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In the present study, five modeling approaches of RA, MLP, MNN, GFF, and 
CANFIS were applied so as to estimate the radial overcut values in 
electrochemical drilling process. For these models, four input variables, 
namely electrolyte concentration, voltage, initial machining gap, and tool feed 
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prediction capability with measured values. It was clearly seen that the 
proposed models were capable of predicting the radial overcut. However, the 
MLP model predicted the radial overcut with higher accuracy than the other 
models. The statistical analysis showed how much the radial overcut was 
mainly influenced by voltage and electrolyte concentration during the 
electrochemical drilling process. 
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1. Introduction

Electrochemical machining (ECM) is a modern 
machining process that relies on the removal of 
workpiece atoms by electrochemical dissolution in 
accordance with the principles of Faraday. Gusseff 
introduced the first patent on ECM in 1929, and the 
first significant development occurred in the 1950s 
when the process was used for machining high-
strength and heat-resistant alloys [1]. 
Electrochemical drilling (ECD) is a promising and 
low-cost process for making holes in difficult-to-
machine materials, such as nickel-based super 
alloys, titanium, and inter-metallic compounds. 
Compared with traditional methods, ECD has 
some advantages in the absence of residual stress, 
tool wear, and metallurgical defects. Therefore, it 
has been widely applied in aerospace, aeronautics, 
defense, and medical industries [2].  

Various attempts have been made to investigate 
and modify ECD process in order to improve 
machining quality and accuracy. In 2010, Wang et 
al. [3-5] attempted to integrate the vacuum 
extraction of electrolyte with ECD to enhance the 
stability of the machining process and improve 
machining accuracy and stability in inclined ECD 
by modifying the electrolyte flow distribution with 
a wedged electrode. In the next year, Fan and 
Hourng [6] utilized a rotational system to extract 
insoluble sludge from a deep hole and reduce the 
difficulty of filling deep hole with electrolyte and 
explored the influence of working parameters, such 
as pulsed on-times, applied voltages, electrolyte 
concentrations, pulsed frequencies, tool feeding 
rates, tool diameters, tool rotational rates, and hole 
depth, on the hole overcut and conicity in an 
electrochemical micro-drilling process. In the same 
way, Fan et al. [7] studied electrochemical micro-
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drilling by short pulsed voltage for a deep hole on 
nickel plates. Similarly, Mithu et al. [8] 
investigated the effects of applied frequency and 
duty cycle on the shape and size of the fabricated 
micro-holes, machining time, and actual material 
removal rate in electrochemical micro-drilling of 
nickel plates. Tsui et al. [9] applied a micro-helical 
tool as a novel solution to the problem of using a 
micro-cylindrical tool in an electrochemical micro-
drilling (ECMD) process. In 2014, the 
experimental research of electrochemical drilling 
technology with high-speed micro-electrode for 
fabricating deep micro-holes was carried out by 
Liu and Huang [10]. The influences of rotary speed 
on machining precision and stability were studied 
and it was proved that the high-speed 
electrochemical drilling process for fabricating 
deep and micro-holes had a huge potential and 
broad application prospects. 
Statistical and soft computing techniques have been 
widely used in modeling and control of many 
machining processes. For instance, Zare Chavoshi 
[11] used these techniques for predicting 
performance parameters in electrochemical drilling 
process. Zare Chavoshi and Tajdari [12] modelled 
the surface roughness in hard turning operation of 
AISI 4140 using regression analysis and artificial 
neural network. Analysis and estimation of state 
variables of AL6061 in CNC face milling 
operation were performed by Soleymani Yazdi and 
Zare Chavoshi [13]. Sharma et al. [14], Sarkar et al. 
[15], Bilgi et al. [16], Uros et al. [17], and Caydas 
et al. [18] are the other researchers who have 
applied statistical and soft computing techniques in 
different machining processes.  
In this work, statistical and soft computing models 
were developed based on experimental dataset 
during while the electrochemical drilling process of 
stainless steel. Then, the results of RA (regression 
analysis), MLP (multilayer perceptron), MNN 
(modular neural network), GFF (generalized feed 
forward), and CANFIS (coactive neuro-fuzzy 
inference system) models were compared with the 
intention of identifying the model with higher 
accuracy. 3D surface, contour, and main effect 
plots were employed to investigate drilling 
characteristics. Through this study, not only can the 
predictive models for electrochemical drilling 

