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Abstract

Numerical techniques for solving dynamic structural problems often encounter
significant challenges, including conditional stability, period elongation errors,
amplitude decay errors, and the emergence of spurious frequencies. To address
these issues, several first-order precise integration methods have been
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method algorithm and eliminate the singularity of the state matrix. The

Precise integration method  opystness of the proposed method is evaluated across various transient

(PIM), dynamic problems. The results demonstrate that traditional approaches, such
Single value as the Newmark method, exhibit substantially larger errors—exceeding 150%
decomposition, in certain cases. Ultimately, the findings emphasize that accurately estimating

the dynamic response of multi-degree-of-freedom systems under impact
loading requires careful consideration. Conventional methods, including the
Newmark average acceleration technique, should therefore not be applied
indiscriminately.
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challenges associated with these methods
include conditional stability, period elongation
The evaluation of transient dynamic responses errors, amplitude decay errors, and the

1. Introduction

using numerical methods is typically classified
into two main categories. The first category
comprises methods that directly solve the
second-order equilibrium equations, while the
second includes algorithms that transform the
second-order  equations into first-order
equations in the state-space form. The primary

emergence of spurious frequencies. In practical
applications, second-order methods are widely
employed, with certain approaches
demonstrating greater popularity due to their
computational efficiency and accuracy. Among
the second-order methods, the Newmark
average acceleration method, despite its
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unconditional stability status, has the error of
spurious frequency, and it also does not have the
capability to eliminate the undesirable effects of
the higher modes [1].

The order of the equation has been reduced and
converted to a first-order equation, so-called
precise integration method (PIM) in the state
space, to solve the stability problem in second-
order methods. These methods also have
stability, accuracy, and state matrix inversion
errors. If the matrix is single or ill-conditioned,
numerical errors appear. In recent years,
comprehensive research has been conducted on
precise integration methods.

The PIM method was introduced by Zhang and
William [2]. Due to the inverse matrix error and
load simplification, the accuracy of this method
is reduced when the equation of motion is
inhomogeneous.

Guangzhou et al. [3] proposed a new version of
PIM to convert an inhomogeneous equation to
a homogeneous one with a dimensional
expansion method. Regardless of computing the
inverse matrix, this method is computationally
expensive.

Wang and Zhou [4] demonstrated that this
method has conditional stability. Wong and Au
[5] have proposed the precise time step
integration method (PTSIM) to solve the
equilibrium equation with Gaussian techniques.
The accuracy of the method depends only on the
number of Gaussian points and the time step
size; however, this method is conditionally
stable.

As well, Wong and Au [5] presented the
NICPIM method to resolve the inverse matrix.
They further reported that this method is
unconditionally stable. However, if the state
matrix is singular or ill-conditioned, significant
numerical errors appear in the calculations.
Investigations in first-order PIM methods could
be categorized into two-fold: the First area
struggles in solving the accuracy and stability
problems of the precise integration methods
from the mathematical point of view. The
second field is in the application of the PIM
methods in structural dynamics and time-
varying areas.

Many efforts have been made to improve the
stability, accuracy, and elimination of the
matrix inverse error. Many researchers have
investigated the improvement of the PIM
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method from a mathematical point of view. Fu
et al. |6] used this method to solve ill-condition
algebraic equations; Zhang and Huang [7] in
solving singular boundary value problems; Fu
and Li [8] to resolve ill-conditioned linear
equations. Besides, Goa et al.[9] used improved
PIM to solve the Riccati differential equation.
Finally, Tan et al. [10, 11] applied the Fourier
series expansion in the improvement of PIM to
solve differential equations.

Many kinds of research have been
accomplished in the structural dynamic area.
Wang [12], Wu and Chuang [ 13, 14] applied the
PIM method for solving the equilibrium
equation of motion in structural dynamics. In
other disciplines of civil and structural
engineering, the PIM method is involved in
various time-varying problems.

