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Article info:  Abstract 

Crack identification is a very important issue in mechanical systems, because it 
is a damage that if develops may cause catastrophic failure. In the first part of 
this research, modal analysis of a multi-cracked variable cross-section beam is 
done using finite element method. Then, the obtained results are validated 
usingthe results of experimental modal analysis tests. In the next part, a novel 
procedure is considered to identify the locations and depths of cracks in the 
multi-cracked variable cross-section beam using natural frequency variations of 
the beam based on artificial neural network and particle swarm optimization 
algorithm. In the proposed crack identification algorithm, four distinct neural 
networks are employed for the identification of locations and depths of both 
cracks. Back error propagation and particle swarm optimization algorithms are 
used to train the networks. Finally, the results of these two methods are 
evaluated. 
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Nomenclature 

a
 

Depth of crack 

d  Desired output of ANN 

e  Error function of ANN 

E  Elasticity modulus 

 Height of beam 

 Location 

n  Iteration of back-error 
propagation method 

O  output of ANN 

u  Input of ANN 

bcW  Weights between the hiddenand output 
layers of ANN 

abW  Weights between the input andhidden 
layers of ANN 

y  Output of hidden layer of ANN 

Greek letters 

  Local gradient function of ANN 

 Transfer function of ANN layers 

  Shear modulus 

  Mass density 

  Non-dimensional location of crack 

  Natural frequency 

h
L 
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Subscript, Superscript 
c  Crack 

 Un-cracked beam 

Abbreviations 
ANN Artificial neural network 

BEP Back-error propagation 

FEM Finite element method 

MLFF Multi-layer feed forward  
 
1. Introduction  
 
In recent years, using non-destructive methods 
of study for cracked structures, researchers have 
paid great attention to vibration analysis 
methods. Many numerical, analytical, and 
experimental studies have been done in this 
field. Crack causes local flexibility in the 
structuresand influences the dynamic behavior. 
For example, it changes the mode shapes and 
reduces the natural frequencies. Analysis of 
these effects can be used for crack detection [1]. 
Dimarogonas [2] studied the methods of 
investigating cracked structures in 1996. 
Dimarogonas [3] and Paipetis and Dimarogonas 
[4] have modeled a crack using local flexibility 
and evaluated the equivalent stiffness utilizing 
fracture mechanics. Adams and Cawley [5] 
developed an experimental technique to 
estimate crack depth and location using natural 
frequencies. In another investigation, Chan and 
Dimarogonas [6] presented methods which 
related the crack depth to natural frequencies 
when the crack location was known. These 
methods could be used for detecting cracks in 
different structures. Goudmunson [7] presented 
a method for the prediction of changes of 
natural frequencies caused by faults such as 
cracks, notches, etc. Shen and Taylor [8] 
presented a method based on minimizing the 
difference between the measured data and data 
obtained from analytical study in order to 
identify cracks in an Euler-Bernoulli beam. 
Masoud et al. [9] studied vibrational 
characteristics of a fixed-fixed beam which 
contained a symmetric crack considering the 
coupling effect of crack depth and axial load. 
In the recent decade, some investigations have 
been done on the vibrational behavior of multi-
cracked structures. Sekhar [10] summarized 