operation be obtained, but also the main cutting 
parameters that affect the cutting performance in 
electrochemical drilling operation can be found. 
 
2. Experimental procedure 
 
The experimental system for electrochemical 
drilling with electrolyte-extraction consisted of 
electrolyte-extraction unit, electrolyte supply unit, 
power supply, data control unit, and electrolytic 
cell. Figure 1 displays vacuum extraction system. 
Electrolyte was supplied from the electrolyte tank 
to the electrolytic cell after being filtered by a 
micro-filter and was extracted by the extraction 
pump to the electrode tube connected to the 
combining manifold. Stainless steel plate was used 
as the workpiece and NaNO3 aqueous solution was 
employed during the experiments [4]. Orthogonal 
array and result of factor responses to the radial 
overcut are shown in Table 1. 

 
Fig. 1. Flow pattern of ECD with electrolyte-extraction [4]. 
 
3. Statistical analysis 
 
The main effects plot for the radial overcut during 
electrochemical drilling with vacuum extraction 
of electrolyte is shown in Fig. 2. A main effect 
plot is a plot of the mean response values at each 
level of a design parameter or process variable 
[19]. Figure 2 shows that the voltage and 
electrolyte concentration were the most effective 
parameters on the radial overcut. 3D surface and 
contour plots were created, as shown in Figs. 3 and 
4. According to Figs. 2-4, it can be seen that the 
increase of the voltage and electrolyte 
concentration could increase the radial overcut, 
while tool feed rate had a reverse effect. In Fig. 3, 
due to the interaction effects of ECD process 
parameters, many peaks and valleys could be 
observed. 
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Table 1. Orthogonal array and result of factor responses to radial overcut [3]. 
Condition Electrolyte 

concentration (wt.%) 
Voltage (V) Initial machining 

gap (µm) 
Tool feed rate 

(µm/s) 
Radial Overcut 

(µm) 
1 14 9 50 6 170.4 
2 14 11 60 9 204.9 
3 14 13 70 12 220.5 
4 14 15 80 15 254.5 
5 16 9 60 12 174.6 
6 16 11 50 15 191.2 
7 16 13 80 6 280.1 
8 16 15 70 9 285.0 
9 18 9 70 15 216.2 
10 18 11 80 12 234.7 
11 18 13 50 9 304.3 
12 18 15 60 6 335.8 
13 20 9 80 9 250.0 
14 20 11 70 6 342.1 
15 20 13 60 15 305.3 
16 20 15 50 12 354.9 
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4. Modeling 
  
4. 1. Regression analysis (RA) 
 
Regression model was developed using MINITAB 
15 software based on the experimental data given 
in Table 1. Equation 1 presents the linear plus 
interaction relationship between factors, factors 
effects, and radial overcut (response) as a result of 
response surface regression analysis. Where C is 
electrolyte concentration (wt.%), E is voltage 
(V), G is initial machining gap (µm), and  V  is 
tool feed rate (µm/s). 
R-Sq (adj) (R2 adj) is 99.8 % which accounts for the 
number of predictors in the model. This value 
indicates that the model fits the data well. 