Gao et al. [15, 16], Cai et al. [17], Yue et al.
[18], Ding and Hu [19] used the precise
integration method (PIM) and improved PIM
for dynamic response and vibration analysis of
large structures. Also, a vibration analysis of the
footbridge is carried out by Caprani [20]. Modal
analysis of ocean risers with PIM is carried out
by Zhou et al. [21] Hu and Wang [22], applied
the PIM for the time-history analysis of frame-
shear walls and tube-type structural systems.
The PIM for dynamic load identification by
Lingling and Yang [23] and also the Pseudo-
dynamic test of structures by Wang and Liu [24]
are successfully applied. Besides, the PIM
method is used by many researchers, e.g., Han
et al[25] for dynamic response of footing on
soil; Qingguan [26] in dynamic analysis of gate
chamber; Zhang et al. [27] to solve dynamic
nonlinear behavior of wheel-rail contact; Du et
al. [28] and Hu et al. [29] in the dynamic
interaction of train and bridge; Fang et al.[30]
in the modeling of wave propagation in the
layered pavement; Zhang et al. [31, 32] in
earthquake pounding model and elasto-plastic
seismic analysis of adjacent structures.

Wu et al. [33] in the modeling of periodic
structures; Chen et al. [34] for sensitivity
analysis in time domain response of
transmission lines; Cui et al.[35] in the dynamic
response of a beam with crack; and finally
This study enhances the first-order PIM method
to eliminate ill-conditioning and also inverse
matrix errors. For this purpose, the single-value
decomposition technique is combined with the
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classic PIM method, and the proposed method
is called PIMS. The technique has the desirable
accuracy and stability to eliminate the matrix
inverse error.

The results show that the accuracy of the
proposed method is better than the classic PIM
and also the second-order Newmark average
acceleration methods, which are inherently
unconditionally stable. Several structural
dynamic problems illustrate the robustness of
the proposed method. The capabilities of the
proposed PIM and the Newmark average
acceleration method are experimentally
evaluated. The results show that the estimation
of dynamic responses of MDF structural
systems under impulse loading required more
investigations, and these methods could not be
blindly used.

2. Formulation of improved PIM
2.1. Theory of classic PIM

In this section, the theory of the classic precise
integration method is presented. Consider a
second-order dynamic equilibrium equation of
a damped system as Eq. (1).

M X(1)+C X(¢)+K X(1) =F(@) (1)

where M, C, and K are the mass, damping, and
stiffness matrices of the system, respectively.
F(t) is an external force vector. As well, X,
X, and X refer to displacement, velocity, and
acceleration vectors, respectively. The second-
order equation in Eq. (1) is transformed into a
first-order equation in the state space as Eq. (2)
for obtaining the PIM formulation.

V=Act+tEF A= 0 |
X=Dv O I-MK -Mm'C

ot

where v is the state variable, A. is the state
matrix, D is the input-output coupling matrix,
E. is called the input distribution matrix, I is the

2

identity matrix, and F refers to the controller
vector. If E_, becomes zero, there is no control
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over external force (F), and the problem is time-
independent. The discrete form of Eq. (2) in the
time domain is written as Eq. (3).

v(t)=e vy ter'fjerE Fls)ds  (3)
Vn+1 = TVn + EOFn + Ean+l

4 1 2
EO = A T+7A I-T jEc ’
( ¢ Tgae D
_ -1 1 -2
El - ('Ac +7Ac (T-I)jEc
At

In Eq. (3), F is linearly interpolated between
two sequential time intervals. e*'is called the
transformation state matrix, and the accuracy of
the method depends on the precision of
calculating this matrix. T matrix in Eq. (3) is
written as Eq. (4).

4)
(e Acr)"’ _(T(5))"

In this paper, m=2" as proposed by Molar and
Van [36] and Wu and Chuang [13], suggests N
=5or4. T (7) is calculated by using the Taylor
series expansion as Eq. (5).

(a) (a)

+ +

2! 3! (5)

()

L!

T(T) =1 +Tn0 > TaO = AL‘T+

where I refers to an identity matrix and,
because only the first terms of the Taylor series
expansion have adequate accuracy, the higher
terms of the series are ignored. According to the
research of Wang and Au [5], the calculation is
carried out for L =4 and is written as Eq. (6).

