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Article info:  Abstract 
In this paper, a rectangular sandwich plate with a constrained layer and an 
electrorheological (ER) fluid core is investigated. The rectangular plate is 
covered an ER fluid core and a constraining layer to improve the stability of 
the system. The two outer layers of the sandwich structure are elastic. The 
viscoelastic materials express the middle layer behavior under electric field 
and small strain. Rheological property of an ER material, such as viscosity, 
plasticity, and elasticity, may be changed when applying an electric field. 
The ER core is found to have a significant effect on the stability of the 
sandwich plate. In this paper, based on the displacement field of each layer, 
the kinetic energy and strain energy are separately obtained for each layer. 
Transverse displacement of the second layer changes linearly between the 
transverse displacement of the first and third layers. The loss energy of the 
second layer consisting of the ER fluid is also calculated and, with the 
replacement of total kinetic energy, total strain energy, and energy 
dissipation in the Lagrange's equation, the structural motion equation is 
obtained. Natural frequencies and loss factor for the electric fields as well as 
the ratio of different thicknesses calculated are by Navier analytical method. 
As the applied electric field increases, the natural frequency of the sandwich 
plate increases and the modal loss factor decreases. With increasing the 
thickness of the ER layer, the natural frequencies of the sandwich plate are 
decreased. Thickness of the constrained layer also affects the stability of the 
sandwich plate. 
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Nomenclature 
a Length of the plate in x-direction 
b Length of the plate in y-direction 
[c] Sandwich structural damping matrix 
d Damping energy 
Ei

 Tensile modulus of the first and third layers 
E*

 Applied electric field 
fn Natural frequency 

G’ Shear modulus of electrorheological layer 
G” 

Viscous stationary electrorheological layer 
hi

 Thickness of ith layer i=1,2,3 
[k] Stiffness matrix 
m Dual expansion subtitle 
[m] Mass matrix of sandwich structure 
n Dual expansion subtitle 
T Kinetic energy of sandwich structure 
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U Strain energy of sandwich structures 
ui 

Axial displacements of ith layer at x-
direction i=1,3 

vi 
Axial displacements of ith layer at y-
direction i=1,3 

wi 
Axial displacements of ith layer at z-
direction i=1,3 

 
Axial displacements of each point of the 
layer at x-direction i=1,2,3 

 
Axial displacements of each point of the 
layer at y-direction i=1,2,3 

 
Axial displacements of each point of the 
layer at z-direction i=1,2,3 

X(t) Function of time vibrational modes 

 
Function component of time vibrational 
modes 

 Bending strains of theith layer at  

 
Shear strain first derivative of the middle 
layer versus time 

 
Mass density of theith layer at i=1,2,3 

 Poisson's ratio of layer i, i=1,3 

 
Complex natural frequency  

 Loss factor 
 
1. Introduction 
 
Vibration behavior of various engineering 
systems and analysis of structures are 
important to the extent that, in most cases, less 
attention to the vibration behavior and 
unwanted dynamic forces will impair the 
efficiency of the system and make them fail, be 
fatigued, and have noise. In many of these 
applications, reduction of dynamic forces and 
elimination of undesirable vibrations are very 
important demands. Many scientists have 
attempted to minimize undesirable vibrant 
forces in structures, two examples of which are 
passive damping and active damping. 
In a passive method, soft and viscoelastic 
materials are used in three-layer beams or plate 
structures. Sandwich structures with a high 
damping viscoelastic central layer like 
polymers, rubber, urethane, and epoxy have 
high damping capacity and resistance to 
excessive vibration and noise. Application of 
viscoelastic materials in the industry can be 
found in Rao's [1] paper. These structures 
typically consist of a base layer, a constrained 