 
 
4. 2. Multilayer perceptron (MLP) 
 
The most commonly used neural network model is 
the MLP. This type of neural network is known as 
a supervised network, because it requires a desired 
output in order to learn. The goal of this type of 
network is to create a model that correctly maps the 
input into the output using historical data so that the 
model can be then used to produce the output when 
the desired output is unknown. The back-
propagation is a popular learning method of the 
multi-layered neural network. [20] The forward 
path computing of the multi-layered neural 
network is performed with each layer fully 
connected to the next layer, as shown in Fig. 5. 
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Fig. 4. Interaction effects of process parameters on radial overcut: a) Interaction effects of electrolyte concentration and 
voltage on radial overcut, b) Interaction effects of tool feed rate and initial machining gap on radial overcut. 
 
 

 

 
Fig. 5. Back-propagation MLP network [21]. 

 
 

In this study, the back-propagation neural network 
was used, since it was considered to be a powerful 
technique for constructing non-linear functions 
between several inputs and one or more 
corresponding outputs according to Klimasauskas 
et al. [22]. While being a relatively simple and 
flexible tool for data modeling and analysis, it 
could handle large amounts of data in complex 
problems. 
The back-propagation network typically has an 
input layer, an output layer, and at least one hidden 
layer, with each layer fully connected to the 
succeeding layer. During the learning, information 
is also propagated back through the network and 
used to update the connection weights. The 
following expressions give the basic relationships 
for this analysis [22]. Let 
 



JCARME                                                      Mehdi Tajdari, et al.                    Vol. 4, No. 2, Spring-2015 

186 

 

][s
qX =Current output state of the qth neuron in 

layer  
][ s

qp

q
W = Weight on the connection joining the Pth 
neuron in layer S-1 to the qth neuron in layer S 

][s
qI = Weighted summation of inputs to the qth 

neuron in layer S 
A back-propagation element therefore propagates 
its inputs as: 

)()( ][]1[][][ s
q

p

s
p

s
qp

s
q IfXWfX 








                                                                                      

                                                                                 (2)  
where f is a differentiable function, but usually the 
sigmoid function given by: 
 

1)0.1()(  zezf                                           (3) 
  
A global error function E (which is a differentiable 
function of all the connection weights in the 
network) is needed to define the local errors at the 
output layer; so, they can be propagated back 
through the network. Here, the critical parameter 
that is passed through the layers is defined by: 
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which can be considered as a measure of the local 
error for processing element q at level s (here, s+1 
is a layer above layer s). The aim of the learning 
process is to minimize the global error E of the 
system by modifying the weights. A given set of 

current weights ][s
qpW should then be increased or 

decreased to decrease the global error. This issue 
can be done by a gradient descent rule as: 
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where cl  is a learning coefficient. Each weight is to 
be changed according to the size and direction of 
negative gradient on the error surface. 
In neural network designing process, the optimal 
structure of neural network (right number of hidden 
layer as well as right number of neuron in each 
hidden layer) can be found out by ‘"trial-and-

error"’ method only. More layers can give a better 
fit; but, training takes longer. Too few neurons give 
a poor fit, while too many neurons result in the 
over-training of the net. 
Electrolyte concentration, voltage, initial 
machining gap, and  tool feed rate are considered 
as the input variables and radial overcut is the 
output. Four data sets are selected randomly as the 
testing data and the remaining twelve data sets are 
used for specifying the neural networks. In order to 
have accurate models, several back-propagation 
MLP neural networks, which are not shown in this 
section, were used to obtain the best neural network 
architecture and learning coefficients.  
For constructing the model, the tahnaxon 
transfer function and the momentum (MOM) 
learning rule were used for training the model. 
Network with four inputs, nine neurons in the 
first hidden layer, two neurons in the second 
hidden layer, and one neuron in output layer, 
4:9:2:1, was considered. The related training 
parameters for the network were optimized as 
the learning rate=0.7 and maximum number of 
iteration/epochs=200 for target error of 0.01. 
The number of weights and biases was 526. 
It is noticeable that multilayer feed-forward back-
propagation is very sensitive to the initial weight 
assignment. Also, it suffers from a local minima 
issue. Different estimation results can be obtained 
even if the network structure and training data are 
kept constant. 
 