N

T(At)E(I+Ta0) (6)

Based on the recursive relationships, the T,
matrix is written as Eq. (7).
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2
(I+Tu(N—l)) =I+2xT,wy+

Tow-nXTav-n=1+Tuw (7)
where N=1, n+1

The elements of the matrix T, are exceedingly

small. To reach better numerical accuracy,
instead of directly adding T, to the identity

matrix, they are stored separately from the
identity matrix I during the calculations. Thus,
the computational accuracy of the T(At) matrix
is increased by avoiding round-off errors during
computer calculations.

According to Eq. (3), the calculation of the
structural response in the PIM requires the
inverse calculation of the state matrix A_;

therefore, when the matrix is singular or ill-
conditioned, an error will occur in the
calculations. In this study, to avoid this error,
the inverse SVD method is implemented, as
described in Section 2.2. In the state-space
equations, the transfer function expresses the
characteristics of any linear system.

In general, the transfer function is defined as the
ratio of the Laplace transform of the system
output to that of the input, assuming all initial
conditions are zero. Accordingly, by applying
the Laplace transform to Eq. (2), the transfer
function can be derived as expressed in Eq. (8).

sv(s) = AV(s) + EF(s) >
(sI-A)v(s)=EF(s)
_ , _CEF(@)
X(s)=Cv(s): X(s)= CI_A) (8)
Ge)=XO)__ € _
F(s) (sI-A,)
Cadj(sI-A,) Y (s)
det|sI-A|  R(s)

where the rational function G(s) denotes the
transfer function, Y(s) represents the Laplace
transform of the output, and R(s) is the Laplace
transform of the input. The denominator is
called the characteristic equation of the state
system. As well, the roots of the characteristic
equation are called poles of the transfer
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function; the time response and the stability of
the method depend on the poles of the transfer
function. In the PIM, the eigenvalues A are

defined as Eq. (9).

[sI-A

©)

S -I

'K s+Mm'C

where s are the eigenvalues of A_, M, and K

are the mass and stiffness matrices,
respectively. For a damped SDF system, Eq. (9)
is written as Eq. (10).

S2+2§(OS +a)2:()
/ 10
s =—Cwt 52— =—§wii\/@ (10)

where ® and¢ are the frequency and damping

of the system, respectively. The method is
stable if the spectral radius p(A,) is smaller

than one. In the PIM, the eigenvalues of the
matrix A, are calculated as Eq. (11).

Prpr=axifi=
e (cos @A t+isin @A t) (11)

p=max(|p.|p,)

b

A single degree of freedom of structure under
free vibration is considered to investigate the
stability of the proposed method. In the system,
the mass of the system is 5000 (kg), and the
stiffness is set to 3000 (kN/m). Fig. 1 presents
the variations of spectral radius against d¢'T, in
which T is the fundamental period of the
system.

According to Fig. 1, this method is stable for N
equal to or greater than 4 or 5. As well, Fig. 2
shows that the PIM method is unconditionally
stable when dt/T<0.5 for all N values; However,
the values of N are important when dt/T>0.5,
and PIM is unconditionally stable for N>4.
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Fig. 1. Variations of spectral radius vs. dt/T for classic PIM.

2.2. Single value decomposition technique
(SVD)

One of the problems with the first-order method
is calculating the inverse of the state matrix . If
this matrix is ill-conditioned or singular, there
is a significant error in the numerical
computations. In this study, this weakness is
resolved by the inverse matrix (SVD), even if
the state matrix is singular or ill-conditioned,
the calculations will be accurate.

In the SVD, matrix Amxn can be decomposed
into A = UDV'. Where Up xn= [ui... um] and
Vi xn=[Vi... va] are orthogonal matrices whose
columns Unxn are AAT matrix eigenvalues, V,
«n columns are ATA matrix eigenvectors, and
according to Eq. (12) Dy« is a diagonal matrix
whose diagonal elements are non-zero values of
the square root of the eigenvalues of both AAT
and ATA matrices.

Dua = diag(oy,....,0p), p=min{m,n}

(12)

o12022..200 , owi=...op0

here | and o are the largest and smallest non-
zero singular values of matrix A. For Anwm
square matrix, the inverse matrix is defined as
Eq. (13).