layer, and a damping layer. They are popularly 
known as the sandwich plates because of their 
appearance.  
In 1959, for the first time, three prominent 
researchers, Kerwin, Ross, and Engar, 
provided the overall analysis of sandwich 
structures with a viscoelastic intermediate 
layer. In their method in which later found 
fame as the RKU method, the effect of the 
viscoelastic material damping and dynamic 
behavior of the sandwich plates were studied. 
The experimental results were compared with 
their own theory and found to be in good 
agreement [2, 3]. Since then, many other 
investigators have worked on and developed 
the RKU theory. Ditaranto [4] developed the 
six-order equation of motion for the axial 
displacement of the closed form solution. 
Mead and Markus [5, 6] obtained six-order 
equation of motion for the lateral displacement 
that was previously used only for specific 
boundary conditions. Reissner [7] derived the 
governing equations for both small and finite 
transverse deflections of isotropic sandwich 
plates. He assumed that the face layers 
behaved like membranes and the face parallel 
stresses in the core were negligible. Since then, 
many papers have been published on various 
aspects of the sandwich theory. Liaw and Little 
[8] completed Reissner's work. Later, Azar [9] 
extended Liaw and Little's results to the same 
problems, but using orthotropic layers. Then, 
Yu [10, 11], Similar to Yan and Dowell [12] 
Khatua and Chenug [13], developed the model 
of the forced vibrations of the sandwich plates. 
Since then, energy approach was used for 
several issues. 
In 1978, Rao [14] presented using the energy 
equations of motion and boundary conditions 
in his paper for the first time. He used the 
numerical method to solve his problem. Like 
Rao, Cottle [15] derived the equations set on 
Hamilton's principle. In 1988, Kanematsu [16] 
studied the bending and vibration of 
rectangular sandwich plates by the Ritz 
method. Numerical method such as finite 
element method was adopted to solve the 
vibration problems of the sandwich plate with 
a viscoelastic layer in a complex form. 
Determining and optimizing the location and 
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thickness of the damping layer and layer 
sensitivity have been performed by Johnson 
[17] in 1981, O'Conner in 1987 [18], and 
Nakra [19] in 2001. 
As mentioned, another way for removing the 
dynamic forces and damping vibrations is the 
active procedure. In this way, smart materials 
like piezoceramics, electrorheological fluid, 
magnetorheological fluid, and shape memory 
alloys are used as damping materials. The idea 
of this method is to control the structural 
damping characteristics by the electric field, 
magnetic field, or field of heat. ER fluids as a 
smart material have a great potential in 
applications for intelligent materials and 
structural damping. The ER fluid also has the 
same properties as a viscoelastic material at a 
small strain level. Engineering applications 
and advantages of the ER fluid can be found in 
the works by Coulter, Weiss, and Don [20-22]. 
Early investigations of the ER material in the 
structural vibration can be traced to Yalcintas 
and Coulter [23, 24]. In 1995, they studied the 
vibration problem of a sandwich beam with an 
ER fluid core and discussed the effects of the 
thickness and loss factor on the vibratory 
behavior of the structure. Then, Lee [25] 
investigated the transverse free vibration 
problem of a sandwich beam, in which an 
iterative method was explored to study the 
properties of the nonlinear ER fluid. By 2003, 
almost no research was done on the vibration 
of a sandwich plate with a layer of an ER fluid 
until two Taiwanese, Yeh and Chen Wang, 
studied the dynamic stability problems of the 
ER sandwich beam and also discussed the 
dynamic behavior of the sandwich plate 
(annular plate, orthotropic sandwich plates, 
orthotropic annular plate, and rotating polar 
orthotropic annular plate) on different 
thickness of the ER layer and electric filed 
strength [26-31]. They used two-dimensional 
element bounded by four nodal points and, in 
their investigation, each node had seven 
degrees of freedom by finite elements method 
to describe the natural frequencies and loss 
factors discussed in terms of the electric field 
and thickness ratio. 
Hasheminejad and Maleki [32] used analytical 
solutions to obtain the forced vibration 

characteristics of the adaptive structure under 
different external transverse excitations of 
varying frequency (0–300 Hz) and applied 
electric field strength (0–3.5 kV/mm). They 
used classical thin plate theory to apply a set of 
fully coupled dynamic equations of motion. 
Mohammadi and Sedaghati [33] studied 
nonlinear vibration analysis of sandwich shell 
structures with a constrained electrorheological 
(ER) fluid for different boundary conditions. 
They investigated the effects of small and large 
displacements, core thickness ratio, and 
electric field intensity on the nonlinear 
vibration damping behavior of the sandwich 
shell structure. 
In this paper, a rectangular sandwich plate with 
a constrained layer, an electrorheological (ER) 
fluid core, and four simply-supported end 
conditions is investigated using Navier 
analytical method. Resolution methods and 
assumptions used for the vertical displacement 
of the layers could distinguish this study from 
other similar works. 
 
2. Problem formulation 
 
Consider the geometry of the three-layered 
sandwich plate with an ER fluid core with 
length a and width b, as shown in Fig. 1. The 
thickness of elastic constrained layer is h1, 
thickness of middle layer is h2, and thickness 
of elastic base plate is h3. The assumptions 
used in this derivation must be mentioned: 
1. No slipping is assumed between the elastic 

and ER layers. 
2. The transverse displacements are the same 

for every point on a cross-section. 1w  and 

3w  are the transverse displacements of the 
first and third layers, respectively. 

