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Article info:  Abstract 
In this paper, the laminar incompressible flow equations are solved by an 
upwind least-squares meshless method. Due to the difficulties in generating 
quality meshes, particularly in complex geometries, a meshless method is 
increasingly used as a new numerical tool. The meshless methods only use 
clouds of nodes to influence the domain of every node. Thus, they do not 
require the nodes to be connected to form a mesh and decrease the difficulty 
of meshing, particularly around complex geometries. In the literature, it has 
been shown that the generation of points in a domain by the advancing front 
technique is an order of magnitude faster than the unstructured mesh for a 
3D configuration. The Navier–Stokes solver is based on the artificial 
compressibility approach and the numerical methodology is based on the 
higher-order characteristic-based (CB) discretization. The main objective of 
this research is to use the CB scheme in order to prevent instabilities. Using 
this inherent upwind technique for estimating convection variables at the 
mid-point, no artificial viscosity is required at high Reynolds number. The 
Taylor least-squares method was used for the calculation of spatial 
derivatives with normalized Gaussian weight functions. An explicit four-
stage Runge-Kutta scheme with modified coefficients was used for the 
discretized equations. To accelerate convergence, local time stepping was 
used in any explicit iteration for steady state test cases and the residual 
smoothing techniques were used to converge acceleration. The capabilities of 
the developed 2D incompressible Navier-Stokes code with the proposed 
meshless method were demonstrated by flow computations in a lid-driven 
cavity at four Reynolds numbers. The obtained results using the new 
proposed scheme indicated a good agreement with the standard benchmark 
solutions in the literature. It was found that using the third order accuracy for 
the proposed method could be more efficient than its second order accuracy 
discretization in terms of computational time. 
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1. Introduction 
 
The governing fluid flow equations are 
nonlinear partial differential equations, which 

are solved by numerical methods. Various finite 
difference methods (FDM) [1, 2], finite volume 
methods (FVM) [3, 4], and finite elements 
methods (FEM) [5, 6] have been developed for 
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incompressible fluid flow in computational 
fluid dynamics (CFD). The main problem of 
CFD for incompressible flow is the generation 
of quality mesh around complex geometries, 
because low speed of gases and fluid flows are 
in conflict with complex geometries such as air-
condition systems [7, 8], heat-exchanger [9, 
10], electronic equipment cooling [11], ocean 
freight [12], etc. 
In general, numerical mesh generation methods 
are classified as structured and unstructured 
methods, each of which has its own advantages 
and disadvantages [13, 14]. Due to the 
difficulties in generating quality meshes, 
particularly in complex geometries, a meshless 
method is increasingly used as a new numerical 
tool. The meshless methods only use clouds of 
nodes to influence the domain of every node. 
Thus, they do not require the nodes to be 
connected to form a mesh and decrease the 
difficulty of meshing, particularly around 
complex geometries. Lohner has shown that the 
generation of points in domain by the 
advancing front technique is an order of 
magnitude faster than that of an unstructured 
mesh for a 3D configuration [15, 16]. Meshless 
methods have advantages in terms of moving 
boundary and large deformations over mesh-
based algorithms, in which the spatial domain is 
discretized using a set of points, as opposed to 
the cells of a finite volume grid. Clouds are 
then used to solve the governing equations.  
Its applications are to solve any partial 
differential equations, especially compressible 
and incompressible fluid flow equations, as 
well as inviscid and low Reynolds number 
laminar flows to high Reynolds number 
turbulent flows. 
In a meshless method, the flow derivatives are 
calculated using different approximation 
methods, like smooth particle hydrodynamics 
(SPH) [17], generalized finite difference 
method (GFDM) [18, 19], element-free 
Galerkin method (EFGM) [20-22], radial basis 
function method (RBFM) [23, 24], reproducing 
kernel particle method (RKPM) [25], meshless 
local Petrov-Galerkin approach (MLPG) [26, 
27], etc.  
Meshless method does not involve remeshing 
process and could easily realize adaptivity 

