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Abstract 
In many cases, a torsional shaft may be a thick-walled radially inhomogeneous 
cylindrical object. The hollow shafts made of functionally graded materials (FGMs) 
are such kind of compositions which were studied in this paper. Cylindrical FG 
shafts are composed of ceramic and metallic parts with power function distribution 
across the radial direction. The ceramic phase is isotropic elastic and the metallic 
phase was elastic-plastic. In this paper, the volume fraction-based elastic–plastic 
mixture rule of renowned Tamura–Tomota–Ozawa (TTO) was used to model the 
behavior of the composite material. The elasto-plastic torsion problem was modeled 
and solved analytically. The results were compared with the simulations of 
ABAQUS and the accuracy of the solutions was evaluated. Depending on the 
thickness and level of inhomogeneity, different modes of yielding were obtained. 
The results showed that plastic zone could occur at the inner or outer surfaces or 
simultaneously at both surfaces; even it may start in-between the thickness. 
Moreover, the influence of material inhomogeneity and thickness of shaft upon the 
plastic zone development were studied and discussed. 
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1. Introduction 
 
The invention of new materials naturally creates 
new opportunities for the development of new 
kinds of structures. Controllable synthesis of 
two or more material parts for building 
heterogeneous compounds results in the 
development of new composite constructions, 
known as functionally graded materials 
(FGMs). These gadgets enable us to use more 
secure materials in the places, in which stresses 
are higher, or similarly use heat resistant 
compositions wherever the risk of burning, 
melting, or high conductivity is inevitable and 
probably keep the weight or price at its lowest 
level at the same time. On the other hand, in 

line with the engineering and practical aspects 
of manufacturing processes, the analytical study 
of FGM structures attracts more attentions. 
As in homogenous materials, the behavior of 
metallic-based FGMs includes both elastic and 
plastic characteristics. Comparing elastic 
analysis, down to high level of involved 
stresses and complex formulations so far the 
elastic-plastic analysis of FGMs has not 
attracted too much attentions. Thus, in this 
paper, the elastic-plastic study of FGM shafts 
was considered.  
The first attempts for the elastic-plastic analysis 
of torsional shafts date back to the Saint-
Venant's semi-inverse method used for the 
analyses of elastic torsion and very often for the 
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study of elastic–plastic torsion of homogeneous 
shafts. Nadai [1] was the first who obtained the 
solution of elastic–plastic torsion of shafts. 
Based on a sand heap analogy, he obtained the 
stress field developed in a fully plastic shaft 
under torsional loads. By combining the 
membrane and sand heap analogies, Nadai [2] 
developed another approximate solution for the 
elastic–plastic torsion problems. Christopherson 
[3] presented a numerical solution for the 
elastic–plastic analysis of torsion in an I-
sectioned shaft using finite deference method 
(FDM) and relaxation technique. Based on the 
stationary complementary energy principle and 
Rayleigh–Ritz expansion method, Smith and 
Sidebottom [4] presented an elastic–plastic 
analytical solution to the problem of torsion in 
rectangular shafts. Hodge [5, 6] studied the 
elastic–plastic torsion problem for the perfectly 
plastic materials using the non-linear 
programming technique. In another attempt, 
Hodge et al. [7] used non-linear programming 
in finite deference method (FDM) for the 
analysis of elastic–plastic torsion problems. The 
first attempts using finite element method 
(FEM) for the elastic-plastic analysis of 
torsional loading in uniform shafts date back to 
the works by Yamada et al. [8]. May and Al-
Shaarbaf [9] developed FEM programs for the 
elastic–plastic analysis of uniform and non-
uniform torsional members subjected to pure 
and warping torsions. In another attempt based 
on Mitre's method, the elastic–plastic solutions 
of torsion problem for various types of cross-
sections were presented by Billinghurst et al. 
[10]. A number of imperative studies pertaining 
to the elastic and partially plastic torsion of 
prismatic tubes and bars have appeared in the 
publications of Wagner and Guttmann [11], 
Bakhshiani et al. [12], Sapountzakis and 
Tsipiras [13], and Kolodziej and Gorzelanczyk 
[14].  
Despite various admirable elastic-plastic 
analyses of FGM structures such as the studies 
in [15–21], the elastic-plastic analytical 
investigations of yielding and deformation in 
hollow FGM shafts under torsional loads have 
not been considered thus far.  Recently, Bayat 
et al. [22] studied the torsion of elastic hollow 
FGM cylinder. Material properties of the 