different papers on multiple cracks, respective 
influences, and identification methods in some 
structures such as beams, pipes, rotors etc. Lee 
[11] used FEM to solve forward problem in a 
multi-cracked beam. In this paper, an inverse 
problem was solved iteratively for the locations 
and depths of the cracks using the Newton-
Raphson method. Patil and Maiti [12] identified 
multiple cracks using frequency measurements. 
Their procedure presented an explicit linear 
relationship between the changes of natural 
frequencies and damage parameters. Mazanoglu 
et al. [13] performed the vibration analysis of 
multi-cracked variable cross-section beams 
using the Rayleigh–Ritz approximation method. 
Binici [14] presented a parametric study on the 
effect of cracks and axial force levels on the 
eigenfrequencies. A new method for natural 
frequency analysis of beams with an arbitrary 
number of cracks was developed by Khiem and 
Lien [15]. Cam et al. [16] studied the vibrations 
of cracked beam as a result of impact shocks to 
obtain information about location of cracks and 
depth of beams. 
A new technique often used for the 
identification of damage in the recent two 
decades has been artificial neural network. Wu 
et al. [17] used multi-layer feed forward neural 
network to identify the fault location in a 
simple frame. Wang and He [18] developed a 
numerical simulation and the model experiment 
upon a hypothetical concrete arch dam for the 
crack identification based on the reduction of 
natural frequencies using a statistical neural 
network. In another study, Kao and Hung [19] 
presented a two-step method for detecting 
cracks using ANN. The first step was to 
identify damaged and undamaged system 
situations and the second step was damage 
detection in structures. In the second step, a 
trained ANN was applied to produce the free 
vibration response of the system. Afterwards, 
changes of amplitude and periods between the 
results were compared.  
In this paper, the effects of crack parameters on 
natural frequencies of a cantilever non-uniform 
cross-section beam with multiple cracks are 
investigated using FEM. Afterwards, a 
procedure is presented for the crack 
identification in cantilever non-uniform cross-
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section beams. In this procedure, BEP 
algorithm is applied for ANN training in order 
to detect cracks in the cantilever non-uniform 
cross-section beam. 
 
2. Numerical modal analysis 
 
A schematic view of the cantilever non-uniform 
cross-section beams is shown in Fig. 1. Table 
1demonstrates material and geometrical 
characteristic of the beam. 
In the described model shown in Fig. 1 with the 
characteristics presented in Table 1, 2D FEM of 
the considered beam with and without crack is 
established using commercial package ANSYS 
[20] and based on the 8-node quadrilateral 
plane stress element (PLANE 183), which has 
two degrees of freedom at each node.Modeling 
the cracked beam using FEM commercial 
software (ANSYS) includes the following 
steps: 
1- Selecting element type; 
2- Specifying material parameters including 
Poisson's ratio, elasticity modulus, and density; 
3- Creating 8 trapezoids (4 trapezoids for 
creating the 1st crack and 4 others for another 
one); 
4- Boundary condition specifications (as this 
paper studied free vibration of a clamped–free 
beam for the specification of boundary 
condition, all degrees of freedom of the 
clamped end of the beam restricted are zero). 
5- For the 1st crack modeling, 4 right side 
trapezoids are used as the top-right one glued to 
the bottom right one. Then, the bottom-right 
trapezoids are glued to the bottom-left one and 
the top-left one is glued to the bottom-left one. 
The common edges of top-right and top-left 
trapezoids are not glued to each other, which 
results in the crackcreation. The same 
procedure is performed for another crack 
modeling. The obtained result showed that this 
crack modeling method simulates the crack 
vibrational behaviors accurately.  
6- Specification of mesh size; 
7- Meshing the beam; 
8- Selecting modal analysis item; 
9- Solving; and 
10- Reading the obtained results. 

Three first natural frequencies of the structure 
in different conditions of crack in this study are 
obtained using modal analysis of ANYSY. 
Then, the calculated data are validated in 
comparison with the result of the experimental 
analysis, which is shown in Fig. 2 and Fig. 3. 

 
Fig. 1. Geometry of the cracked non-uniform 
cross-section beam. 
 

Table 1. Characteristics of the non-uniform 
cross-section beam. 

20 Beam depth in clamped end (mm) 
5 Beam depth in free end (mm) 
7860 Density (kg/m3) 
20 Beam width (mm) 
0.3 Poisson ratio 
600 Beam length (mm) 
210 Elasticity modulus (GPa) 