3. 2w  is the transverse displacement of the 
second layer. 2w  changes linearly between 

1w  and 3w . 
4. There exists no normal stress in the ER 

layer. 
5. Keep shear stress assuming in the elastic 

layers. 
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Assumptions 3 and 5 are investigated for the 
first time in this paper. Therefore, we can use 
these equations for thick plates. 
 

 
Fig. 1. Sandwich plate with an electrorheological 
fluid core and a constraining layer. 
 
As shown in Fig. 2, the displacement relation 
of the elastic layers can be expressed as:  
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where vu , , and w  are the axial displacement 
components in x, y, and z directions, 
respectively, vu , ,and w are the axial 
displacement of the mid-plane layers in yx , , 
and z  directions, and zi is the distance from 
the mid-height of layer i. 
 

 
Fig. 2. Unreformed and deformed configurations of 
a sandwich plate. 
 
The mid-plane layer displacement is expressed 
based on the geometric relationships and 
displacement components of the first and third 
elastic layers ( 1w ، 3w ، 1u ، 3u ، 1v and 3v ). 
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where  is the distance from the mid-height of 
the second layer and is expressed according 
to the third assumption. In addition, the total 
kinetic energy of the sandwich plate, total 
strain energy, and damping energy of the 
second layer are obtained. Kinetic energy of 
the i the layer is obtained from the following 
equation: 
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 (3) 
In the above equation, i  is the density of each 
layer. By substituting velocity field of the first 
and third layers in the above equation and 
integrating over the thickness, the kinetic 
energy equation of layers is obtained as 
follows: 
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By substituting the second layer displacement 
field in Eq. (3) and integrating over the 
thickness, the kinetic energy of this layer is 
obtained as follows: 
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Total kinetic energy is obtained from the sum 
of kinetic energy of the first, second, and third 
layers. 
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The elastic strain energy of the first and third 
layers, with vertical and shear stresses is 
obtained as follows: 
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where ii E, denote Poisson's ratio and Young's 
modulus of these layers, respectively.The 
vertical and shear strains are: 
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(8) 

By substituting Eq. (8) in Eq. (7) and 
integrating over the thickness, the strain energy 
of the first and third layers is obtained as 
follows: 
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(9) 

Kelvin's model is used to describe the shear 
stress of the viscoelastic material (ER fluid) 
[34]. 

 GG   (10) 
where   is the shear stress of ER fluid,   is 
shear strain,   is first differentiation of shear 
strain from time, G   is shear modulus, and G   
is viscous coefficient, where dependence of 

GG  , on electric field can be obtained by 
experiments [22, 23]. Based on the fourth 
assumption in ER fluid, no normal stress needs 
to be considered; only the shear stresses on the 
z-direction plate due to the formation of 
dielectric particle chains under the electric 
field are important.  Then, the strain energy of 
the second layer is in the following manner: 
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By substituting Eq. (12) in Eq. (11) and 
integrating over the thickness, the ER fluid's 
strain energy in terms of the displacement 
parameters of the first and third layer and the 
geometric parameters of the structure can be 
expressed as: 
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(13) 
The total strain energy of the first, second and 
third layers is obtained as follows: 

321 UUUU   (14) 
Damping energy of ER fluids is obtained from 
the following equation: 
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The damping energy of the second layer is 
obtained from the derivation of Eq. (12), 
substitution in Eq. (15), and integration over 
thickness. By choosing the vibrational modes 
and according to the boundary conditions of 
the problem and using the Navier analysis, the 
longitudinal displacements 1u , 3u , 1v , 3v  and 

transverse displacements 1w , 3w  of the 
sandwich structures are expressed as follows: 
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The )(),(),(),(),(),( 313131 tWtWtVtVtUtU mnmnmnmnmnmn  
phrases are the time function generalized 
coordinates of the displacement components 
and )sin()sin(

b
yn

a
xm   is assumed the place 

components of displacement. 
Equation (16) has to be substituted in the 
equation of kinetic, strain layers energy, and 
loss energy of the second layer. By integrating 
over the surface, the final equation is obtained. 
For obtaining the displacement equations, the 
Lagrange principle is used. 
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(17) 

where
iX  are the generalized coordinates 

mnmnmnmnmn WVVUU 13131 ,,,,  and mnW3 . 
By substituting the total kinetic energy, total 
strain energy, and damping energy in the 
Lagrange's equation of the ER fluid core, 
sandwich plate motion and constrained layer 
are obtained as follows: 
              ( )  ( )  ( )  0mn mn mnM X t C X t K X t   