strategy. Lohner et al. used finite point method 
(FPM) for compressible flow solution [28]. 
Recently, Ortega et al. developed finite point 
method for solving compressible flow problems 
involving moving boundaries and adaptivity 
[29, 30]. The least-squares meshfree method 
(LSMFM) was used by Hashemi and 
Jahangirian for compressible viscous and 
inviscid flow calculations [31, 32] and the 
convergence behavior and approximation 
accuracy on Stokes problem by LSMFM were 
presented [33]. An upwind least-squares based 
meshless method was analyzed and used by Su 
et al. for high Reynolds number flow 
calculations [34]. 
Many different schemes have been proposed for 
compressible and incompressible flow solutions 
by finite difference and finite volume methods. 
The method of solving low-speed or 
incompressible flows by artificial 
compressibility (AC) correction was first 
introduced by Chorin [35] for obtaining steady 
state solutions. In this method, a time derivative 
of the pressure is added to the continuity 
equation and a coupling system of equations for 
pressure and velocity is obtained.  
By reviewing the literature, it is found that 
different schemes for the discretization of AC 
equations have been used in FDM and FVM 
(for instance, see [3, 36-45]), one of which is 
the characteristic-based scheme (CB) as an 
upwind scheme. 
Various upwind schemes are used in meshless 
discretization for compressible flow solution 
such as Lohner et al. [28], Sridar and 
Balakrishnan [46], and Praveen and Deshpande 
[47]. In this work, an explicit meshless solver 
for incompressible fluid flow was developed. 
To achieve the discretized form of equations, 
the Taylor series least-squares method was used 
for the approximation of derivatives at each 
node, which led to a central difference spatial 
discretization. The main objective of this 
research is to use the CB scheme in order to 
prevent instabilities. The CB meshless method 
was applied for two-dimensional lid-driven 
cavity flow for a wide range of Reynolds 
numbers and compared with the standard 
benchmark solutions in the literature in order to 
show its accuracy and ability. 
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2. E Governing equations  
 
Incompressible viscous flow can be 
mathematically described by continuity 
equation and momentum equations, namely 
Navier-Stokes (N-S) equations. The 
conservative variables and non-dimensional 
form of the N-S equations for two-dimensional 
incompressible flows modified by the AC 
correction can be expressed as: 
 

1 ,
Ret x y x y
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Here, W is the vector of primitive variables, F, 
G and R, S are convective and viscous flux 
vectors, respectively. The artificial 
compressibility parameter and Reynolds 
number are shown by  and Re , respectively. 
In the definition of Reynolds number, Lref is 

reference length, refU  is reference velocity, and 
 and   are viscosity and density of fluid, 
respectively, which are constant in flow field. 
 
3. Discretization of equations 
 
The least-squares meshless method is used to 
discretize the flow equations in the conservation 
form. The spatial derivatives of the function 
using the least-squares method are as follows 
[48]: 
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where 1
2j  is the mid-point of the edge ij, where 

j is in a cloud of point i  and m  is the number 
of neighbors of point i in its cloud (Fig. 1). In 
the present work, clouds were simply defined as 
the connectivity of an existing unstructured 
mesh generated by advancing front algorithm. 
Minimum and maximum numbers of neighbors 
were 5 and 7, respectively, and the majority of 
points had 6 neighbors.  The coefficients in Eq. 
(3) can be calculated using the weighting 
function as: 
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where  is an arbitrary weighting function such 
as normalized Gaussian (Fig. 2), 
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where maxr is the maximum value of ijr for 

point i . In practice, 1g   and 0.5  provide 
the most accurate results [49]. 
By applying the least-squares approximations 
given by Eq. (3) to each component of flux 
functions in Eq. (1), a semi-discrete form of the 
N-S equations at point i is obtained: 
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If the arithmetic averaging of primitive 
variables and their derivations is used at the 
mid-point to calculate the convective and 
viscous fluxes, the flow equations discretization  
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Fig. 1. Scheme of the point and its neighbors. 

 
 
 

 
Fig. 2. Visual representation of the normalized Gaussian weight function ( 1g  , and 0.5  ). 

 
 
could lead to checkerboard pattern and the 
above equation represents unstable 
discretization. Therefore, it is necessary to 
modify the variables and their gradients at the 
mid-points to remove solution instability. For 
carrying out the checkerboard pattern in 
viscous flux, the derivation of any variable  
is calculated as follows[50, 51]: 
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where ijs is the unit vector between i  and j  or 
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evaluated using the least-squares method of 
Eq. (3) as follows; 
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Viscous terms of the Navier-Stokes equations 
can produce the dissipative property necessary 
to stabilize the numerical scheme. It can be 
shown that the discretization procedure is 
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stable if the local Reynolds number for any 
cloud point is less than two [52]. This 
limitation leads to the high number of points 
in flow domain and low computational 
efficiency. Thus, artificial dissipation terms or 
upwind schemes have to be used to stabilize 
the equations. In this work, the CB as the 
upwind scheme was used for the first time to 
stabilize the equations. The CB meshless 
method is explained in the following sections. 
 
