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Abstract 
The motivation for this work is to propose a first thorough review of dough 

rheological models used in numerical applications. Although many models have 

been developed to describe dough rheological characteristics, few of them are 

employed by researchers in numerical applications. This article reviews them in 

detail and attempts to provide new insight into the use of dough rheological 

models. 
 

 

 

Nomenclature 
 

A  Relative increase in viscosity due to 

gelatinization, dimensionless 


 Apparent viscosity, .secPa  

b  
Index of moisture content effects on viscosity, 

dimensionless 


 
Shear rate, 

1sec−

 

D  
Rate of deformation tensor 

 
Strain history, dimensionless 

ak
 

Reaction transmission coefficient, 
1 1secK − −  

 


 Time-temperature history, .secK  

MC  
Moisture content, dry basis, decimal 

0  
Yield stress, Pa  

rMC
 

Reference moisture content, dry basis, decimal u  Velocity, /m s  

m  Fluid consistency coefficients, dimensionless   Stress tensor 

n  Flow behavior index, dimensionless 
vE

 
Free energy of activation, cal/g mol 

R  Universal gas constant, 1.987 /cal g mol K−    Stress, Pa  


 

Index of molecular weight effects on viscosity, 

dimensionless 


 
Relaxation time, sec  

1. Introduction  
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Bread is the most important daily meal of 

people in the world. Furthermore, improving 

the quality of bread baked products and the 

development of relevant apparatuses completely 

depend upon a comprehensive knowledge of 

dough rheology. Therefore, it is essential to 

gain a deep knowledge of dough behavior and 

to ensure the accuracy of the measured 

rheological data. However, finding a 

constitutive model that has all accurate 

molecular and structural arguments to simulate 

the linear and non-linear properties of wheat 

flour dough is a tough challenge due to the 

complicated nature of wheat flour doughs [1]. 

The challenge is due to the fact that once water, 

wheat flour dough and small amount of 

ingredients such as salt, yeast, preservatives, 

etc. are combined, a cohesive viscoelastic 

substance is produced called dough. All of 

these ingredients can considerably change the 

rheological properties of the dough during 

mixing, and make it rheologically complex. In 

fact, the combination of these ingredients 

produces a three dimensional network called 

gluten which has a crucial role in complex 

viscoelastic behavior of wheat flour dough [1]. 

Despite these complexities, the rheology of 

wheat flour dough has been an important of 

scientific researches topics. Over the years, 

several efforts have been made to 

experimentally and theoretically evaluate dough 

properties that affect its flow behavior. In this 

approach, Schofield and Scott Blair [2-5] might 

be considered as pioneer researchers who 

studied the flow behavior of the wheat flour 

doughs. They also demonstrated that dough 

behaves both like a Hookean solid and also like 

a Newtonian liquid. 

In order to provide information on the 

rheological properties of wheat flour dough, the 

measurement of dough material properties has 

been obtained using empirical instruments such 

as Farinograph, Alveograph, Extensigraph and 

Mixograph [6-8] and capillary rheometry (shear 

and extensional viscosities for dough) [9,10]. 

Kokini et al. have attempted to simulate and 

compare dough-like rheological materials using 

the Bird Carreau model [6, 8], the Wagner 

model [11], the White-Mezner model, the 

Giesekus-Leonov model [1,12] and the Phan-

Thien-Tanner model [1,12,13]. In these studies 

they often employed the Brabender Farinograph 

to predict the measured rheological behavior of 

wheat flour dough at different moisture 

contents. 

However, the limited application of their results 

and difficulties encountered in correlation 

between the quality of the baked products and 

values obtained from them complicate the task 

of characterizing the flow behavior of dough. 