cylinder were assumed to be the arbitrary 
functions of radial coordinate. They obtained 
the connection between shear stress and twist 
angle. Now, in order to extend the analyses of 
FGM shafts to the elastic-plastic region, the 
main objective of this paper was to propose an 
efficient method for the prediction of elastic, 
partially plastic, and fully plastic states of stress 
in a twisted FGM hollow shaft.  
There may be two different approaches to 
propose the material properties of an FGM 
compound. One tactic is to find the overall 
mechanical properties according to the behavior 
of each constitutive part. Another approach 
does not tend to correlate material properties of 
the compound to those of its constituents. 
Instead, in this alternative approach, separate 
distribution functions are defined for each 
parameter and the analysis is done accordingly. 
For instance, in [15–19], radial distributions of 
the modulus of elasticity and yield strength are 
taken as power functions. Nemat-Alla et al. [20] 
proposed two-dimensional functionally graded 
compositions for the elastic–plastic analysis of 
2D-FGM plate under thermal loading. In 
another work, Ozturk et al. [21] considered the 
parabolic variations of four material properties. 
These four properties including yield strength, 
modulus of elasticity, coefficient of thermal 
conduction, and thermal expansion coefficient 
are temperature insensitive, while Poisson's 
ratio is a constant unrelated to position or 
temperature. More recently, using the 2J  flow 
theory as the flow rule and TTO model of 
Tamura et al. [23] as the mixture rule of the 
ceramic/metal compounds, different elastic-
plastic problems of stress analysis in FGM 
structures have been studied in [24-28]. 
This study was aimed to demonstrate the 
whereabouts of the plasticity start position and 
level of loading which leads to this condition. 
In this regard, different modes of plastic 
deformation were detected. The modes were 
controlled by the thickness and heterogeneity of 
the shaft. Different graphs were provided to 
illustrate these connections. According to the 
obtained results, there was a specific level of 
inhomogeneity (quantified by parameter n) 
which could control whether the starting point 
of plasticity depended on the shaft thickness or 
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not.  Moreover, it was shown that whenever the 
initiation of plasticity was a thickness-depended 
phenomenon, the straining point of yielding 
would be located at the boundaries. Otherwise, 
when the heterogeneity level was higher than 
the critical value and insensitive to thickness, 
the commencing point of the plastic 
deformations definitely would be located inside 
the bulk of the material. 
 
2. Governing equations 
 
As shown in Fig. 1, consider a hollow thick 
wall shaft with the internal radius of ‘a’ and 
external radius of ‘b’ made of functionally 
graded material (FGM). All through the shaft, 
the axisymmetric distribution of material 
properties change continually in a<r<b.  

 
Fig. 1.A hollow FG circular shaft with internal 
radius a and external radius b. 
 
As shown in Fig. 1, the two ends of a 
heterogeneous shaft are twisted with the relative 
amount of α radian per unit length in opposite 
directions. In order to describe the elastic-
plastic behavior of the metal/ceramic FGM 
shaft, the intermediate law of mixture, 
originally proposed for the cemented carbides 
by Tamura et al. [23] (i.e. the TTO model), is 
utilized. Based on the TTO model, in a two-
phase FGM structure, each material point is 
treated as a quasi-homogenous compound with 
the overall uniaxial stress σ and strain ε 
components related to the corresponding 
average uniaxial stress and the following strain 
of the constitutive parts: 

 (1) ,c c m m c c m mV V V V           
where  m  and m  represent  the average stress 

and strain of the metallic part, while c and 

c are those of the ceramic part. Also, mV and 

cV are the volume fractions of the metal and 
ceramic constituents, respectively. A power 
function is used to introduce the radial 
distribution of volume fractions. In this case the 
volume fractions of the metal and ceramic 
phases is provided as: 

 (2) 1 ; 1
1

n

m c m
rV V V
k
     

  

In Eq. (2), ‘n’ is the inhomogeneity index, 
/r r a is the relative position, and /k b a  is a 

geometrical dimensionless parameter depending 
on the thickness of shaft. An additional 
parameter q is also used in the formulation of 
TTO model; i.e.: 

(3) , 0c m

c m

q q 
 


   


  

Parameter q is called "ratio of stress to strain 
transfer" [27] and its value depends on the 
mechanical properties and microstructural 
interactions of the constitutive parts. For 
example, q is zero if the constitutive elements 
have equal amounts of stress levels. When both 
parts experience an identical strain level in the 
loading direction, q will tend to +∞. In general, 
because of the complex microstructural 
interactions and statistical scatter in the shape 
and orientation of the particles, the constitutive 
parts may neither undergo equal strains nor 
experience equal stress levels. In other words, a 
nonzero and finite value of q is generally more 
realistic than its extreme zero or infinite 
amounts. In practice, q may be approximately 
determined by numerical or experimental 
methods. For example, Bhattacharyya et al. 
[29] experimentally determined the typical 
value of 91.6 GPa for the q of Al/SiC 
compound.  
In elastic deformation, both parts of the FG 
ceramic/metal compound behave elastically; 
i.e.:  

(4) ,m m m c c cE E       
where mE and cE represent Young's moduli of 
the metal and ceramic constituents, 
respectively. Using Eqs. (1), (2), and (4), the 
overall Young'ss modulus, E, of the composite 
is obtained as: 
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(5) /c c
m m c c m c

m m

q E q EE V E V E V V
q E q E

    
         

  

In the TTO model, the overall Poisson's ratio, ν, 
follows a rule of mixtures; i.e.: 

(6) c c m mV V      
where m and c represent Poisson's ratio of the 
metal and ceramic constituents, respectively. 
It is assumed that a power function can be used 
to model the uniaxial stress-strain behavior of 
the metallic phase beyond the yield point: 

(7) 
0

0 0
0

,
n

m
m m


   


 

  
 

  

where 0 0 / mE  and 0n  denote the yield 
strain and the hardening exponent of the metal, 
respectively. Schematics of power law metallic 
phase stress–strain curve and stress–strain line 
of perfectly elastic ceramic phase is shown in 
Fig. 2. In this figure, the intermediate curve 
located between the upper inclined line and 
lower bent curve is the result of the TTO 
homogenization.   

 
Fig. 2. Scheme of homogenization by the extended 
TTO model [23]. 
 