Afl — (UDVT )71 — (VT )71D71U71
=vD'U"

(13)

where D! =diag(1 / 61,1 / 62, ..., 1 / o,). The
accuracy of the improved method is also
investigated for the structure of a damped single
degree of freedom. Here, the mass of a system
is 5000 kg, the stiffness is 3000 kN/m, & is
0.05, and the harmonic  excitation
p(t)=5000sin(27t) (N). The responses of the
PIM without SVD and the PIM with SVD were
compared with the analytical response. The
equilibrium equation of an SDOF with
boundary conditions is defined as Eq. (14)

mi-+cx+kx=p(t) ;x(0)=0,%(0)=0 (14)

The displacements at times 0.10, 0.20, 0.30,
0.40, and 0.50 s are presented in Table 1. The
exact structural response is obtained as Eq. (15)
by solving Eq. (14). The time step in numerical
analysis is set to 0.05.

_ P,
K&

sin(wpt )] —cos(xt))

(=&t )[

x(t)

S
1-&

((exp cos(wpt )+

(15)

where @, = w\J1- &> . According to Table 1, the

singularity or ill-conditioning of the coefficient
matrix in the PIM method causes an extreme
error in the calculations. The responses of the
system with the inverse of SVD are also shown
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in Fig. 2. It can be seen that the proposed PIMS
method is highly accurate, and the results have
excellent agreement with the analytical
responses. Hereafter, the PIM method using
SVD will be called PIMS.

2.3. Spurious frequencies in the proposed PIM
(PIMS)

When analyzing systems with a substantial
number of degrees of freedom (DOFs), higher
modes that are artificially introduced by the
finite element model must be appropriately
filtered during direct response calculations.
Numerical methods that introduce controlled
damping to suppress these higher modes—
without significantly influencing the behavior
of the lower modes—are generally preferred.

So far, the accuracy of the method has been
studied when the equilibrium equations are
homogeneous. Few studies have investigated
the robustness of the algorithm under external
loading. A new numerical study is introduced

0.025

0.02

0.015

X (m)

0.01 |

0.005 -

Vol. X, No. X

by Paramount [37] under external excitation. In
his method, a separate equation transfer
function was introduced. A comparison
between the calculated transfer function of the
analytical method and the numerical method
shows that the transfer function gives
comprehensive information for the accuracy of
the method and the demonstration of spurious
frequencies. The transfer function for f(t)=

exp(i @,At) is calculated from Eq. (16) [1].

1
Hoi=—————— (16)
w —o, +21§a)n ,

n

The relation between the external force and the
system response at a particular time is
considered as Eq. (17).

N = {Hx}exp(i @ At) 17)
X H:

= PIMS

1 1 I 1 I

0 L 1 1

0 Q.05 0.1 0.15 0.2

0.25

0.3 0.35 0.4 0.45 05

t (sec)

Fig. 2. Free vibration response of the damped system for proposed PIM (PIMS).

Table 1. Comparing the responses of a damped SDF system (units are mm).

Method of Time (s)

calculations 0.10 0.20 0.30 0.40 0.50
Exact 0.00117 0.0157 0.0188 0.0123 0.0086
Proposed PIM 0.00116 0.0156 0.0186 0.0121 0.0085
Classic PIM 2014 9423 7878 5799 2333

Proposed PIM error (%)
Classic PIM error (%)

0.85 0.64 1.06 1.62 1.16
1.7¢8 6.0e7 4.1¢7 4.7¢7 2.7e7
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H_ is the displacement transfer function, and

H .is the velocity transfer function. By

substituting Eq. (17) into Eq. (2), Eq. (18) is
obtained.

FI} = [exp(i @,At)x1-T] " *
H

) (18)
v, )|

I
exp(i o, At )}

H _is the PIM transfer function and is
calculated by using Eq. (18), where £ and E,
are defined in Eq. (3). When|H, /H,|=1], it

means that the numerical values are equal to the
analytical ones, and no spurious frequencies are
generated in the method. In the presence of
external loading, the period elongation and the
amplitude decay errors do not indicate the
accuracy of the method. The ratio of the analytic
transfer function to the numerical transfer
function shows the accuracy of the method. The
variations of |H,/H |against @,/, for the

PIMS and average acceleration Newmark
methods are presented in Fig. 3. The time step
At = 0.1XT is considered for the SDF system
studied in Section 2.4.