In 1954, Cunningham and Hlynka [14] tried to 

characterize the linear viscoelastic properties of 

dough using  distribution of relaxation times. In 

order to characterize the viscoelastic properties 

of flour dough, Bagley and Christianson [15] 

used the BKZ elastic fluid theory. Thereafter, 

the upper convected Maxwell model was used 

by Bagley et al.[16]. Till 1990, the aim of 

studies had been to simulate the rheological 

properties of wheat flour dough without 

considering its non linear behavior. Dus and 

Kokini [6], therefore, tried to describe the 

steady state shear viscosity and oscillatory 

shear properties of hard flour dough using the 

five-parameter Bird-Carreau model. Bagley 

[17] used of the upper-convected Maxwell 

model to explain the dough behavior in biaxial 

extension flow. 

Before 1995, less attention was paid to the 

measurements of uniaxial and biaxial 

extensional rheological properties of wheat 

flour doughs in the strain rates region [12]. 

Therefore, Wang and Kokini [11], showed that 

one can profit by using the Wagner model to 

predict transient shear properties and uniaxial 

and biaxial extensional rheological properties of 

gluten doughs and also to simulate nonlinear 

shear properties. Dhanasekharan and Kokini 

[13] used the Phan-Thien Tanner model as a 

more realistic model describing dough-like 

fluids for 3-D numerical modeling of 

viscoelastic flow in a single screw extrusion 

and then analyzed the effect of viscoelasticity 

considering a stationary screw and rotating 

barrel. Phan-Thien and Safari-Ardi [18] derived 

relaxation spectra from both dynamic and 

relaxation data for Australian strong flour-water 

dough and reported dynamic oscillatory and 

stress relaxation data [1,19]. 
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Till that time, most of the reported models 

simulating the rheological properties of wheat 

flour doughs or their protein components had 

been either linear differential viscoelastic 

models like the generalized Maxwell models or 

nonlinear integral viscoelastic models such as 

the Bird-Carreau and Wagner models [19]. 

Using the Phan-Thien Tanner, White-Metzner 

model and the Giesekus model applied by 

Dhanasekharan et al. [12] to study whole wheat 

flour doughs, Dhanasekharan et al. 0 compared 

the validity of these models to predict the 

steady shear and transient shear properties of 

gluten dough. Using the theory of rubber 

elasticity, Leonard et al. [19] studied the 

rheology of wheat flour doughs at large 

extensional strains and reported an intermediate 

behavior between rubber elasticity and plastic 

flow for dough.  

In order to evaluate the constitutive eqations 

introduced by Phan-Thien et al. [20], the large-

strain oscillatory shear flow of flour dough was 

studied by Phan-Thien et al. [21]. Their results 

indicated that a model with a shear-rate 

dependent viscosity alone is inadequate to 

describe the response of flour dough since the 

material response is significantly non-linear 

which is mainly due to the strain softening 

behavior of the material. Furthermore, in order 

to be able to differentiate between different 

flour types, tests at large-strain deformations 

are required.  

Although, the literature has explored numerous 

papers dealing with both theoretical and 

experimental methods of characterizing dough 

like materials, there are only a few scattered 

references devoted to evaluating the application 

of reported constitutive equations of wheat 

flour dough in numerical simulations. In 

characterizing dough behavior and its effects on 

different flow patterns, the most notable works 

belong to Kokini et al. [13, 22, 23, 24 and 26] 

and Phan-Thien et al. [18, 21, 25 and 26]. A 

numerical modeling of viscoelastic flow in a 

single screw extrusion conducted by 

Dhanasekharan and Kokini [13] can be 

considered as one of the earliest dough 

numerical simulations. Thereafter, Connelly 

and Kokini [23] conducted a simultaneous 

scale-up of mixing and heat transfer analysis of 

dough behavior in such a single screw extruder. 

In this study, in order to take into account the 

variations in the rheology of wheat flour dough, 

the Mackey and Ofoli viscosity model was 

applied. With regards to attempts to examine 

the mixing ability of single and double screw 

mixers, significantly Kokini et al. [23,24,26,27] 

examined the effects of shear thinning and 

differential viscoelasticity on dough mixing 

behavior. 