 
3. Experimental verification 
 
In this study, for experimentally obtaining the 
considered beam natural frequencies, it is made 
according to the values in Table 2. The intact 
beam natural frequencies are compared with the 
result in [13] and the finite element results of 
this study are compared in the previous section 
of this article. The beam is shown in Fig. 2. 
In the experimental modal analysis, 
piezoelectric accelerometer is used and the 
hammer test is applied, as shown in Fig. 3.  
Experimental testing procedure in this paper 
includes the following steps: 
1- Four numbers of beam, which are shown in 
Fig. 1 and Table 1,are made and cracks are 
created in different positions. 
2- The cracks are madeusing the wire cut 
machine. The wire cut machine used in this 
project is able to create cracks with the depth of 
0.5 mm.  
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3- One impact is imposed to intact and 
cracked beams with hammer and the response 
to the impact is measured by the sensors 
embedded in it. 
4- According to the obtained peaks of 
amplitude-frequency data from the modal 
analysis, the natural frequencies of each beam 
are specified. 
5- The specified natural frequencies from the 
experimental analysis are verified using FEM 
(ANSYS). 

 
Fig. 2. Experimental modal analysis test-rig. 

 

 
Fig. 3. Considered hammer and sensor inthe 
experiment. 
 
The obtained natural frequencies are tabulated 
in Table 2. In this table, the experimental, finite 
element, and Ryle-Ritz [13] modal analyses are 
compared. Error is calculated based on the 
experimental analysis. As can be seen 
experimental error is higher for higher order 
natural frequencies. 
For the verification of results obtained from this 
paper, ratio of three first natural frequencies for 
one cracked condition to intact beam which is 

obtained from Eq. (1) is calculated for ratio of 
crack depth to beam depth in clamped edge 
equal to 0.3, which is shown in Fig. 4. In this 
figure, non-dimensional natural frequencies 
obtained from FEM of this paper are compared 
with the data presented by Ryle-Ritz method 
[13]. As can be seen in Fig. 4, the calculated 
frequencies have good correspondence with the 
results in [13] and it is understood that accuracy 
and correction of calculation are high. In this 
figure, value of crack location is calculated in 
ratio of crack location to beam length. 

cracked
i

i uncracked
i

fC
f


 

 
(1) 

 
4. Crack identification using soft computing 
methods 
 
4.1. Artificial neural network 
 
The ANN used in this study is an MLFF neural 
network consisting of an input layer, some 
hidden layers, and an output layer. A scheme of 
the MLFF neural network is shown in Fig. 5. 
Knowledge in ANNs is usually stored as a set 
of connection weights. The modification 
process of the connection weights using a 
suitable learning method is called training.In 
this study, two distinct ANNs are employed for 
predicting crack locations and depths. These 
ANNs consist of one input layer with 3 
neurons, one hidden layer with 6 neurons, and 
one output layer with one neuron. Transfer 
functions for the neurons of hidden and output 
layers are defined as Eq. (2), called Tansig 
function. 
 

 
Table 2. Comparing experimental, finite element and Ryle-Ritz [13] modal analyses. 

FEM error 
(%) 

FEM 
(HZ) 

Ryle-Ritz [3] 
Analysis error 

(%) 

Ryle-Ritz [3] Experimental 
analysis (HZ) 

Ith Natural 
frequency 

2.39 55.29 2.41 55.3 54 1f 
5.35 213.9 5.13 214.4 226 2f 
8.10 510.94 7.46 514.5 556 3f 

2( ) ;
[1 exp( 2 )] 1

f n
n


  

 (2) 
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Fig. 4. Comparing three first non-dimensional natural frequencies obtained in [13] and the present study. 
 
 

 

Fig. 5. Schematic diagram of a typical MLFF neural-network architecture. 
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4.2. Back-error propagation algorithm 
 
BEP is the most widely used learning algorithm 
of MLFF neural networks. This learning 
method was proposed by McClellandand 
Rumelhart [21] in a ground-breaking study, 
whichwas originally focused on cognitive 
computer sciences. 
In this work, the structure of the ANN includes 
three layers: input, hidden, and output. 
Values of abw  represent the weights between 
the input and hidden layers. Values of bcw  
represent the weights between the hidden and 
output layers. The operation of BEP consists of 
three stages: 
 
a. Feed-forward stage: 
 

( ). ( );bcv w n y n  (3) 