Fig. 3 shows that the proposed PIMs method
does not have a spurious frequency, and also,
when @, /@, <1, or more precisely, it is less
than 0.6, the response of the method is very
close to the analytical method. However, in the
Newmark average acceleration method, when
@,/ w, =1, the spurious frequency appears, and
a discontinuity is seen. However, there are
many transfer functions for the appropriate
estimation of responses in time and frequency
domains [38].

2.4. Filtering
responses

high-frequency spurious

In addressing dynamic problems, numerical
methods often exhibit relative period errors in
the representation of higher modes.
Consequently, the high-frequency responses
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predicted by numerical models are likely to be
spurious, thereby diminishing the overall
accuracy of the numerical response analysis.
Therefore, only the first few predominant
modes have a significant influence on the
responses, and the contribution of the higher-
order frequency responses is sometimes
spurious and inaccurate.

They reduce the accuracy of the calculations
and also cause numerical instability. As a result,
these frequencies are not desirable, and they
should be filtered. If linear systems are
controllable, the internal stability of the system
can be guaranteed by designing a controller
based on the system's feedback. It reduces
model sensitivity and eliminates disturbance
effects. In linear time-invariant systems (LTI),
this controller is considered a linear function
[14].

By calculating the feedback of the system and
optimal pole placement, the effect of
perturbation and spurious responses is
considerably reduced. In the PIM, a matrix is
added to the damping matrix (C) by calculating
the feedback; it is called C, [11]. According to

Eq. (19), the matrix C, is a function of the
stiffness matrix K and At.

C'=C+C,=C+2)AK (19)

According to the feedback of the system, the
value of the spectral radius is obtained by Eq.
(20).

exp(~E oAt pAtl-£2) 0<£<]
PrPr= (20)

exp(—& oAtk o Aty1-g2) £721
p =max(p,

1o

where o is the natural frequency of the system,
the damping coefficient must be changed to the
value of &7, as defined by Eq. (21).

_ C+2aK At At

: =&+ 2y — 21
g M $+2y 7 (21)

In the single degree of freedom (SDOF) system,
y is defined as Eq. (22).
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Fig. 3. Spurious frequency variations vs. @, / @, .

y=—Inp/(wpar) 0<E<I

Inp\’
~1+(—=)
ol 5*21
2Inp

(22)

v

The variation of the spectral radius of the PIM
with feedback was also calculated for the
mentioned system described in Section 2.1. The
spectral radius variations, including feedback
control, are illustrated in Fig. 4. According to
this figure, the proposed PIM method with
feedback is unconditionally stable, and its
spectral radius for all values of N is smaller than
one. Therefore, the presented method is

unconditionally stable due to the feedback
controller.

2.5. The accuracy of the proposed method

Similar to the second-order methods, the PIM
method also has amplitude decay error (AD)
and period elongation error (PE). These were
calculated for a single degree of freedom
structure under free vibration. The frequency of
the structure in this method is calculated
according to Eq. (23).

11l
tan”'(/2) 00
W = f"m 23)
fan U/e)*7 ( 4) T a<0
At

o /o

The period elongation error was obtained by
comparing the natural frequency of the structure

() and the PIM frequency (a)* ) asitis defined
in Eq. (24).

PE =% -1 (24)
w

In this method, the amplitude decay error (AD)
is also calculated as Eq. (25).

£ ~In(g*+ %)

_ , AD =27&"
20 At

(25)

An undamped single degree of freedom system
in Section 2.1 is again considered under free
vibration to study the accuracy of the proposed
method. The frequency error and the amplitude
decay error are shown in Fig. 5. According to
Fig. 5, the first-order methods for N =2 have a
period elongation error, and it decreases with
increasing N value, and for N = 4, the error is
negligible. The error of the method for
amplitude decay is also shown in the Figure.
The PIM amplitude error is also insignificant
for N larger than 4.