For the first time, Binding et al. [28] examined 

the combination of numerical and experimental 

studies of dough kneading in a partially filled 

cylindrical mixer, with either one or two 

eccentric stirrers. The numerical procedure 

utilized a parallel numerical method based on a 

finite element semi implicit time-stepping 

Taylor-Galerkin/pressure-correction scheme. 

The same approach was then employed 

[29,30,31] to analyze the wetting and peeling of 

dough like material on solid surfaces 

considering the free surfaces, kinematics and 

stress fields produced by variations of stirrers’ 

speed and changing geometry mixer. For fluid 

rheology, Carreau–Yasuda, constant viscosity 

Oldroyd-B and two shear-thinning Phan-

Thien/Tanner constitutive models were 

employed. Velocity profiles and relevant 

peeling stress were calculated using laser scatter 

technology, Laser Doppler Anemometry (LDA) 

and a video capture technique. Results revealed 

good agreements between the numerical and 

experimental studies. 

It is not feasible here to even attempt to review 

many of efforts that have been made to explore 

both theoretical and experimental ways of 

characterizing and evaluating dough; however, 

Bagley [9], Kokini [19] and Phan-Thien et al. 

[21] have cited some useful references.  

Despite all these attempts, there is still a great 

need to understand the necessary constitutive 

equations to accurately describe wheat flour 

dough behavior. According to the author’s 

knowledge, there is no work in the literature 

that has reviewed the rheological models used 

in numerical applications of dough like 

materials. Therefore, this study aims to review 

the constitutive equations applied in numerical 

simulations of dough flow behavior during, 

approximately, the period 1987-2007. The 
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review represents all parameter values of these 

rheological models.  
 

2. Dough rheological model 

 

The characterization of a non-Newtonian, 

steady state, incompressible flow, is provided 

by the conservation of mass and momentum 

equations, respectively. 

. 0u =
 

                             (1) 

. 0 =                               (2) 

 

The stress tensor σ is defined by Eq. (3), where 

a constitutive equations or rheological model is 

required to define the deviatoric stress tensor . 

In constitutive models, the deviatoric stress 

tensor is described as the sum of the 

viscoelastic component
1
, and the purely 

Newtonian component 2 (Eq. (4)).  

 

pI = − +
                           (3) 

1 2  = +
 

                          (4) 

 

Where 2 is given by Eq. (5) where D  is the 

rate of deformation tensor.  

2 22 D =
 

                           (5) 

 

Among all attempts that have been made to 

formulate the constitutive equations, those for 

viscoelastic materials have encountered 

difficulties due to their considerable 

nonlinearity [32]. In characterizing dough 

rheological behavior, more powerful models are 

linear differential viscoelastic models like the 

generalized Maxwell models, nonlinear integral 

viscoelastic models such as the Bird-Carreau 

and Wagner models and nonlinear differential 

models. The latter is of the particular interest in 

numerical simulations, which is used for 

process design, optimization and scale-up. [19] 

However, till 2000, due to high computational 

costs and lack of advanced software, there was 

a scarcity of work in viscoelastic flow analysis 

in extruder channels. However, nowadays, 

complicated calculations are possible using the 

current computational technology and available 

software tools [19]. 

Only a selection of the viscosity models applied 

in numerical applications is given here; more 

complete descriptions of such models and 

fundamental knowledge of non Newtonian 

models are available in many references [33-

44]. 

 

2. 1. The power law (Ostwald de Waele) model 

 

The relationship between shear stress and shear 

rate for a shear-thinning fluid can often be 

approximated by a straight line over a limited 

range of shear rate (or stress). For this part of 

the flow curve, an expression of the following 

form is applicable: 

nm =  
                            (6) 

 

Where m and n are the fluid consistency 

coefficient and the flow behavior index 

respectively. The apparent viscosity for the so-

called power-law (or Ostwald de Waele) fluid is 

thus given by Eq. (7) [38]. 