As in [27], the following parametric equations 
can be used to determine the stress–strain (σ–ε) 
curve of the mixture beyond the yield point: 

(8a)  
 

0

0

0

n
m cc m m

Y c Y c m Y

q V E EV E
q E q E E

  
   

  
      

  

(8b)  

0

0

0

n

m c m c c m

Y c Y c m Y

V q E V qE
q E q E E

  
   

 
      

 

 
where /Y Y E  is the yield strain of the 
compound. Based on the TTO model, to 
determine the amount of yield stress for the 
compound, the resultant stress–strain curve 

must be used. Accordingly, the yield 
stress Y of the composite is determined as: 

(9)   0
m c

Y m m c
c m

q E EV V V
q E E

 
 

   
  

where 0 represents the yield stress of the 
metallic phase. Eq. (9) shows that the yield 
stress of the compound depends on the yield 
stress of the metal, volume fraction of 
constitutive parts, Young's modulus of each 
phase, and parameter q.  
  
3. Elastic deformation and onset of yielding 
 
In this section, after a review of the elastic 
deformations in FGM shafts, the conditions that 
control the whereabouts and twist levels 
required for the start of plasticity are studied. It 
will be observed how these simple requirements 
may lead to some unexpectedly ambiguous 
answers. 
  
3. 1. Elastic model and solution 
 
For a circular hollow shaft, an axisymmetric-
plane stress formulation leads to a one 
dimensional governing equation unrelated to 
angular coordinate . Similarly, in this axi-
symmetric analysis of FGM shafts, the warping 
function which is utilized in the analysis of 
non-circular shafts is not required [22, 30,31]. 
Under these conditions, the displacement 
components in the polar coordinate of )( zr   
can be represented as [22]:  
 

(10a) 0ru   
(10b) u rz   

in which z axis coincides the axial direction of 
the shaft. Besides, ru  and u are the 

displacement components in r and   directions 
and   is the angle of twist per unit length.  Eq. 
(10b) results in: 

(11) z r    
while all other strain components are zero. 
Here, the useful stress-strain relationship is: 

(12) z zG     
where represents the only non-zero shear 
stress component and G is the shear modulus 
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which can be obtained by the well-known 
correlation of  / 2 1G E   . By inserting Eq. 

(11) in (12), the shear stress component is 
formulated as: 

(13) z zG     
Using this field of stress, the position of the 
yielding commencement radius across the radial 
direction can be obtained. This study is 
followed in the next section. 
 
3. 2. Onset of plasticity 
 
Torsional yielding of homogenous hollow 
circular shafts was studied by Mendelson [32]. 
The analyses showed that yielding always 
begins at the outer surface of a homogeneous 
shaft. But, in FGM hollow circular shafts, 
depending on the value of different materials 
and geometrical parameters, different modes of 
plastic flow may occur. In this case, plastic 
region may emerge at the inner surface, at the 
outer surface, in an intermediate radius between 
the inner and outer surfaces, and even at both 
inner and outer surfaces simultaneously. To 
locate the whereabouts of the yield initiation 
point, using the von Mises yield criterion, the 
yield criterion can be written in terms of the 
shear stress component as follows: 

(14) 3 / 3z Y    

By inserting z and Y  from Eqs. (13) and (9) 
in Eq. (14), the limit angle of twist per unit 
length in which yielding starts is obtained as: 

(15)  2 3 1
3

Y
Y E r

 



  

Once the overall amounts of the parameters E, ν 
and Y  are replaced with their definitions 
provided in Eqs. (5), (6), and (9), consequently, 
Eq. (15) can be expanded as in the following 
form: 

(16)  02 1
3

c c m m m
Y m c

cm

V V q EV V
q EE r

  


   
   

 

Seemingly, Y  is the angle of twist per unit 
length which triggers the yielding at definite 
radius r. In other words, Eq. (16) demonstrates 
how much the shaft might be twisted before 
yielding can happen at radius r. But, whenever 
such a level of twist is applied to a shaft, 

plasticity may have been already started at 
somewhere that needs a less amount of twist 
angle. It means that this definite value of 

Y = Y (r) is not necessarily the specific value 
of twist angle which results in the yielding 
commencement. In other words, this angle of 
twist will show the yielding commencement 
twist angle only if its relevant radius ‘r’ 
becomes the starting point of the plastic 
deformation. It is clear that, in a homogeneous 
shaft, this specific position is the largest radius 
for the cross-section; but, in heterogeneous 
shafts, its position must be obtained. All of 
these facts recommend that a specific procedure 
must be used to pinpoint the effective value of 
twist which can really start plastic 
deformations. To characterize that specific 
amount, the potential plastic twist 
level Y obtained in Equation (16) is primarily 
called yield twist. To obtain the effective yield 
twist level, the following procedure should be 
utilized.   
Using Eq. (16) for a heterogeneous shaft, one 
can define a new parameter λ which can be used 
for the classification of yielding style.  It is 
assumed that: 

(17) Y r a

Y r b

k
 





   

where λ is a constant parameter as follows: 

(18) 
1

/
1

m m

c c

q E
q E





    

        
  

In fact, for k  , Eq. (17) gives the specific 
condition Y r a Y r b   which means that 
yielding emerges at the inner and outer surfaces 
simultaneously. In other words, considering 
Eq.(17) for k  , k   and k   results in 