2( ) ( ( ))) ;
1 exp[ (2 )]

o n v n
v n

 
 

 (4) 

 
where o  is output, u  is input, y is output of 
hidden layer, and  is activation function. 
 
b. Back-propagation stage: 
 
(݊)ߜ = ݁(݊). [(݊)ݒ]߮ = 

[݀(݊) − .[(݊)݋ .[(݊)݋] [1 −o(n)]; 
(5) 

where  represents the local gradient function, 
e  shows error function,o and d mean the 
actual and desired outputs, respectively. 
 
c. Adjust weighted value: 
 
݊)௔௕ݓ + 1) = (݊)௔௕ݓ + (݊)௔௕ݓ∆ = 

(݊)௔௕ݓ + .(݊)ߜߟ  (6) ;(݊)݋

 
where  is learning rate. Repeating these three 
stages leads to a value of the error function that 
will be zero or constant. 
 
4. 3. Particle swarm optimization algorithm 
 
PSO is a population-based stochastic 
optimization technique which was developed by 
Eberhart and Kennedy [22] and inspired by the 

social behavior of bird flocking or fish 
schooling. This algorithm has many similarities 
with evolutionary computation techniques such 
as GA. The optimization procedure starts with a 
population of random solutions and searches for 
optima by updating generations. Unlike GA, 
PSO has no evolution operators such as 
mutation and crossover. In PSO, potential 
solutions that are named particles fly through 
the space of problem by following the current 
optimum particles. Each particle keeps the track 
of its coordinates in the space of problem which 
are associated with the best solution (best 
fitness) it has achieved up to now, called 
"pbest". Another "best" value that is tracked 
using PSO is the best value, achieved so far by 
any particle in the neighbors of the particle, and 
is called "lbest". When a particle takes all the 
population as its topological neighbors, a global 
best, named "gbest", is the best value. The PSO 
concept in each time step consists of changing 
the velocity of each particle toward its"pbest" 
and "lbest" locations. Acceleration is weighted 
using a random term, by separate random 
numbers being generated for acceleration 
toward "lbest" and "pbest" locations.  
 
4. 4. Crack detection procedure 
 
For crackdetection, first of all, MLFF ANNs 
with 3, 6, and 1 neuron in input, hidden, and 
output layers are created. The first three natural 
frequencies of the non-uniform cross-section 
beam in 22 different crack conditions are 
applied to ANNs as the input and the 
corresponding locations and depths are applied 
as targets to the first and second networks, 
respectively. The data that are applied to ANNs 
are obtained using FEM on the non-uniform 
cross-section beam that is modelled by 20 
different layers. Training the ANNs is 
doneusing two different algorithms of BEP and 
PSO in MATLAB [23]. BEP algorithm is used 
with 1000 iterations. In ANN training using 
BEP method, 70%, 20%, and 10% of data are 
used for training, verifying, and testing the 
network. BEP training procedure for the 
prediction of location and depth of cracks using 
MATLAB [23] is plotted in Figs. 6(a) and 6(b), 
respectively. In the training process using PSO 




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algorithm, weights of ANNs are considered 
optimization variables and the sum of square of 
differences between output and target values of 
ANNs is assumed as cost functions. The 
considered PSO algorithm has the population 
size of 100, 1000 iterations, and 31 
optimization variables.  
The trained ANNs are tested for 4 different 
conditions of cracks, as tabulated in Table 3. 
Training procedure of ANNs using PSO 
algorithm for the prediction of location and 
depth of cracks are illustrated in Figs. 7(a) and 
7(b), respectively. 

Training curves of Fig. 6 show the process for 
training ANN for 4 mentioneddifferent 
conditions. As can be seen in Fig. 6 (a), mean 
squared error is diminished from 10 -12 to 10 -26; 
therefore, ANN is trained well. It can be seen 
that the value of validation error in 1000 
iteration is constantly 10 -15 that is very 
acceptable for the training procedure. 
With respect to negligible error in all diagrams, 
it can be concluded that the training procedure 
of each for ANN is done with high accuracy.
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Fig. 6. BEP training procedures of ANNs for identifying the a) 1st and b) 2nd crack location as well as c) 1stand  
d) 2nd crack depth. 