3. Results and discussion

In this section, the performance of the proposed
PIM (PIMS) is evaluated with several structural
dynamics problems. For this purpose, three
structural models are examined.
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Fig. 5. Amplitude and period elongation errors of the proposed PIM (PIMS).

The first one is a damped SDOF system under
the harmonic and rectangular impulse loadings.
Its dynamic response was investigated by
analytical, PIMS, and second-order Newmark
average acceleration methods.

The second case is a two-degree-of-freedom
structural model to examine the feasibility of
filtering high frequencies. The third case refers
to an aluminum cantilever beam with a
concentrated mass at the free end using the
Euler-Bernoulli theory.

The structural response of this beam was
compared under a very short impulse load with
experimental data and also the Newmark and
PIMS methods. All procedures explained in this
paper are programmed in the MATLAB
environment [39].

3.1. Case 1: A damped SDF system

The objective is to investigate the dynamic
responses of a single degree of freedom (SDOF)

structure with the specifications presented in
Table 2. The response of this system is
evaluated by analytical, Newmark average
acceleration, and the PIMS methods (see Table
3). When the load frequency is close to the
frequency of the structure, the results of the
Newmark method have some errors. As seen in
Table 3, it is observed that the response of the
PIMS method is close to the analytical solution,
whereas the Newmark method results have
more substantial errors. The structural response
of the mentioned SDF system under impulse-
loading with intensity P(t)=5000(kN) with
time-duration 0.2 s, and the results of the above-
mentioned methods for times 0, 0.2, 0.4, 0.6,
0.8, and 1 s are presented in Table 4. According
to Table 4, it can be seen that the PIMS method
shows better accuracy under impulse loading.
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Table 2. Specification of a damped SDF system (harmonic excitation).
m (kg) k (kN/m) & @ (rad/s) p(t) (kN)
5000 3000 0.05 2255 2000sin(ar )

Table 3. Displacements of a damped SDF system under harmonic excitation (mm).

Evaluation method Time (second) Maximum Error
0 1 2 3 4 (%)
Analytical 0 0.0758 -0.0032 -0.0383 0.0321 O
PIMS (This research) 0 0.0738 -0.0031 -0.0373 0.0312 3.1
Newmark 0 0.095 -0.0420  -0.0300 0.0215 33

Table 4. Displacements of a damped SDF system under impulse loading (mm).

Evaluation method glmoe.2(5) 0.4 0.6 0.8 1.0 2::::?‘:/131

Analytical 0 0.0013 0.0186 -0.00066 -0.0021 -0.0011 O

PIMS (This research) 0 0.0013 0.0205 -0.00057 -0.0022 -0.0081 24

Newmark 0 0.1500 0.0168 -0.00102 -0.002 0.0037 44
3.2. Case 2: A two-degree-of-freedom system undamped structural model as seen in Fig. 6.

The first mode is regarded as the desired mode

The average acceleration Newmark method, and the second mode as the unwanted high-
known for its unconditional stability, is widely order mode that must be filtered.

recommended for evaluating  dynamic
responses using the modal superposition
technique, where truncation of the modal space M2 == 12
inherently filters high-frequency components.
This method offers superior accuracy, and the
absence of numerical damping does not
adversely affect the results. In the present study,
the performance and applicability of the
average acceleration Newmark method are
investigated within the framework of the direct Kl
integration approach, as an alternative to the
conventional modal superposition method,
through the analysis of a multi-degree-of-
freedom (MDOF) system. The unconditionally
stable average acceleration Newmark method is
recommended for a calculation of the response
by modal superposition when the filtering of the
high frequencies is naturally carried out by
using a truncated modal space. It is the most
accurate method, and the absence of numerical

K2

M1 Ul

Fig. 6. Schematic figure of two DOF system, M; =
2000 kg, M, = 4M,, k; = 1800 kN/m, and k, =
180000 kN /m.