Y r a Y r b   , Y r a Y r b    and 

Y r a Y r b   , respectively. These inequalities 
mean that yielding starts from the inner surface 
for k  , whereas for k  , yielding starts at 
the outer surface. Also, for k  , yielding 
emerges at the inner and outer surfaces 
simultaneously. Indeed, this condition means 
that the radial position of yielding point can be 
affected by k. It means that k can be selected as 
a geometrical parameter to locate the yield start 
radius.  
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Based on Eq. (16) at the onset of yielding, there 
is a specific connection between the radial 
coordinate Yr r  and yield twist Y . At the 
same time, the previous discussions recommend 
that, for the specific radius Yr r , the curve of 

Y -r must experience a minimum. Obviously, 
that radius is the position, from which yielding 
can potentially perpetuate. That specific radius 
of yield commencement should be found. It can 
be realized that the value of parameter n, i.e. the 
inhomogeneity index in Eq. (2), is another 
factor which controls the starting position and 
torque of plastic deformation.  In fact, for n 
bigger than a critical value, denoted by crn , 
plastic flow starts somewhere in the bulk of the 
shaft material, i.e. at radius Yr r where 

Ya r b  . This critical value of crn  plays an 
influential role in the classification of torsional 
problems and is obtained as follows.  
As  ,Y Y Y crr n  , the critical value of n will 
be the minimum amount of n so that Y -r curve 
experiences a minimum at intermediate radius 
or Ya r b  . For the condition of minimum 

point in Y -r curve, the following can be 
written: 

(19) at  Yr r and crn n :  0Y

r





  

which results in, 

(20) 
 
 

 
 

, , 1 0
, ,

Y Y cr Y cr

Y Y cr Y cr Y

r n G r n
r n G r n r



 

     

In Eq. (20), both crn and Yr  are unknown 
parameters. Therefore, another condition is 
required to determine crn  and Yr . But, if one 
plots the Y -r curves with different amounts of 
n as the parameter, at a specific amount of 

crn n , the proper curve experiences a 
minimum at Ya r b  . To find the amount of 

crn n , it is not difficult to imagine that the 
minimum angle of twist which causes yielding 
commencement at Ya r b   is equal to the 
same twist angle which causes yielding onset at 
the inner or outer surfaces. This condition can 
be written as:   

  
(21a)    ,Y Y cr Yr n a for k     

(21b)    ,Y Y cr Yr n b for k   
 (21c)      ,Y Y cr Y Yr n a b for k     
 which results in: 

(22a) 
 
 

 ,
0

3 ,
Y Y cr

Y
Y Y cr

r n
a for k

r G r n


     

(22b) 
 
 

 ,
0

3 ,
Y Y cr

Y
Y Y cr

r n
b for k

r G r n


   
 

(22c) 
 
 
,

0
3 ,

Y Y cr
Y r a or r b

Y Y cr

r n
for k

r G r n


    
 

Therefore, crn  and Yr can be determined by 
numerical solution of Eqs. (20) and (22). It 
should be noted that: 

(23) at  Yr r and crn n :      
2

2 0Y

r





  

Figure 3 and Table 1 summarize the process of 
finding the yielding onset radius for different 
FGM hollow circular shafts. 

 
(a) Internal yielding        (b) External yielding                                                       

                        
(c) Concurrent yielding     (d) In-between yielding 

Fig. 3. Classifying yielding start position in FG 
hollow circular shafts. 
  
Table 1. Comparing yielding onset radius in an FG 
hollow circular shaft under torsional loading. 

0n   0 crn n   crn n  

Yr b  
k   k   k   

Ya r b   
Yr a  &Y Yr a r b   

Yr b  
 
4. Ongoing elastic-plastic deformations 
 
Once yielding is initiated, the linear elastic 
relation between the stress and strain 
components fades away.  This inherent change 
of material in stress-strain correlation affects 
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the governing equations as well as the overall 
pattern of the stress distribution all over the 
body. In the axi-symmetric study of torsion 
problem, the pattern of deformation has been 
already provided in Eqs. (10). It shows that 
elastic-plastic study of the torsion problem only 
depends on the clear definition of the stress-
strain relationship. Accordingly, this section is 
devoted to the introduction of material 
constitutive correlations, which leads to the 
analysis of progressive elastic-plastic 
deformation in the FGM shafts. 
 
4. 1. Formulation 
 
Assuming small stains, small deformations, and 
accumulative elastic-plastic strain hypothesis, 
the following can be written: 

(24) e p
z z z       

where e
z and p

z are the only nonzero elastic 
and plastic strain components, respectively. 
Using the deformation theory of plasticity and 
von Mises yield criterion, the equivalent plastic 
strain p  is obtained as follows: 

(25) / 3p p
z   

Inserting Eqs. (11) and (12) in (24) and 
subsequently in (25) provides: 

(26) ( ) / 3p zr
G
    

Similarly, the equivalent von Mises stress is 
reduced to: 

(27) 3e z   
Now, using the provided stress–strain curve 
of )( , the equivalent von Mises stress 
produced by torsional loading or )(  re  is 
reflected back onto the ordinate of the )(  
curve; i.e.: 