 
(18) 

where  M ,  C , and  K  are mass matrix, 
damping matrix, and stiffness matrix of 
structure, respectively. Considering the 
substitution of tietX  )(  in Eq. (18): 

         0*
2

*   KCM  (19) 

where  is the complex natural frequency of 
the system. By solving the relative equations 
and calculating the natural complex frequency 
of the system, natural frequencies  and loss 
factor  are obtained as follows: 

nn fjf 21    (20) 

 
3. Results and discussion 
 
Vibrations of a three-layered sandwich plate 
with an ER fluid core, constrained layer, and 
four simply-supported end conditions using 
analytical Navier’s method were studied in this 
paper. ER fluid viscosity and elasticity 
properties were changed by the applied electric 
field, and natural frequencies and loss factor 
for electric fields and various thickness ratios 

were calculated. To validate the proposed 
algorithm and calculations, comparisons 
between the present results and those of the 
existing models were made first. The 
numerical results that were compared with 
them are displayed in Table 1. A good 
agreement was observed between the above 
results and the numerical results in [27]. The 
geometrical and physical parameters of the 
sandwich plate were as follows:  

3
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Upper and lower layers were elastic and 
aluminum. 
 
Table 1. Comparisons of natural frequency and 
loss factor. 
Mode  Ref. [27]  Present  

 nf  nf   
1 58.7 0.201 62.1 0.186 
2 113.8 0.211 116.9 0.198 
3 129.2 0.208  131.6  0.190 
4 175.5 0.189 178.5 0.181 

 
Based on the existing information on the ER 
material's pre-yield rheology, only the electric 
field dependence of ER material in the pre-
yield regime needed to be considered. The 
complex modulus of the used ER fluid was 
experimentally measured by Don [22] and can 
be expressed as follows; they are called fluid 
type (A) and fluid type (B) and their relations 
were presented by Yalcintas and Coulter [23]. 
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where E  is the electric field in terms of 
mmkV . 

The natural frequencies of a sandwich plate 
with different electric fields are shown in Fig. 
3. Effect of the electric field on the vibration 
response of the ER sandwich plate can be seen 
for the electric field levels from 5.0 to

*

)( nf
)(
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mmkV4 , respectively. As is clear from the 
figures, the natural frequency of the sandwich 
plate also increased with increasing the electric 
field. It can be seen that the higher electric 
field strength increased the natural frequencies 
of the sandwich plate.  
 

 
Fluid type (A) 

 
Fluid type (B) 

Fig. 3. Dependence of the first four natural 
frequency modes on the electric field, fluid type (A) 
& (B), mmhhmmh 5.0,05.0 321  . 
 
The modal loss factor of the sandwich plate 
had a big effect on the strength of the damping 
structures. Fig. 4 shows the variations in the 
modal loss factor as a function of electric field. 
We can see that the modal loss factor 
decreased as the electric field increased. Also, 
a relative decrease in the modal loss factor can 
be observed by increasing the mode number. 
Definitely, thickness of the middle layer had 
an important effect on the sandwich structure 
damping. The effects of thickness ratio 32 hh  

on type (A) of ER sandwich plate's natural 
frequency and two applied electric field levels 
of 1.5and mmkV5.3  are presented in Fig. 5. 
This figure shows the vibration mode of the 
first four natural frequencies with simply-
supported end conditions and 1 0.05h mm  and 

3 0.5h mm ; the mid-layer thickness is 
changed from one-fifth to the twice of the 
main layer thickness and the natural 
frequencies decrease with the increasing 
thickness ratio of the ER layer. Like the 
previous figure, due to thickness ratio 32 hh  
on type (B) of sandwich plate with an ER fluid 
core, natural frequency and two applied 
electric field levels of 1.5and 3.5 kV mm are 
presented in Fig. 6. It can be seen that, by 
increasing the thickness ratio of the fluid layer 
compared to the main layer, the natural 
frequency decreased. 
 

 
Fig. 4. Dependence of modal loss factor on the 
electric field, fluid type (A), 

mmhhmmh 5.0,05.0 321  . 