4. Conventional characteristic-based 
meshless method 
 
The conventional CB scheme interpolation 
was used in this paper for comparison with the 
new proposed method. In this section, CB 
scheme relations which were used here to 
calculate the primitive variables were 
presented. It should be noted that these 
relations were based on the CB scheme 
presented in the works such as [53-55], in 
which derivation of relations have been 
completely explained. If  ,x ys s denotes the 
unit vector in edge ij  direction (Fig. 1), the 
relations for determining flow quantities at the 
mid-point 1

2
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are as follows: 

 
2

1
2

2
1
2

1 1 1
1 1 1 1
2 2 2

,

,

o o
x y x yj

o o
y x x yj

x yj j j

u fs u s v s s

v fs v s u s s

p p u u s v v s





  

  

  

    
        

     

  (10) 

where: 
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Flow quantities at a new time level obtained 
from the above equations on the locally one-
dimensional characteristics were used to 
calculate fluxes at the mid-point. The 
quantities at the prior time level were 
evaluated by upwind method using the sign of 
characteristics as follows: 
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where W is the vector containing the 
characteristic values for each k =0, 1, 2 and 
the values of LW and RW are obtained by the 
high-order upwind-biased interpolation which 
is similar to the approach presented in [56]. 
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where is set to 0  and 
1
3

, which corresponds 

to a nominally second and third order 
accuracy, respectively. The gradients of W  at 
i  and j  are calculated by least-squares 
coefficients. 
 
5. Time discretization 
 
An explicit fourth order Runge-Kutta scheme 
with modified coefficients was used for the 
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time discretizaion of spatially discretized 
equations as follows [32]: 
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whereQ contains the convective and viscous 
fluxes. The maximum time step was 
determined by: 
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To accelerate convergence, local time 
stepping was used in any explicit iteration for 
steady state test cases [33]. In addition, the 
original residuals ( Q ) might be replaced with 
the smoothed residuals Q  by solving the 
implicit equation with two or three Jacobi 
iterations [57]: 
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At each point i , 2

i Q  represents the 
undivided Laplacian of the most recent 
residuals and   is the smoothing coefficient, 

which was chosen equal to 0.5 in this 
research. 
 
6. Boundary conditions 
 
For viscous flows on a solid boundary, a no-
slip boundary condition needs to be imposed. 
Therefore, for any point on the stationary 
solid boundary, velocity components are: 
 

0 , 0 ,i iu v                                         (19) 
 
and the momentum governing equations on 
the solid boundary will be: 
 

2 2

2 2

2 2

2 2

1 ,
Re

1
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i i
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x x y

p v v
y x y

             

    
        

                    (20) 

 
Calculation of the viscous terms of Eqs. (20) 
leads to pressure gradient on the solid 
boundary. Therefore, pressure gradient on the 
normal direction to the solid boundary can be 
evaluated as: 
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   (21) 

 
where in is the unit normal vector to solid 

boundary at point i  and ij  is the component 
of least-squares coefficient vector in 

in direction. Therefore, 
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The upwind least-squares meshless algorithm 
can be summarized as follows: 
STEP1: Start 
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STEP2: Read the data structure and calculate 
the least-squares coefficients (Eq. (4)). 
STEP3: Make an initial guess for ,p u , and 
v .  
STEP4: Calculate the flow parameters at 
pseudo time level and the mid-point 

1 1 1
2 2 2

, ,
j j j

u v p
  

 
 
 

 by Eq. (10) using flow 

properties at points i and j at the previous 
time level. 
STEP5: Evaluate the flow parameters at the 
boundary points (Eqs. (19) and (22)). 
STEP6: Calculate the space derivatives of the 
governing equation for any points in domain 
(Eq. (6)). 
STEP7: Use the explicit fourth order Runge–
Kutta scheme to modify the flow parameters 
(Eq. (16)).  
STEP8: Investigate the convergence trends; if 
yes, go to STEP9; else, go to STEP4.   
STEP9: Export the outputs. 
STEP10: Stop  

7. Results and discussion 
 
To compare the accuracy and verify the 
ability of the proposed meshless method, lid-
driven cavity flow at four Reynolds numbers 
were calculated in this paper. All the 
computations were carried out on a Pentium 
PC Dual core with 2.00 GHz speed. The AC 
parameter (  ) was equal to 1 in all the cases. 
The CFL number equaled 1.5 for all the cases. 
For investigating the convergence trends, the 
continuity residual was computed as the 
following definition; 
 

1

1Error

n nN
i i

i i

p p
t

N










                                (23) 

where N is the number of points in the 
domain.