(28) ( ) ( )e r     
In this paper, )(  is obtained by the TTO 
model in Eq. (8b). Moreover, Eq. (27) is used 
for calculating ( )e r  . 
In the elastic-plastic analysis of structures, there 
is a similarity between the uniaxial stress-
plastic strain curve and the equivalent stress-
plastic strain curves. Therefore, before using the 
TTO model, the elastic strain components must 
be subtracted from the curve or equation to 

obtain the ( )pf  relationship. Considering 
Eq. (8a), the plastic part of the total strain in the 
TTO model can be obtained as: 

(29) p e     
where  is the total uniaxial strain in the TTO 
model of Eq. (8a) and e  denotes its total 
elastic part. The elastic portion of total strain is 
provided by:  

(30) /e E   
In this study, the total strain is found by the 
deformation pattern in Eq. (10). Besides, there 
is a specific formula for the calculation of 
equivalent stress. Therefore, the amount of 
equivalent plastic strain can be found by 
inserting Eq. (27) in Eq. (28) and then in Eq. 
(26) to obtain: 

(31) 33
p r

G
     

Afterwards, inserting Eq. (30) in Eq. (29) and 
then equating the result with Eq. (31) provide:  

(32) 
EG

r 
 

33
 

Here, it seems necessary to emphasize that the 
two terms  / 3G   and E/ in Eq. (32) are not 
exactly equal. In fact, these two terms can be 
omitted if one assumes that elastic deformations 
are incompressible, which is not true.  
Now, using the TTO model, inserting and 
 from Eqs. (8a, b) in Eq. (32) results in: 

(33)      0

1 2
0

, ,
3

n
cm

m

q E
r n r n r


  


 

  
 

 

where  

(34a)    1
1 1, ,

3c m cr n V V q E
G E

        
  

 

(34b)   0
2

1 1, .
3m c c c

m

r n q V E V qE
G E E


        

    
Equation (33) can be numerically solved for the 
unknown parameter m . Hence, the equivalent 
components of stress and strain can be 
obtained. Afterwards, using Eq. (31), the plastic 
strain p  is calculated. Finally, using the 
relationships between the equivalent and 
shearing components of strain and stress, the 
distribution of these fields is calculated. 
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4. 2. Method of elastic-plastic analysis  
 
Analysis of non-homogenous structures in 
Section 3 indicates that, once the analysis of 
plasticity is the case, even the detection of 
starting radius of plasticity is a challenging 
task. In this case, depending on the inner and 
outer radii of shaft as well as the pattern of 
heterogeneity, different circumstances may 
happen. The following algorithm summarizes 
the procedure proposed for the identification of 
the initial yielding twist and the position of 
plastic deformation commencement radius. 
 Step1. 
For a given material and geometrical properties, 
given the angle of twist per unit length , and 
using Eqs. (18), (20), and (22),  and crn are 
determined. 
 Step2. 
If crn n , plasticity starts somewhere in-between 
the thickness at radius Yr r . In this case, for a 

known n,  Yr  is obtained by numerical solution 
of Eq. (20). Then, using Eq. (16), 

 Y Y Yr  is obtained.  
If crn n , depending on the value of k, yielding 
may begin on the inner side or outer side or 
even simultaneously on both sides. Considering 
Eq. (17), in this case, k   results in 

 Y Y a  . Otherwise, if k  , yielding 
emerges on the outer side of the cylinder; i.e. 

 Y Y b  . Finally, if k  , it can be seen 
that    Y Y Ya b    . This condition 
indicates that plastic zone emerges from the 
interior and exterior sides simultaneously. 
If Y  , there is no plastic region and the 
distribution of shear stress can be obtained from 
Eq. (13).  
For a given n, when Y  , plastic region can 
be found using the next step. 
 Step3. 
When Y  , if crn n  and k  , by 
increasing  , plastic region expands from the 
inner surface. In other words, in this case, the 
cylinder will be composed of an internal plastic 
region located in epa r r  surrounded by an 

elastic region in epr r b   with epr being the 
position of the elastic-plastic borderline. On the 
other hand, if Y   and k  , plastic region 
will spread from the outer surface. In this 
manner, elastic region is at epa r r   and 
plastic region is at epr r b  . If Y  and 
k  , the cylinder is partially plastic; i.e. in 
this case, the cylinder is composed of an 
internal plastic region at Iepa r r  , an elastic 
region between I IIep epr r r  , and another outer 
plastic region at IIepr r b  , in which Iepr and 

IIepr  are the positions of the elastic-plastic 
borderlines. When   increases, both inward 
and outward plastic regions are expanded 
toward the intermediate layers. epr can be 
obtained from the condition of 

   e p
z ep z epr r   . Here, the letters e and p stand 

for the elastic and plastic regions, respectively. 
By employing this condition and using Eqs. 
(13) and (27), epr can be obtained from the 
numerical solution of the following equation. 

(35) 
 
 

0
3

Y ep
ep ep

ep

r
r a r b

G r




     

The elastic-plastic borderline is somewhere in 
which e Y  . For k  , there are two roots of 
Eq. (35) at epa r b  . 
If crn n  ,  the plastic zone must appear at 
intermediate radius ( Yr r ) between the inside 
and outside boundaries; by increasing the twist 
per unit length, it propagates in the opposite 
sides. In this case, the cylinder is composed of 
an interior elastic zone at Iepa r r   , an 
intermediate plastic zone at I IIep epr r r  , and 
an exterior elastic region at IIepr r b  . Here, 

the elastic-plastic borders Iepr and IIepr can be 
also obtained from Eq. (35). 
For elastic region, using Eq. (13), the shear 
stress z  can be easily calculated. However, for 
the plastic region, at first, Eq. (33) should be 
solved numerically to obtain m . Then, using 
Eq. (31), for a specific angle of twist, the plastic 
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strain p  is calculated. Hence, the shear 
stress z  is numerically obtained from Eq. (26). 
 
