

0 0.0321 -0.0383 -0.0032 0.0758 0 Analytical 

3.1 0.0312 -0.0373 -0.0031 0.0738 0 PIMS (This research) 

33 0.0215 -0.0300 -0.0420 0.095 0 Newmark 

                   

Table 4. Displacements of a damped SDF system under impulse loading (mm). 

Evaluation method 
Time (s) Maximum 

error (%) 0 0.2 0.4 0.6 0.8 1.0 

Analytical 0 0.0013 0.0186 -0.00066 -0.0021 -0.0011 0 

PIMS (This research) 0 0.0013 0.0205 -0.00057 -0.0022 -0.0081 24 

Newmark 0 0.1500 0.0168 -0.00102 -0.002 0.0037 44 
 

3.2. Case 2: A two-degree-of-freedom system   

 

The average acceleration Newmark method, 

known for its unconditional stability, is widely 

recommended for evaluating dynamic 

responses using the modal superposition 

technique, where truncation of the modal space 

inherently filters high-frequency components. 

This method offers superior accuracy, and the 

absence of numerical damping does not 

adversely affect the results. In the present study, 

the performance and applicability of the 

average acceleration Newmark method are 

investigated within the framework of the direct 

integration approach, as an alternative to the 

conventional modal superposition method, 

through the analysis of a multi-degree-of-

freedom (MDOF) system. The unconditionally 

stable average acceleration Newmark method is 

recommended for a calculation of the response 

by modal superposition when the filtering of the 

high frequencies is naturally carried out by 

using a truncated modal space. It is the most 

accurate method, and the absence of numerical 

damping is not a problem. In this paper, the 

capabilities of the average acceleration 

Newmark method with the direct integration 

method, instead of the modal superposition 

method, are investigated by studying an MDF 

system. For this purpose, consider a freedom 

undamped structural model as seen in Fig. 6. 

The first mode is regarded as the desired mode 

and the second mode as the unwanted high-

order mode that must be filtered. 

  

 
Fig. 6. Schematic figure of two DOF system, 𝑀1 =
2000 𝑘𝑔, 𝑀2 = 4𝑀1,  𝑘1 = 1800 𝑘𝑁/𝑚, and 𝑘2 =
180000 𝑘𝑁/𝑚.  

 

The displacement responses of the first degree 

of freedom (
1u ) in  Fig. 7 and the response of 

the second degree of freedom (
2u ) in  Fig. 8 are 

presented with the effect of filtering the high 

modes. As shown in the figures, the higher 

mode effect is not eliminated by either the 

PIMS or Newmark methods. As a result, both 

methods do not have appropriate capabilities to 

reduce the high frequencies.  
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 Case 3:  aluminum cantilever beam  
 

The purpose of this case is to investigate the 

abilities of the proposed PIMS and the average 

acceleration Newmark method for the beam 

under short-time loading (see Fig. 9). The 

geometry of the beam and the mechanical and 

geometrical properties of the beam are 

presented in Table 5. The history of the exerted 

hammer load in the free end of the beam is 

measured in the laboratory and is shown in Fig. 

10. 

 
Fig. 7. The 1u  response of the system was evaluated using the PIM and Newmark methods. 

Fig. 8. The 2u  response of the system was analyzed and compared using both the PIM and Newmark 

methods. 
 

 
Fig. 9. Aluminium cantilever beam.  
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Fig. 10. Experimental data of hammer-induced impact loads at the free end of the beam. 
 

 
Fig. 11. Acceleration of the free end of the beam with experimental data, Newmark, and PIMS methods (without 

damping 0 = ). 

 

Table 5. Specifications of an aluminum beam. 
𝛒 (kg/m3) B (mm) h (mm) L (mm) 𝐦̅ (kg/m) M (kg) E (Gpa) 

2700 40 10 750 1.08 1.585 69 

 
The finite-element model of the beam is created 
and also updated using FRF data for this study. 
Therefore, in the PIMS and Newmark average 
acceleration methods, the updated mass, 
damping, and mass matrices are used.  Damping 
is even negligible in high-velocity and very short 
time loadings; therefore, in this research, the 
results are reported for 0,  0.1% = . According 

to Fig. 11, for the undamped case ( 0 = ), in 

both numerical methods, the amplitudes of 
vibrations are not appropriately damped. 
However, because of the low damping ratio in 
the system, the amplitude of vibration in the 
experimental results gradually decayed. As seen 
from Fig. 11, in the first times of vibrations, the 
numerical results are less than the experimental 

ones, and from the middle to the end of the 
vibration times, the numerical results are larger 
than the experimental response.  
For the low ratio of damping case ( 0.2% = ), 

in both numerical methods, the amplitudes of 
vibrations are steadily damped. Also, because of 
the presence of low damping in the beam,  the 
amplitude of vibration from the experimental 
results gradually decayed. As seen from Fig. 12, 
the amplitudes of vibrations in both numerical 
methods are less than experimental data, and 
these results show that for finite-element 
modeling problems under short-time loading, 
more investigations should be considered in 
applying the proposed PIM and Newmark 
average acceleration method. 
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Fig. 12. Acceleration of the free end of the beam with experimental data, Newmark, and PIMS methods with 

damping ( 0.2% = ). 

 

 

4. Conclusions 

 

 This study proposes an improved formulation 

of the Precise Integration Method (PIM) to 

achieve higher accuracy in the analysis of 

structural dynamics problems. The 

improvement has been accomplished by 

inversion of the state matrix through a singular 

matrix decomposition (SVD) technique. The 

stability, ill-conditioning, and spurious 

frequency errors have been eliminated with the 

proposed method. Based on the case studies, 

the following results could be drawn: 

• The possible errors during numerical 

computations due to the singularity of the state 

matrix have been eliminated using the singular 

matrix decomposition (SVD) technique. 

• The stability of the proposed method is 

guaranteed for any problems in the state 

matrix. The PIMS is unconditionally stable for 

N≥4.  

• By adding the feedback to the proposed 

method, the values of the spectral radius are 

stable for all N values. Therefore, the PIMS 

method with feedback has unconditional 

stability.  

•  In the modeling of structural systems with 

large finite-element DOF, and also for models 

under short-time loading, e.g., impact or shock, 

well-known techniques, e.g. The Newmark 

method cannot be used blindly, and dynamic 

responses of such systems have high errors. 

 

• The well-known Newmark method and this 

proposed PIM method are not able to eliminate 

high-frequency effects in MDF systems. 

Therefore, for modeling structures with the 

Newmark method, using a modal superposition 

approach is preferable to the direct integration 

method.   
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