4. 3. Modular neural network (MNN) 
 
Modular feed forward networks are a special 
class of MLP. These networks process their 
input using several parallel MLPs and then 
recombine the results. This issue tends to create 
some structures within the topology, which will 
foster the specialization of function in each sub-
module. In contrast to the MLP, modular 
networks do not have full interconnectivity 
between their layers. Therefore, a smaller 
number of weights are required for the same 
size network (i.e. the same number of PEs), 
which tends to speed up training time and 
reduce the number of required training 
examplars. There are many ways to segment a 
MLP into modules. It is unclear how to best 
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design the modular topology based on the data. 
There are no guarantees that each module is 
specializing its training on a unique portion of 
the data. In Fig. 6, an example of modular 
architecture is given. 
 
 

 
Fig. 6.  An example of modular architecture [23]. 

 
 
The proposed MNN architecture for predicting 
radial overcut is as follows:   
1.Number of hidden layers = 2 
2. Number of upper processing elements in the first 
hidden layer = 6 
3. Number of lower processing elements in the first 
hidden layer = 5 
4. Number of upper processing elements in the 
second hidden layer = 5 
5. Number of lower processing elements in the 
second hidden layer = 4 
6. Transfer function of hidden layers = TanhAxon 
7. Learning rule = MOM 
8. Momentum value of hidden layers = 0.8 
9. Number of output processing elements = 1 
10. Transfer function of output layers = TanhAxon  
11. Momentum value of output layers = 0.85 
12. Learning rate Step size = 1  
13. Target error = 0.01  
14. Termination criteria = MSE 
15.  Number of training datasets = 12 
16. Number of testing datasets = 4 
 
4. 4. Generalized feed forward (GFF) 
 
Generalized feed forward networks are a 
generalization of the MLP such that 

connections can jump over one or more layers 
(Fig. 7). In theory, an MLP can solve any 
problem that a generalized feed forward 
network can solve. In practice, however, 
generalized feedforward networks often solve 
the problem much more efficiently. A classic 
example is the two spiral problem. Without 
describing the problem, it suffices to say that a 
standard MLP requires hundreds of times more 
training epochs than the generalized feed 
forward network containing the same number of 
processing elements. 
 

 
Fig. 7. Schematic diagram of GFF [24]. 

 
For constructing the GFF model, the tahnaxon 
transfer function and the MOM learning rule 
were used for training the model. Network with 
four inputs, seven neurons in the first hidden 
layer, five neurons in the second hidden layer, 
and one neuron in the output layer, 4:7:5:1, was 
considered. The related training parameters for 
the network were optimized as the learning rate 
=0.7 and maximum number of 
iteration/epochs=300 for target error of 0.01. 
The momentum values associated to the hidden 
and output layers of the network were set to 0.7. 
 
4. 5. Coactive neuro fuzzy inference system 
(CANFIS) 
 
CANFIS is a generalized ANFIS (adaptive neuro 
fuzzy inference system), which fuses the fuzzy 
system and neural network into a learning system 
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that would combine the benefits of the fuzzy 
system and neural network. The resulting neuro 
fuzzy system, a hybrid, has a fuzzy system 
architecture, but uses neural network learning 
techniques so that it can be trained automatically. 
For a given input/output dataset, ANFIS can 
construct a fuzzy inference system whose 
membership functions are tuned by either a back-
propagation algorithm alone or in combination 
with the least square method [25]. 
 CANFIS combines some single-output ANFIS 
models to produce a multiple-output model with 
nonlinear fuzzy rules which is an advantage of 
CANFIS model. There are many ways to form a 
CANFIS from ANFIS, one of which is illustrated 
in Fig. 8. This diagram is used to maintain the same 
antecedents of fuzzy rules among multiple ANFIS 
models. It means that fuzzy rules are constructed 
with shared membership values to express possible 
correlations between outputs in this diagram. 