5. Sample case study  
 
Consider a hollow circular shaft under the 
action of a torsional torque. As in [17] the 
following dimensionless variables are used to 
reduce the number of variables and generalize 
the application of the results: 

(36) 
;rr

a


 
;Y

Y
Y a






 

3 ;z

Y a





 

 
;Y

Y
Y a






 
 

.p

Y

E a
a





  

In this study, the shaft material is an FGM 
cermet which changes gradually from a 
perfectly SiC ceramic phase inside the shaft to 
the perfectly metallic phase at the outside. The 
distribution of volume fraction imitates the 
power law pattern discussed in the previous 
sections.  The SiC phase is an isotropic linear 
elastic material [28]. Elastic-plastic behavior of 
the homogenized Al/SiC material is found 
using the TTO formulation.  
Table 2 [33] represents the material properties 
of the SiC and Al constitutive phases. 
Moreover, similar to Bhattacharyya et al. [29], 
a value of 91.6q GPa  is used for the stress to 
strain transfer ratio to find the stress–strain (σ–
ε) curves of Al/SiC layers. The only 
geometrical parameter needed in this analysis is 
the internal radius of the shaft which is 

40( )a mm . 
 
Table 2. Material properties of aluminum and 
silicon carbide constituents [33]. 

Materials 
Young’s 
modulus 

(GPa) 

Poisson’s 
Ratio 

Yield 
stress 
(MPa) 

Hardening 
exponent 

Al 67 0.33 24 2 
SiC 302 0.17 - - 

 
5. 1. Elasticity and onset of plasticity 
 
To find the position of the starting point of 
plastic deformation in a purely elastic 
condition, using Eq. (16), the non-dimensional 
yield parameter λ is calculated as 2.821  . 
Hence, the critical twist per unit length is 
investigated for 1.5k   , k  , 

and 3.2k   . Figs. 4 through 6 demonstrate 
the yield twist per unit length for 1.5k   , 
k  , and 3.2k   , respectively. The 
results are plotted for different values of 
heterogeneity exponent n. Yielding point for 
each n starts at the absolute minimum point of 
each relevant curve. 

 
Fig. 4. Yield twist per unit length in radial direction 
( 1.5k   ). 

 
Fig. 5. Yield twist per unit length in radial direction 
( k  ). 

 
Fig. 6. Yield twist per unit length in radial direction 
( 3.2k   ). 

 
For example, considering Fig. 4, for n=4, the 
minimum twist which causes yielding in the 
cylinder is )/(2312.4 mmradY  and starts at 

=1.2026Yr r . Therefore, for n=4, yielding 
emerges inside the cylinder. Indeed, according 
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to this figure for crn n , plastic flow starts 
somewhere in-between the shaft cross-section, 
i.e. at Yr r , where <bYa r  while for crn n , 
yielding commences at the inner surface. 
Similarly, according to Figs. 5 and 6, for 

crn n , plastic flow starts inside the cylinder; 
i.e. at Yr r , while for crn n , yielding 
simultaneously commences at the inner and 
outer surfaces of Fig. 5 and at the outer surface 
of Fig. 6. Based on two exemplary pre- and 
post-critical amounts of heterogeneity exponent 
n, (i.e. 0.8 crn n  and 4 crn n  ), different 
graphs of yielding and shearing stresses are 
provided in the following section. It should be 
noted that, in each case, the dimensionless 
yielding and shearing stress functions are 
plotted for the minimum twist which causes the 
yielding.   
 
5. 1. 1. Typical elastic analysis when crn n  
 
Figures 7-9 are plotted to demonstrate the radial 
distribution of dimensionless yield twist, 
yielding and shearing stresses for n=0.8. 
 

 
Fig. 7. Radial distributions of Y , Y , and  
( 0.8n  , 1.5k  ). 

 
Fig. 8. Radial distributions of Y , Y , and  ( 0.8n  , 

2.8k  ). 

Considering the dimensionless parameters 
defined in Eq. (36), yielding occurs when 

Y  . According to Fig. 7, yielding starts at 
the inner surface for 1.5k  . Besides, this figure 
shows that yielding emerges from the point of 
minimum dimensionless twist at 1Y  . A 
similar pattern can be seen in Figs. 8 and 9.  In 
Fig. 8, yielding starts at 1Y  , whereas in 
Fig. 9 yielding starts at 0.881592Y  , which is 
the lowermost point of the curve.  
 

 
Fig. 9. Radial distributions of Y , Y and 
 ( 0.8n  , 3.2k  ).
 
5. 1. 2. Typical elastic analysis when crn n  
 
Figure 10 shows the distribution of 
dimensionless yield twist, yielding, and 
shearing stresses in the radial direction for n=4. 
As is typical, since the behaviors of FG cylinder 
for k  , k  , and k  for crn n are similar, 
the results are plotted for the sample 1.5k  . 
 

 
Fig. 10. Radial distributions of Y , Y  and  
( 4n  , 1.5k  ). 
 