1( )
yx n

xy

yx

m


 


−= =

 

                     (7) 

 

The power-law models are the preferred 

rheological model due to their ability to predict 

velocity and pressure distributions in uniform 

flows [19] and the simplest representation of 

shear thinning behavior [38]. However, their 

application in the process engineering 

encounters following shortcomings: 

a. These models should be applied over only a 

limited range of shear rates and therefore the 

fitted values of m and n will depend on the 

range of shear rates [38]. 

b. They are not able to predict zero and infinite 

shear viscosities [38]. 

c. The dimensions of the flow consistency 

coefficient, m, depend on the numerical value 

of n and therefore the m values must not be 

compared when the n values differ [38].  

d. They are seldom able to provide accurate 

predictions of measurements of important 

operating parameters such as Specific 

Mechanical Energy (SME) and Residence Time 

Distribution (RTD) [19]. 
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2. 2. Maxwell model 

 

Certainly, the most striking feature connected 

with the deformation of a viscoelastic substance 

is its simultaneous display of 'fluid-like' and 

'solid-like' characteristics [38]. Consequently, 

the idea of a linear combination of elastic and 

viscous properties by using mechanical 

analogues involving springs (elastic 

component) and dash pots (viscous action) has 

affected the early efforts in quantitative 

description of viscoelastic behavior [38]. 

Like other viscoelastic materials, dough was 

primarily characterized in terms of a simple 

Maxwell model [8]. As shown in Fig. 1, the 

Maxwell model can be represented by a purely 

elastic spring and a purely viscous damper 

connected in series, with the individual strain 

rates of 1   and 2  respectively. This model 

follows the following Eq. (8) [38]. 

 

 

Combining above equation with the Hooke's 

law of elasticity and Newton's law of viscosity, 

one can obtain: 

 

In which   is the stress tensor, 


 total strain 

rate tensor,  is the time derivative of  ,   is 

the viscosity of the dashpot (viscose) fluid and 

( / )G =
 is the relaxation time, which is a 

characteristic of the fluid. An important feature 

of the Maxwell model is its predominantly 

fluid-like response. A more solid-like behavior 

is obtained by considering the Voigt model 

which is represented by the parallel 

arrangement of a spring and a dashpot, as 

shown in Fig. 2. 

Subsequent research showed that dough 

possesses complex viscoelastic properties that 

can only be represented by a generalized 

Maxwell model which includes a distribution of 

relaxation times (Fig. 3) [8, 14, 45, and 46]. 

The Upper Convected Maxwell model is a 

generalization of the Maxwell material for the 

case of large deformations using the Upper 

convected time derivative. The model was 

proposed by James G. Oldroyd [47] and is 

represented by Eq. (10). 

  

 is the stress tensor;   is the relaxation time; 




 is the upper convected time derivative of 

stress tensor;   is the material viscosity at 

steady simple shear and D  is the tensor of the 

deformation rate. 

The convected derivative 


 and the rate of 

deformation tensor are defined by: 

[ . ] [ . ]TD
u u

Dt


  


= −  − 
          

(11) 
.( ) ( ) . .( )Tu u u

t


   
 
= + −  − 
  
1

[( ) ( ) ]
2

TD u u=  + 
 

         

(12) 

 

Using the upper convected Maxwell model, 

Bagley et al. [16] tried to interpret the results of 

extensional deformation of viscoelastic dough.  

Their study showed that the upper convected 

Maxwell model is particularly convenient for an 

initial analysis of a constant crosshead speed 

experiment on dough, and the governing 

differential equations can be easily solved 

numerically [16]. 

