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Abstract 
In this paper, lift and drag coefficients were numerically investigated using 
NUMECA software in a set of 4-digit NACA airfoils. Two metamodels based 
on the evolved group method of data handling (GMDH) type neural networks 
were then obtained for modeling both lift coefficient (CL) and drag coefficient 
(CD) with respect to the geometrical design parameters. After using such
obtained polynomial neural networks, modified non-dominated sorting genetic
algorithm (NSGAII) was used for Pareto based optimization of 4-digit NACA
airfoils considering two conflicting objectives such as (CL) and (CD). Further
evaluations of the design points in the obtained Pareto fronts using the
NUMECA software showed the effectiveness of such an approach. Moreover, it
was shown that some interesting and important relationships as the useful
optimal design principles involved in the performance of the airfoils can be
discovered by the Pareto-based multi-objective optimization of the obtained
polynomial meta-models. Such important optimal principles would not have
been obtained without using the approach presented in this paper.

Nomenclature 

CD Drag Coefficient 
CL Lift Coefficient 
CP Pressure Coefficient 
AoA Airfoil Angle of Attack 
Re Reynolds Number. 
X* Vector of Optimal Design Variables 
F(x) Vector of Objective Function 
pF* Pareto Front 
P* Pareto Set 
MO Multi-Objective  
GMDH Group Method of Data Handling 
SVD Singular Value Decomposition 
NSGA Non-dominate Sorting Genetic 

Algorithm 
GA Genetic Algorithm 

1. Introduction

For a long time, aerodynamic optimal design 
has been an interesting topic for increasing the 
lift and decreasing the drag. By integrating 
numerical computations and computational 
fluid dynamics, applications of numerical 
optimization methods in aerodynamic designs 
have been improved. Oyama et al. [1] extracted 
the useful design information in airfoils using 
Pareto optimization method at a constant angle 
of attack and used a B-spline curve to 
parameterize the airfoil shape and finally 
determine three optimum airfoils with the 
maximum CL and L/D and minimum CD. 
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Razaghi et al. [2] investigated a multi-objective 
optimization process to NACA 0015 airfoil 
with a synthetic jet and at a constant angle of 
attack and tried to maximize CL and minimize 
CD; they finally presented 5 sets of optimum 
design variables, from among which the 
designer can select one. Both of the above 
mentioned studies were performed at a constant 
angle of attack; but, angle of attack was one of 
the design variables in the present study. 
Optimization of airfoils is indeed a multi-
objective optimization problem rather than a 
single-objective optimization problem that has 
been considered so far in the literature. Both CL 
and the CD in airfoils are important objective 
functions to be optimized simultaneously in 
such a real world complex multi-objective 
optimization problem. These objective 
functions are either obtained from experiments 
or computed using very timely and high-cost 
computer fluid dynamic (CFD) approaches, 
which cannot be used in an iterative 
optimization task unless a simple but effective 
meta-model is constructed over the response 
surface according to the numerical or 
experimental data.  Therefore, modeling and 
optimization of the parameters were 
investigated in the present study using GMDH-
type neural networks and multi-objective 
genetic algorithms in order to maximize the lift 
and minimize the drag coefficients.  
System identification and modeling of complex 
processes using input-output data have always 
attracted many research efforts. In fact, system 
identification techniques are applied in many 
fields in order to model and predict the 
behaviors of unknown and/or very complex 
systems based on given input-output data [3]. 
Thus, soft-computing methods [4], which are 
concerned with computation in an imprecise 
environment, have gained significant attention. 
The main components of soft computing, 
namely, fuzzy logic, neural network and 
evolutionary algorithms have shown great 
ability in solving complex non-linear system 
identification and control problems. Many 
efforts have been made to use evolutionary 
methods as effective tools for system 
identification [5]. 