 

 
Fig. 3. Point distribution inside the cavity with 60 points on each wall (used for Re=100). 

 

 
Fig. 4. Comparing the predicted mid-plane velocity profiles for u and v at Re = 1000.
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Incompressible steady state flow equations 
were solved for the cavity flow at the Reynolds 
numbers of 100, 400, 1000, and 3200 (based on 
moving wall velocity and cavity length). The 
sample point's distribution is shown in Fig. 3, 
which included 4031 points in the domain and 
60 points on the cavity's walls and used for 
solving Reynolds number 100. There were 71, 
91, and 121 points on each wall and there were 
5646, 9282, and 16401 points inside the domain 
for Re=400, 1000, and 3200, respectively. 
First, the solution of steady flow at Re=1000 
was presented. Results obtained for u-velocity 
profile along vertical line and v-velocity profile 
along the horizontal line passing through the 
center of the cavity using the second and third 
upwind least-squares meshless methods are 
presented in Fig. 4 in comparison with Ghia et 
al.'s [58] results. As demonstrated in Fig. 4, the 
third order accuracy provided more accurate 
results than the second order accuracy on the 
same point distribution. Convergence histories 
of the second and third order accuracies are 
shown in Fig. 5 which demonstrated better 
convergence rate of the second order over the 
third one using the same point distributions. 
Computational times for any of the iterations of 
the second and third order accuracies were 
equal, because only a value of   varied in Eq. 
(13). 
A point distribution study was performed in this 
case for the second order accuracy to be 
compared with the efficiency of the third order 
accuracy in computational cost. Three 

computational point distributions including 
9282, 12615, and 16401 points were regarded 
as coarse, medium, and fine point distributions, 
respectively. There were 105 points on each 
wall for the medium point distribution.  
The velocity profiles along horizontal and 
vertical lines passing through the center of the 
cavity for three different point distributions are 
demonstrated in Fig. 6. It is evident from this 
figure that the coarse distribution results were 
not so accurate. However, no significant 
difference could be recognized between the 
medium and fine point distribution results, as 
obtained accuracies for the second order 
scheme with 12615 points and the third order 
scheme with 9282 points were the same.   
The convergence history is shown in Fig. 7, 
which could demonstrate the efficiency of the 
third order accuracy over the second order 
accuracy. 
Results obtained for u-velocity profile along 
vertical line and v-velocity profile along 
horizontal line passing through the center of the 
cavity using characteristic-based upwind least-
squares meshless method with the third order 
accuracy are presented in Figs. 8-10 for 
different Reynolds numbers. As shown, the 
obtained results were in good agreement with 
Ghia et al.'s [58] benchmark solution that was 
shown by delta symbols in the figures. Figure 
11 shows the computed streamlines of the flow 
field on the contours of velocity magnitude for 
different Reynolds. 

 

 
Fig. 5. Convergence history of the second and third order accuracy discretization for the same point distributions 
at Re=1000. 
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Fig. 6. Computed velocity profiles along the horizontal and vertical lines passing through the cavity center at 
three point distributions at Re=1000. 
 

 
Fig. 7. Convergence history of the second and third order accuracy discretization with the same velocity profiles 
along horizontal and vertical lines passing through the center of the cavity compared with Ghia's [58] results. 
 

 
Fig. 8. Comparing the predicted mid-plane velocity profiles for u and v at Re = 100. 
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Fig. 9. Comparing the predicted mid-plane velocity profiles for u and v at Re = 400. 

 

 
Fig. 10. Comparing the predicted mid-plane velocity profiles for u and v at Re = 3200. 

 

 
Fig. 11. Streamlines and velocity magnitude contours of the flow field for different Reynolds numbers. 
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8. Conclusions 
 
In this study, an upwind least-squares meshless 
method which prevented the instabilities of the 
central difference spatial discretization was 
proposed to solve the incompressible laminar 
flow equations modified by the artificial 
compressibility. The proposed method was used 
to solve steady incompressible-driven cavity 
flow in a wide range of Reynolds numbers. The 
computed results were in good agreement with 
the available benchmark solutions in the 
literature. It was found that using the third order 
accuracy for the proposed method was more 
efficient than its second order accuracy 
discretization in terms of computational time. 
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