 

2. 3. Oldroyd-B 

 

Another form of viscoelastic model is Oldroyd-

B model [32]: 

1 1 1 1 22 ( ) 0d d    
 

+ − + =
                        (13)

 

 

d  is the rate of deformation tensor, 0  is the 

shear viscosity, 1  is the relaxation time and 2  

is the second relaxation parameter (retardation 

1 2
1 2

d d

dt dt

 
  = + = +

 
                 (8) 

  + =
 

                          (9) 

 

2 D  


+ =  

                 

                       (10) 

 

http://en.wikipedia.org/wiki/Maxwell_material
http://en.wikipedia.org/wiki/Upper_convected_time_derivative
http://en.wikipedia.org/wiki/Upper_convected_time_derivative
http://en.wikipedia.org/wiki/James_G._Oldroyd
http://en.wikipedia.org/wiki/Stress_%28physics%29
http://en.wikipedia.org/wiki/Tensor
http://en.wikipedia.org/wiki/Upper_convected_time_derivative
http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Simple_shear
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     Fig. 1. Schematic of                    Fig. 2. Schematic of the                                    Fig. 3. Schematic of the 

      the Maxwell model.                            Voigt model.                                           generalized Maxwell model. 

 

time [33]). As it was previously (Eq. (11)) 

described   is upper convected derivative. 

1) 1 0 = the model simplifies to a second-order 

fluid with a vanishing second normal stress 

coefficient [33].  

2) 2 0 = the model reduces to the convected 

Maxwell model [33]. 

3) 1 2 =  the model reduces to a Newtonian 

fluid with viscosity 1  [33]. 

 

2. 4. Cross and Carreau model 

 

The cross model [48] is a four parameter model 

which is written as [34]: 

 

 

0

1 ( )m

c

 
 

 




−
= +

+
                                   (14) 

 

0

2[1 ( ) ]N

c

 
 

 




−
= +

+
                               (15) 

 

where c  and c  are time constants related to 

the relaxation times of the polymer in solution  

and m and N are dimensionless exponents. 

Since the magnitudes of 1700 of food polymer 

dispersions with concentrations of practical 

interest are usually very low in magnitude, they 

are difficult to determine experimentally. 

Therefore, to avoid consequent errors in 

estimation of the other rheological parameters 

in Eqs. (14) and (15),   is usually neglected 

[49,50]. 

 

 

1

02 (1 )n D   −= +
                  

                                                               (16) 

 

In general, the model of Cross has been used in 

studies in Europe and that of Carreau in North 

America.  

 

2. 5. Bird-Carreau model 

 

The Bird-Carreau model [51] is a nonlinear 

extension of the generalized Maxwell model. It 

uses four empirical constants ( 1 , 1 , 2 and 

2 ) and the zero shear rate viscosity, 0 . Two 

constants, 1 and 1  are typically obtained 

from a logarithmic plot of   vs.   and the 
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other two constants 2 and 2  are obtained 

from a logarithmic plot of 
' vs. [52].  (  is 

the viscosity function, 
'  is the dynamic 

viscosity and  is the frequency) [53].  

The Bird-Carreau prediction for   is [52, 53]. 

 

21
11 ( )









 



=

=

+


       

    

 

                                                                      (17)                        

At large shear rates the above equation is 

approximated by [53]: 

1 1 1(1 ) /

0 1

11
1

1

(2 )

1( ) 1
2 sin( )

2

Z

    


  


−

= 
+−

 

       (18) 

  

1

1 1

2
( )

1



 


= 
+  

 

       (19) 

1

0

1








 


= 

  

       (20) 

1

1

1

( )Z k







−

=

=
 

       (21) 

The Bird-Carreau prediction for 
'  is [53]: 

'

2
1 21 ( )



 




 



=

=
+


 

                   (22) 

and at high frequencies 
'  is approximated by 

[53]: 
2 1 2(1 ) /

' 0 2

2 11
2

2

(2 )

1 2( ) 1
2 sin( )

2

Z

    


   


−

= 
+ −−



 
                                                                      (23) 

 

 

The Bird-Carreau model approximates the 

polymeric material as a loosely held structure 

where temporary network junctions are 

continuously formed and then destroyed during 

shear. This structural concept appears to be 

quite appropriate for wheat-flour dough since 

wheat gluten is a high molecular weight 

biological polymer whose components have 

been demonstrated to form entanglements [8]. 