The displacement responses of the first degree
of freedom (u,) in Fig. 7 and the response of

the second degree of freedom (u, ) in Fig. 8 are

damping is not a problem. In this paper, the presented with the effect of filtering the high
capabilities of the average acceleration modes. As shown in the figures, the higher
Newmark method with the direct integration mode effect is not eliminated by either the
method, instead of the modal superposition PIMS or Newmark methods. As a result, both
method, are investigated by studying an MDF methods do not have appropriate capabilities to

system. For this purpose, consider a freedom reduce the high frequencies.
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Case 3: aluminum cantilever beam

The purpose of this case is to investigate the
abilities of the proposed PIMS and the average
acceleration Newmark method for the beam
under short-time loading (see Fig. 9). The
0.02
0.015
001 Fkt

0.005 |

X (m)

-0.005 -

001f [

-0.015

-0.02

Vol. X, No.X

geometry of the beam and the mechanical and
geometrical properties of the beam are

presented in Table 5. The history of the exerted
hammer load in the free end of the beam is
measured in the laboratory and is shown in Fig.
10.

t (sec)

Fig. 7. The U, response of the system was evaluated using the PIM and Newmark methods.
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Newmark
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Fig. 8. Theu, response of the system was analyzed and compared using both the PIM and Newmark

methods.

Tj

Fig. 9. Aluminium cantilever beam.
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Fig. 10. Experimental data of hammer-induced impact loads at the free end of the beam.
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Fig. 11. Acceleration of the free end of the beam with experimental data, Newmark, and PIMS methods (without

damping £=0).

Table 5. Specifications of an aluminum beam.

p (kg/m?) B (mm) h (mm) L (mm)

m (kg/m)

M (kg) E (Gpa)

2700 40 10 750 1.08

1.585 69

The finite-element model of the beam is created
and also updated using FRF data for this study.
Therefore, in the PIMS and Newmark average
acceleration methods, the updated mass,
damping, and mass matrices are used. Damping
is even negligible in high-velocity and very short
time loadings; therefore, in this research, the
results are reported for £=0, 0.1% . According

to Fig. 11, for the undamped case (£ =0), in

both numerical methods, the amplitudes of
vibrations are not appropriately damped.
However, because of the low damping ratio in
the system, the amplitude of vibration in the
experimental results gradually decayed. As seen
from Fig. 11, in the first times of vibrations, the
numerical results are less than the experimental

ones, and from the middle to the end of the
vibration times, the numerical results are larger
than the experimental response.

For the low ratio of damping case (£ =0.2%),

in both numerical methods, the amplitudes of
vibrations are steadily damped. Also, because of
the presence of low damping in the beam, the
amplitude of vibration from the experimental
results gradually decayed. As seen from Fig. 12,
the amplitudes of vibrations in both numerical
methods are less than experimental data, and
these results show that for finite-element
modeling problems under short-time loading,
more investigations should be considered in
applying the proposed PIM and Newmark
average acceleration method.
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Fig. 12. Acceleration of the free end of the beam with experimental data, Newmark, and PIMS methods with

damping (£ =0.2%).

4. Conclusions

This study proposes an improved formulation
of the Precise Integration Method (PIM) to
achieve higher accuracy in the analysis of
structural dynamics  problems. The
improvement has been accomplished by
inversion of the state matrix through a singular
matrix decomposition (SVD) technique. The
stability, ill-conditioning, and spurious
frequency errors have been eliminated with the
proposed method. Based on the case studies,
the following results could be drawn:

e The possible errors during numerical
computations due to the singularity of the state
matrix have been eliminated using the singular
matrix decomposition (SVD) technique.

e The stability of the proposed method is
guaranteed for any problems in the state
matrix. The PIMS is unconditionally stable for
N>4.

e By adding the feedback to the proposed
method, the values of the spectral radius are
stable for all N values. Therefore, the PIMS
method with feedback has unconditional
stability.

¢ In the modeling of structural systems with
large finite-element DOF, and also for models
under short-time loading, e.g., impact or shock,
well-known techniques, e.g. The Newmark
method cannot be used blindly, and dynamic
responses of such systems have high errors.
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e The well-known Newmark method and this
proposed PIM method are not able to eliminate
high-frequency effects in MDF systems.
Therefore, for modeling structures with the
Newmark method, using a modal superposition
approach is preferable to the direct integration
method.
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