 
Effects of thickness ratio 31 hh  on the natural 
frequency of the sandwich plate structure type 
(A) and two applied electric field levels of 

mmkV5.1  and mmkV5.3  on the ER layer 
are presented in Fig. 7. The natural frequencies 
were decreased at first with the increasing 
thickness ratio of 31 hh  and, thus, the 

increment of the mass matrix exceeded the 
stiffness matrix. But, the effect was adverse 
when the thickness ratio 31 hh of the 
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constrained layer exceeded 0.5. When 3.5 
kV/mm electric field was applied, the natural 
frequency of the sandwich plate increased 
continuously as the thickness ratio of the ER 
layer increased; therefore, the shear modulus 
of the ER fluid core was big enough when 3.5 
kV/mm electric field was applied. These 
studies were done for the first four vibrational 
modes with simply-supported end conditions 
and mmhh 5.032  . So, it can be concluded 
that the natural frequency of the sandwich 
plate changes when the thickness of the 
constrained layer increases or decreases. 
Effect of the thickness ratio 32 hh  on the 
modal loss factors of ER fluid core is shown in 

Fig. 8. This figure demonstrates the change 
toward modal loss for various thicknesses of 
 the ER fluid core (A) of the electric field 

mmkV5.1 and mmkV5.3 . As shown in this 
figure, the modal loss factor increases as the 
thickness ratio of ER fluid increases. It can be 
seen that, at low modes, the modal loss factor 
increases as the thickness ratio 32 hh  is 
increased. The higher mode of the modal loss 
factor of the sandwich plate is larger than the 
lower mode when the thickness ratio 32 hh  of 
the ER layer is almost smaller than 5.0 . Then, 
applying the higher electric fields, the natural 
frequencies always decrease and the modal 
loss factors always increase with the increase 
of the thickness ratio 32 hh .  

  
mmkVE 5.1  mmkVE 5.3  

Fig. 5. Dependence of the first four modes natural frequencies on the thickness of the ER layer, fluid type (A),
1 30.05 , 0.5 , 1.5 & 3.5 .   h mm h mm E kV mm E kV mm  

  
mmkVE 5.1  mmkVE 5.3  

Fig. 6. Dependence of the first four modes natural frequencies on the thickness of the ER layer, fluid type (B),
1 30.05 , 0.5 , 1.5 & 3.5 .h mm h mm E kV mm E kV mm     
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mmkVE 5.1  mmkVE 5.3  

Fig. 7. Dependence of the first four natural frequencies on the thickness of the constrained layer, fluid type (A),
2 3 0.5 , 1.5 & 3.5 .h h mm E kV mm E kV mm     

 

  
mmkVE 5.1  mmkVE 5.3  

Fig. 8. Dependence of modal loss factor at different thickness of the ER layer, fluid type (A), 
1 30.05 , 0.5 , 1.5 & 3.5 .h mm h mm E kV mm E kV mm     

 
4. Conclusions 
 
In this study, vibration of a sandwich plate 
with an ER fluid core, constrained layer, and 
four simply-supported edges was investigated. 
The two outer layers of this sandwich structure 
were elastic and the behavior of the core, 
subjected to the electric field for the small 
strain, was expressed by Kelvin's viscoelastic 
material model. The Navier's solution method 
was used for the vibration analysis of sandwich 
structures. In this paper, two kinds of ER 
materials were discussed. The similar 
viscoelastic properties can be observed. The 
viscoelastic characteristics, which can be 
changed by applying different electric fields, 
of the ER materials were shown to have 

significant effects on the free vibration of the 
sandwich structures. Electric field changed the 
stiffness of the sandwich plate. The property of 
the ER fluid was a function of the electric 
fields and changed the material properties 
when subjected to the different electric fields. 
As the applied electric field increased, the 
natural frequency of the sandwich plate 
increased.  
The increase in the thickness of the ER layer 
decreases the natural frequencies of the 
sandwich plate. On the other hand, the modal 
loss factor of the sandwich plate played an 
important role in the stability of the damped 
structures. The modal loss factor was changed 
when subjected to different electric fields. The 
modal loss factor decreased as the applied 
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electric field increased and a relative increment 
in the modal loss factor was observed by 
increasing the thickness ratio. The thickness of 
the constrained layer also had some effects on 
the stability of the sandwich plate. The natural 
frequency of the sandwich plate was changed 
when the thickness of the constrained layer 
increased or decreased. Change of the 
thickness of the ER layer also could have a 
significant effect on the modal loss factor of a 
sandwich plate structure.  
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