These models are appropriate for liquid-like 

materials; they may yield the right behavior in a 

specific type of flow, but they are not 

appropriate in all types of deformations [21]. 

More complete description of this model is 

provided in many publications especially in 

[51] and [52]. 

The Bird-Carreau-Yasuda model is more 

complex and has the advantage of predicting 

both Newtonian and pseudo plastic behavior of 

polymers, as well as the transition region and 

contains five parameters. Mathematically the 

Bird-Carreau-Yasuda model can be expressed 

as follows [54]: 

 

( 1) /

0

[1 ( ) ]a n a 
 

 

−



−
= +

−
 

             (24) 

where   is shear viscosity, 0  is the zero-shear-

rate viscosity,   is the infinite-shear-rate 

viscosity,   is the time constant,   is the shear 

rate, and n is the power law index. In the 

original Bird-Carreau model the constant a 

equals to 2. In many cases the infinite-shear-

rate viscosity is negligible, reducing Eq. (24) to 

a three parameter model [54]. 

Dus and Kokini [6] simulated the nonlinear 

viscoelastic properties of wheat-flour dough 

with the Bird-Carreau model. Although, this 

model showed significant deviation from 

primary normal stress coefficient data, it was 

adequate to predict steady shear viscosity and 

small amplitude oscillatory properties. 

Thereafter, Wang and Kokini [8] investigated 

the applicability of the Bird-Carreau model in 

predicting steady shear viscosity and primary 

normal stress coefficient data of gluten dough 

as a function of water content at two 

temperatures. The results reported that the small 

amplitude oscillatory shear properties could be 

successfully simulated using the Bird-Carreau 

constitutive model. However, the primary 

normal stress coefficient was overpredicted.   
 

2. 6. Giesekus-Leonov model 

 

Giesekus [55] proposed a constitutive model 

based on a concept of configuration-dependent 
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molecular mobility. According to this model, 

the viscoelastic component of the extra stress 

tensor is represented by Eq. (25) with four 

parameters 1 , 2 , and  . Due to the highly 

nonlinear nature of the model equations, all of 

the properties need to be obtained numerically 

[12].  

 

      (25) 
1 1 1

1

1

2ij ij ij ij ijI


     


 • 
+ + = 

   
 

The parameter  is the dimensionless Giesekus 

model mobility factor and controls the 

extensional viscosity and the ratio of second 

normal stress difference to the first one. 0 

represents shear thinning behavior [12]. 
  

2. 7. White-Metzner model 

 

Modification of the viscosity and relaxation 

parameter as a function of the shear rate,   

leads to the White-Metzner model. This model 

exhibits shear thinning, not because of 

nonaffine motion, but because the relaxation is 

accelerated at high strain rates, where the 

relaxation is faster than any deformation [32] 

(The use of molecular considerations based on 

nonaffine Network Theories will result in the 

PIT model [32] which will be discussed in the 

next section). 

In this model the viscoelastic component of the 

extra stress tensor is given by Eq. (26) [12]. 

 

                     (26) 1 1

12ij ij ij   
 •

+ =
  

The functions 1  and   can be obtained from 

the experimental shear viscosity curve and the 

experimental first normal stress curve, 

respectively. Constant, Power law, and Bird-

Carreau types can be considered for these two 

functions [12]. 

 

 

2. 8. Phan-Thien-Tanner model 

 

The literature describes many attempts to 

improve the Upper Convected Model [35]. In 

this approach, the model proposed by Phan 

Thien and Tanner [20,18,26] was claimed to 

correctly describe the nonlinear behavior of 

viscoelastic fluids, especially viscoelastic 

properties of wheat flour doughs [56]. The 

original Phan-Thien Tanner equations was 

written using both of the following 

modifications simultaneously: the Gordon 

Schowalter derivative and the segment kinetics 

term [35]. It employs specific forms for the 

creation and destruction rates of the network 

junctions in the network theory of Lodge and 

Yamamoto [56]. 