By obtaining the amount of minimum 
dimensionless twist in Fig. 10, the distributions 
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of dimensionless shear and yield stresses are 
plotted for 0.86793Y  . Fig. 10 represents that 
yielding starts somewhere inside the cylinder. 
As is typical, here the start point is 1.20265Yr  . 
It can be seen that the radius of yielding is the 
same point of minimum dimensionless twist. 
 
5. 2. Developing plasticity 
 
As discussed in Section 4, for a given 
material  , depending on the geometrical 
parameter k, plastic region may emerge from 
inside, outside, concurrently from inside and 
outside, or somewhere in-between the cross-
section. Hence, the dimensionless torsional 
shear stress in Figs.  7 through 10 are plotted 
for 86793.0,881592.0,1,1Y , respectively. For 

Y  , the plastic region expands with 
increasing . Therefore, similar to the 
preceding section, the results are prepared using 

0.8 crn n  and 4 crn n  . 
 
5. 2. 1. Typical elastic-plastic analysis when 

crn n  
 
As shown in Fig. 7, assuming n=0.8 and k=1.5, 
the elastic yielding twist will be 1Y  . Hence, 
for Y  , the plastic region expands from the 
inner surface with increasing  and, at 

1.88073fp  , the cylinder becomes fully 
plastic. Taking 1.59712Y  , 1.25epr   can be 
found. Corresponding distribution of plastic 
strain as well as the dimensionless yielding and 
shearing stresses along the radial direction 
for 0.8n   are plotted in Fig. 11. According to 
this figure, the cylinder is partially plastic 
composed of a plastic zone at 1 epr r  and an 
elastic region at epr r k  . Moreover, Fig. 11 
shows that plastic strain is zero at the inner 
surface which complies with the elastic 
behavior of ceramic material in that position. 
For the cylinder with parameters n=0.8 and 
k=2.81 and twist value 1  , yielding begins 
simultaneously at the inner and outer surfaces 
(see Fig. 8). Therefore, when Y  , by 
increasing  , plastic region expands from the 

inner and outer boundaries and, 
at 1.072142662fp  , the cylinder becomes fully 
plastic at 1.3147fpr  . At 1.0514  , the 
elastic-plastic interfaces are located at 1 1.8epr   
and

2 1.0843epr  . In this case, the relevant 
distributions of plastic strain, dimensionless 
yielding, and shearing stresses along the radial 
direction for k=2.81 are plotted in Fig. 12. 
According to this figure, the cylinder is 
partially plastic composed of plastic zone at 

11 epr r  and 2epr r k   and an elastic region 
at 1 2ep epr r r  . Once again and because of the 
elastic behavior of the ceramic phase, it can be 
seen that plastic strain vanishes at the inner 
surface. 
 

 
Fig. 11. Radial distributions of Y , Y  and 
 ( 0.8n  , 1.5k  ). 
 

 
Fig. 12. Radial distributions of Y , Y  and   
( 0.8n  , 2.8k  ). 
 
For the cylinder with n=0.8, k=3.2, and 

0.881592  , yielding begins at the outer 
surface (see Fig. 8). At 1fp  , the cylinder 
becomes fully plastic. Assigning 0.9593  , 
the elastic-plastic border is located at 2epr  . 
The corresponding radial distributions of plastic 
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strain, dimensionless yielding, and shearing 
stress for k=3.2 are plotted in Fig. 13. 
According to this figure, the cylinder is 
partially plastic, composed of an elastic region 
at 1 epr r  and a plastic zone at epr r k  . 
 

 
Fig. 13. Radial distributions of Y , Y  and 
 ( 0.8n  , 3.2k  ). 
 
 
5. 2. 2. Typical elastic-plastic analysis when 

crn n  
 
Assuming 1.59712> Y  , Fig. 14 
demonstrates the distribution of dimensionless 
plastic strain, yielding, and shearing stresses in 
the radial direction for n=4. As is typical, since 
the behavior of FG cylinder for k  , k  , 
and k   for crn n  are similar, the following 
results are plotted for 1.5k  . It is seen that 
plastic strain emerges from 1.20265Yr   and 
propagates towards the elastic-plastic borders at 

1epr  and 2epr . 
 
5. 3. Validation  
 
In this section, ABAQUS software is employed 
as a benchmark to compare the analytical 
results obtained from the present work using the 
FE method.  Hereby, a hollow shaft was 
modeled using a commercial FE code, 
ABAQUS. Inner radius, outer radius, and 
length of the hollow shaft were 40, 60, and 5 
mm, respectively. Similar to [22], an "8-node 
linear brick" element was used to represent the 
specimen. Down to longitudinal symmetry and 
without any conservation, the cylinder could be 
modeled as a short length cylinder (disk). First, 

the homogenous case was considered. In this 
regard, setting n=0 in Eqs. (2) resulted in 1mV   
and 0cV  . It means that, for the homogeneous 
case, the shaft was made of purely aluminum 
metallic phase. The material properties 
provided in Table 2 were also used in the FE 
model. Moreover, the stress–strain (σ–ε) curve 
of the mixture beyond the yield point can be 
obtained from Eqs. (8). For applying the 
torsional load, one side of the cylinder was tied 
by a circular rigid plane and the torque was 
exerted in the center of circular rigid plane so 
that the angle of rigid plane rotation 
reached 55.5012 (0 10 )Rad   . 