Besides, a multiple ANFIS (MANFIS) can be also 
formed by placing many ANFIS models side by 
side, in which each ANFIS has an independent set 
of fuzzy rules [26]. In MANFIS, no modifiable 
parameters are shared by the juxtaposed ANFIS 
models. Each ANFIS has an independent set of 
fuzzy rules, which makes it difficult to realize 
possible correlations between outputs. Also, the 
adjustable parameters increase with the increase in 
the number of outputs [27]. More information 
about ANFIS, MANFIS, and CANFIS can be 
found in reference [27].  
In neuro fuzzy-based model, the number of input 
sets is equal to the input variants. For this system, 
the electrolyte concentration, voltage, initial 
machining gap, and tool feed rate are the input 
variations. The model has one output variable with 
respect to the predicted value of radial overcut. 
Four data sets are selected randomly as the testing

 
 

Fig. 8. Two-output CANFIS architecture with two rules per output [26].
 
 
data and the remaining twelve data sets are used for 
training. A developed CANFIS model used 
Gaussian membership function (MF) with two 
MFs per input, MOM learning rule during training 
process, and TSK fuzzy model proposed by 
Takagi, Sugeno, and Kang for fuzzy part in these 
hybrid systems. Network architecture for co-active 
neuro fuzzy model is as follows:   
1. Number of input processing elements = 4 
2. Number of membership functions for each input 
= 2 
3. Type of membership functions = Gaussian 
4. Number of output processing elements = 1 
5. Number of output membership functions = 2 
6. Number of hidden layers for output layer = 0 
7. Transfer function of output layer = Axon 

 
 
8. Learning rule = MOM 
9. Learning rate step size = 1  
10. Target error = 0.01  
11. Termination criteria = MSE 
12. Maximum epochs for each run = 200 
13. Type of fuzzy model = TSK 
14. Number of weights and biases = 1893 
15. Number of training datasets = 12 
16. Number of testing datasets = 4 
 
5. Results and discussion 
 
The predicted radial overcut for all the presented 
models using the training data are shown in Fig. 9. 
These figures indicate that the RA model offers the 
best predictions for the training data. 
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(b) 

 
(c) 

 
(d) 

 
(e) 

 
Fig. 9. Comparing the experimental data and predicted 
radial overcut using the training data for:   a) RA,   b) 
MLP,   c) MNN,   d) GFF,   and e) CANFIS. 

 
 
 

Validation of RA, MLP, MNN, GFF, and CANFIS 
models was performed using the testing dataset. 
Testing dataset and predicted values are shown in 
Table 2. Average relative errors were obtained for 
RA, MLP, MNN, GFF, and CANFIS, the 
methodologies were compared, and the results are 
shown in Table 3. The results illustrated MLP and 
CANFIS models had much better predicting 
capability than the other models. Both of the 
methods were suitable for estimating radial overcut 
in the acceptable error ranges. But, as a result of the 
comparative study, it was found that the network 
based on MLP provided the best results. 
 
6. Conclusions 
 
In this study, RA, MLP, MNN, GFF, and CANFIS 
models were developed to correlate the input 
process parameters, such as electrolyte 
concentration, voltage, initial machining gap, and 
tool feed rate with the performance measure called 
radial overcut during the electrochemical drilling of 
stainless steel material. Using a large number of 
statistical and soft computing network architecture, 
CANFIS with Gaussian membership function, 
TSK fuzzy model, and 4:9:2:1 ANN model were 
found to be the optimal ones, which can estimate 
radial overcut with 5.08 and 5.02% overall mean 
prediction error, respectively. Results showed the 
potential application of ANN and CANFIS for 
offline input selection, which could open up the 
potential use of optimized inputs in machining 
processes. Based on the 3D surface, contour, and 
main effect plots, the most dominant parameter for 
the radial overcut was found as voltage, while the 
second ranking factor was electrolyte 
concentration. 
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