Although the Phan-Thien Tanner model 

overpredicts the shear viscosity at higher shear 

rates and the transient and extensional 

properties, it accurately predicts the zero shear 

viscosity 0 and seems to be suitable for 

numerical simulations of wheat flour doughs. 

It is worth noting that, compared to the integral 

models such as the Bird-Carreau and Wagner 

models, the differential models such as the 

Phan-Thien Tanner model provide robust 

numerical algorithms [56] and exhibits good 

behavior in FEM simulations [23]. The 

interested reader is referred to [35] for more 

accurate comparison between the Wagner 

model (as integral model) and the PTT model. 

In the PTT model, the extra stress tensor is 

considered as the sum of the viscoelastic 

component 1 , and the purely Newtonian 

component 2 (Eq. (27)) [12]. 

                          (27) 1 2  = +
 

In which 2 is given by Eq. (28) where D is the 

strain rate tensor.  

                          (28) 2 22 D =
 

The final form of the PTT model for the 

viscoelastic component 1  is expressed by Eq. 

(29) [12]. 

 

 

 

 (29) 

 

 

1 1 1 1exp ( ) (1 ) 2
2 2

tr D
  

      


    
+ − + =   

    
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(30) 
[ . ] [ . ]TD

u u
Dt


  


= +  + 
 

  and  are the adjustable parameters and  

and  are the partial viscosity and relaxation 

time respectively which can be measured from 

the equilibrium relaxation spectrum of the fluid 

[12]. The operators and  are the upper 

convected derivative (Eq. (11)) and lower 

convected derivative (Eq. (30)), respectively. 

The Phan-Thien Tanner model can be solved 

using a single relaxation time or multiple 

relaxation times, similar to the Giesekus model 

[12]. 

 

2. 9. Mackey & Ofoli model 

 

Modifying the model of Morgan et al. [56], 

Mackey et al. [57] proposed a model for the 

viscosity of starch-based products related in Eq. 

(31). 

𝜂 = [(
𝜎0

𝛾̇
)

𝑛1
+ 𝜂∞𝛾̇𝑛2−𝑛1]

1
𝑛1  

⁄

  

{𝑒𝑥𝑝[(𝛥𝐸𝑣/𝑅) + 𝑏(𝑀𝐶 − 𝑀𝐶𝑟)]}  

{1 + 𝐴́[1 − 𝑒𝑥𝑝(−𝑘𝑎𝜓)]𝛼}{1 − 𝑒𝑥𝑝(−𝑑𝜑)}  

                                                                      (31) 

 

This model provides accurate results for 

predicting the viscosity of relatively pure 

starches such as potato flour [57] and corn 

starch [7] and does not account for non starch 

components. However, Mackey and Ofoli [7] 

evaluated the viscosity of whole wheat flour  

doughs (which contains significant levels of 

non starch components) at low to intermediate 

moisture content. They incorporate the effects 

of shear rate, temperature, moisture content, 

time-temperature history, and strain history. 

Due to the presence of flour components such 

as bran, protein, and lipids, (which the model 

does not account for) the accuracy of 

rheological modeling for whole wheat flour was 

not nearly as good as had been observed in 

previous studies of corn starch and potato flour. 

Osswald and Hernández-Ortiz [33] provided a 

valuable general form of viscoelastic models 

represented in Eq. (32). 

  

1 (1) 2 3 0 4 (2){ . . } { . } [ ]Y             + + + + = +
 

                                                                      (32) 

where (1)
 is the first contravariant convected 

time derivative of the deviatoric stress tensor 

and represents rates of change with respect to a 

convected coordinate system that moves and 

deforms with the fluid. All constants are 

defined in Table. 1 for various viscoelastic 

models commonly used to simulate dough like  

materials. The convected derivative of the 

deviatoric stress tensor is defined by Eq. (33). 