 
Fig. 14. Radial distributions of Y , Y  and 
 ( 4n  , 1.5k  ).
 
This amount of the rigid plane rotation 
yielded 0.8Y  . Besides, the circular plane was 
free to rotate about z-axis while constraining 
the other directions alone. Another side of the 
cylinder was fixed completely. Fig. 15 shows 
the meshing region. 
Table 3 compares the dimensionless shear 
stress and plastic strain obtained by the FE 
method and the analytical solutions developed 
in this work for typical homogeneous (n=0) 
case. In Table 3, %Diff is defined 
as .

% 10
.

0
Anal FEM

Diff
Anal




 . Based on Table 3, it 

can be seen that the % Diff were relatively 
small and negligible almost in all cases. 
Moreover, according to Table 3, it is seen that, 
for the homogeneous hollow shaft, plastic strain 
emerged from outer surface and propagated 
towards the elastic-plastic border at 1.25epr  . 
In the second step, the FG thick walled shaft 
was modeled using ABQUS. In this regard, the 
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variation in material properties was 
implemented by dividing thickness into 20 
layers with each layer having a constant value 
of the material properties [22, 34]. Here, the 
angle of rigid plane rotation 

53.89304 10 ( )Rad   was considered. 
Assuming n=0.8, this amount of the rigid plane 
rotation yielded

 
1.59712Y  . Table 4 shows a 

comparison between the analytical and FE 
results for dimensionless shear stress and 
plastic strain for typical n=0.8. It should be 
noted that the analytical FGM data for n=0.8 
were extracted from Fig.11.  
 
 

 
Fig. 15. Finite element mesh region. 

 
 
According to Table 4, the % Diff were 
negligible almost in all cases, except for the 
inner and outer surfaces in which shear stress 
differences were increased up to 6.84%. The 
assumption of constant material properties in 
each layer led to such an error increase. Hereby, 
as the inhomogeneity index increased, the 
percentage of the error increased. Hence, the 
number of layers plays an important role in the 
accuracy of the FEM results.  
Consequently, according to the assessments 
provided in Tables 3 and 4, it can be concluded 
the analytical method and solution were 
accurate and reliable. 
 
6. Conclusions
 
An analytical technique was developed to find 
out what the twist level was and where the 
starting point of plastic deformation was in an 
FGM shaft under excessive rotations. The 
developed technique was used to analyze the 
elastic-plastic response of an FG circular 

hollow shaft which obeyed the so-called 
homogenization rule of the Tamura–Tomota–
Ozawa (TTO). The closed form solution was 
validated by the simulations of commercial 
ABAQUS software. The analytical results 
showed that, unlike the homogenous hollow 
circular shaft in which yielding initiates at the 
outer surface, in an FGM shaft depending on 
the level of geometrical parameter k and 
functionally graded parameter crn , different 
modes of yielding can be observed. 
 
Table 3. Comparing the dimensionless shear stress 
and plastic strain obtained by the FE method and the 
analytical solutions developed in this work for n=0. 

r/a Type   
p  

Value %Diff Value %Diff 

1 Anal. 0.8000 0.625 0 ---- FEM 0.8050 0 

1.0875 Anal. 0.8700 0 0 ---- FEM 0.8700 0 

1.1875 Anal. 0.9500 0 0 ---- FEM 0.9500 0 

1.25 Anal. 1 0 0 ---- FEM 1 0.0532 

1.2875 Anal. 1.0140 0 0.6397 0.266 FEM 1.0140 0.6414 

1.3875 Anal. 1.0503 0 2.3839 0.076 FEM 1.0503 2.3857 

1.5 Anal. 1.0897 0.193 4.4072 2.552 FEM 1.0876 4.2948 
 
 
Table 4. Comparing the dimensionless shear stress 
and plastic strain obtained by the FE method and the 
analytical solutions developed in this work for 
n=0.8. 

r/a Type   p  
Value %Diff Value %Diff 

1 Anal. 1.5971 6.837 0 ---- FEM 1.4879 0.1445 

1.0875 Anal. 1.0510 0 0.5040 1.111 FEM 1.0510 0.4984 

1.1875 Anal. 0.8315 0 0.2646 0.227 FEM 0.8315 0.2652 

1.25 Anal. 0.7419 0.214 0 ---- FEM 0.7403 0.0422 

1.2875 Anal. 0.6890 0.526 0 ---- FEM 0.6854 0 

1.3875 Anal. 0.5719 0 0 ---- FEM 0.5719 0 

1.5 Anal. 0.4676 2.673 0 ---- FEM 0.4801 0 
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It means that plastic zone may commence at the 
inner surface, at the outer surface, 
simultaneously at both surfaces, and even it 
may start somewhere in-between the thickness. 
In this work, proper analytical expressions were 
provided to characterize the decisive amounts 
of k and crn parameters. For different modes of 
incipient yielding, the elastic limit angle of 
twist was derived. Accordingly, it is possible to 
tailor the specific amounts of k and n to control 
the position of the elastic-plastic interface line. 
Moreover, stress analyses were extended to the 
plastic deformations. The partially plastic and 
fully plastic responses of the shaft were derived. 
The study showed that detection of the starting 
point of plastic deformations was a complex 
issue. On the contrary, because of the semi-
inverse structure of the torsion problem, it was 
almost an easy task to analyze the stress field in 
the yielded region. 
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