 
Table 3. Predicted crack location and depth using ANN and different training methods. 
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Crack Number 1st 2nd 3rd 4th 
Actual 1st Crack Depth 6 5 5 6 

1st Crack Location 18 12 18 18 
2nd Crack Depth 6 10 6 10 
2nd Crack Location 36 36 30 30 

BEP 1st Crack Depth 5.39 5.32 4.82 6.29 
1st Crack Location 18 7.51 17.93 15.31 
2nd Crack Depth 6 10 6 10 
2nd Crack Location 36 36 30 30 
Error of 1st Crack Depth (%) 3.01 1.6 0.86 1.48 
Error of 1st Crack Location (%) 0 7.49 0.12 4.48 
Error of 2nd Crack Depth (%) 0 0 0 0 
Error of 2nd Crack Location (%) 0 0 0 0 

PSO 1st Crack Depth 5.38 5.32 5.1 5.71 
1st Crack Location 11.19 18.72 20.51 18.93 
2nd Crack Depth 6 10 6 10 
2nd Crack Location 37.33 36.29 32.6 31.77 
Error of 1st Crack Depth (%) 3.05 1.61 0.54 1.42 
Error of 1st Crack Location (%) 1.84 11.19 4.18 1.55 
Error of 2nd Crack Depth (%) 0 0 0 0 
Error of 2nd Crack Location (%) 4.38 0.48 4.33 2.95 
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(a) (b) 

 
(c) (d) 

Fig. 7. PSO based ANNs training for identification of a) 1st b) 2nd crack location and c) 1st d) 2nd crack depth a)  
location and b) depth. 
 
 
Curves in Fig. 7 show the training process of 
PSO for 4 mentioned different conditions. As 
can be observed in all the 4 conditions, value of 
optimization process cost functions is 
diminished during 1000 iteration. For example, 
in Fig.7 (a) which is related to the identification 
of the first crack location, value of cost function 
is diminished by 27 times during 1000 iteration 
and it is depleted from 0.53 to 0.29. PSO 
algorithm closes the target and real output of 
ANN by decreasing cost function; therefore, it 
produces the needed weights for use in next 
steps. As can be observed from other diagrams 
in Fig.7,the training procedure of ANN is done 
with high accuracy and error is absolutely 
acceptable. 
As can be found in this table, the average errors 
in the prediction of crack locations for the BEP 

and PSO algorithms are 1.75% and 2.10%, 
respectively. Location errors were computed as 
the differences between actual and predicted 
locations of cracks on the length of beam in 
percent. Also, the average errors in the 
prediction of crack depths for BEP and PSO 
algorithms are 0.93% and 0.98%, respectively. 
Depth errors are computed as the differences 
between actual and predicted depth of cracks on 
depth of beam in percent. Therefore, it can be 
concluded that, for the considered ANNs and 
assumed conditions, the ANNs trained by these 
training methods predict the cracks' depths 
more accurately than their locations. Also, as 
can be seen in Table 2, there is good agreement 
between the actual and predicted results. 
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5. Conclusions 
 
In the first part of this study, modal analysis of 
a multi-cracked variable cross-section beam 
was done using finite element method and the 
results were verified using the experimental 
modal analysis tests. Then, for the identification 
of the locations and depths of cracks in the 
multi-cracked variable cross-section beam using 
artificial neural network and particle swarm 
optimization algorithm, a procedure was 
proposed. Four distinct neural networks were 
also employed for the identification of locations 
and depths of both cracks. BEP and PSO were 
used to train the networks and make the 
comparisons. 
In sum, it is concluded that the proposed 
method in the present study for crack detection 
of multi-cracked non-uniform cross-section 
beam will result in accurate prediction results. 
Also, the cracked beam modeling approach 
helps obtain natural frequencies for different 
conditions of cracks with good accuracy. 
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