(1) [( ) . .( )]TD
u u

Dt


  = −  + 

                  (33) 

 

Similar summaries of viscoelastic models using 

general forms can be found in other references 

[36].  

 

3. Models and parameters used in numerical 

applications  

 

Vergnes and Villemaire [58] investigated the 

effects of temperature, moisture content and 

intensity of the treatment on the rheological 

behavior of a molten maize starch in a low 

hydrated phase. In this approach, they applied a 

power law model with an exponential 

dependence on temperature, water content and 

mechanical energy provided to the product 

before measurement. Moreover, they  

introduced a dependence on temperature and 

water content for the pseudoplasticity index m , 

which has been observed in different papers 

[59, 60] but never quantified. They have also 

summarized different expressions that had been 

reported before 1987 in the literature to 

describe the rheological behaviour of starchy 

products in three simplified expressions [58]: 

1mK 
•
−=  

         (34) 

  1

0 exp( )exp mE
K MC

RT
  

•
−= −

 
         (35) 

  1

0 exp( )exp mK bT MC  
•
−= − −

 
         (36) 
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Table 1. Definition of constants in Eq. (32)[33]. 

Model Parameters 

Constitutive Model Y  1  
2  

3  
4  

Generalized 

Newtonian 
1 0 0 0 0 

Upper Convected 

Maxwell 
1 1  0 0 0 

White-Metzner 1 
1( )   0 0 0 

Pahn-Thien Tanner -1 0exp( ( / ) )tr   −    
1

2
  0 0 

Pahn-Thien Tanner -2 01 ( / )tr   −      

Giesekus 1 1  0 1 0( / ) −  0 

 

 

 

Eq. (35) has been used by Fletcher et al. [61] 

and Senouci et al. [62] to characterize maize 

grits, and by Cervone and Harper [60] in the 

case of pregelatinised maize flour. Eq. (36) 

particularly has been used by Yacu  [59] on 

wheat starch [58]. Vergnes and Villemaire [58] 

showed that in comparing the results obtained, 

the main difficulty comes from the variety of 

products. Table. 2 shows the scatter of the 

predicted parameters characterizing the 

viscosity over a wide range, even for equal 

products. Moreover, they claimed that their 

results are the first to take into account the 

influence of thermomechanical history on 

viscosity. Facilitating the progress achieved 

over the years, more researches have been 

carried out. 

In order to summarize this paper and also to 

provide a useful and complete collection of 

models, their relevant parameters and 

applications which simplifies furthere access, a 

large number of constitutive equations 

employed for the simulation of dough like 

materials are summarized in Table 2. 

 

4. Conclusions 

 

Understanding the complex behavior of dough-

like materials and interpreting it as one general 

equation   require   a   vast   knowledge   of   the 

 

 

 

characteristics and formation of this complex 

material. Since rheometers do not provide the 

necessary information for all important 

rheological properties, constitutive equations 

are ultimate tools for effective control of 

process.  

The development of valuable models for 

complex dough behavior and the search for 

appropriate constitutive equations to describe 

this complex behavior have been a high priority 

of most scientific researches. However, 

understanding the mechanical behavior of 

wheat flour dough is a formidable challenge. 

Consequently, due to high computational costs, 

there has been a scarcity of work in numerical 

simulation of the flow behavior of the wheat 

flour dough, particularly in the numerical 

simulation of the viscoelastic flow analysis in 

the relevant dough preparation apparatuses.  

Perhaps Vergnes and Villemaire’s [58] effort 

can be considered as the pioneer researches 

conducted in categorizing and comparing 

reported models for starchy products, generally, 

and for wheat dough, particularly. In this study, 

the authors try to provide a useful collection of 

models which simplifies further access of 

researchers. This approach can be developed in 

the near future by studying the rheological 

behavior of other starchy products.  
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