Among these methodologies, Group Method of 
Data Handling (GMDH) algorithm is a self-
organizing approach by which gradually 
complicated models are generated based on the 
evaluation of their performances on a set of 
multi-input-single-output data pairs ( , )X yi i  

(i=1, 2, …, M). The GMDH was first developed 
by Ivakhnenko [6] as a multivariate analysis 
method for modeling and identification of 
complex systems, which can be used to model 
complex systems without having specific 
knowledge of the systems. The main idea of 
GMDH is to build an analytical function in a 
feed forward network based on a quadratic node 
transfer function [7], the coefficients of which 
are obtained using regression technique. In 
recent years, however, the use of such self-
organizing networks has led to successful 
application of the GMDH-type algorithm in a 
broad range of areas in engineering, science and 
economics [6]. 
Moreover, there have been many efforts in 
recent years to deploy Genetic Algorithms 
(GAs) for designing artificial neural networks 
since such evolutionary algorithms are 
particularly useful for dealing with complex 
problems which have large search spaces with 
many local optima [6]. In this way, GAs have 
been used in a feed forward GMDH-type neural 
network for each neuron while searching its 
optimal set of connection with the preceding 
layer [8]. In the former reference, the authors 
proposed a hybrid genetic algorithm for a 
simplified GMDH-type neural network in 
which the connection of neurons were restricted 
to the adjacent layers. Evolutionary designed 
GMDH-type neural networks have been used 
widely by authors in the modeling of 
engineering systems. Such models have been 
also used for system optimization [9‒11]. 
The shape of the NACA airfoils is described 
using a series of digits following the word 
"NACA". The NACA 4-digit wing sections 
define the profile by: first digit describing 
maximum camber as percentage of the chord, 
second digit describing the distance of 
maximum camber from the airfoil leading edge 
in tens of percents of the chord, last two digits 
describing maximum thickness of the airfoil as 
percent of the chord.  
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In this paper, CL and CD in a set of 4-digit 
NACA airfoils were numerically investigated 
using CFD techniques. The validations of 
results were achieved by comparing the results 
obtained in this research versus the 
experimental data of Abbott and Vondoenhoff 
[12]. Next, genetically optimized GMDH type 
neural networks were used to obtain polynomial 
models for the effects of geometrical 
parameters of the airfoils and the angle of attack 
on both CL and CD. Such an approach of meta-
modeling of those numerical results allowed for 
iterative optimization techniques to design the 
airfoils optimally and affordably in 
computational terms. The obtained simple 
polynomial models were then used in a Pareto 
based multi-objective optimization approach to 
find the best possible combinations of CL and 
CD, known as the Pareto front. 
  
2. Numerical Simulation of Airfoils 
 
2.1. Numerical Scheme  
 
The governing equations of incompressible 
flow are as follows:  
 
• Continuity equation: 
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• Standard k–ε model used for turbulence 
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The simulations were performed using 
NUMECA software. First, one airfoil was 
modeled in Auto blade 3.6 and then the Design 
2D environment of NUMECA could 
automatically generate the database with 
different design variables. For For CFD grid 
generation, the Auto Grid environment of 
Numeca was coupled with the Auto Blade 

environment. A structured C-type grid system 
was used for the calculation of the flow field 
around the airfoils. The computational domain 
is shown in Fig. 1.  
To test grid independency, three grid types 
(named a, b and c) with increasing grid density 
were studied and their details are listed in Table 
1. The computational results of 3 grid types for 
different angles of attack are compared in Table 
2. As can be seen, the maximum difference 
between the results was less than 5%; so the 
grid type (a) was used for all computations in 
the present study. On the outer boundary, the 
uniform flow boundary conditions were 
imposed on the upstream boundary and the 
right (outflow) boundary condition was set to a 
zero velocity gradient condition [2]. A no-slip 
wall boundary condition was taken on the 
airfoil surface. The simulations were performed 

under Reynolds number
6102× .  

  
Table 1. Details of 3 grid types used in grid 
independency test around NACA 4412. 

Grid 
Type 

Pressure 
Side 

Suction 
Side 

Normal 
to the 
Wall 

Total 
No. of 
Cells 

a 210 210 120 25490 
b 255 268 160 37432 
c 298 272 190 64320 

 
 
2.2. Definition of the Design Variables   
 
The design variables in the present study were 
the maximum camber height as percentage of 
chord length (x1), the maximum camber 
location as percentage of chord length (x2) and 
the angle of attack (x3). The design variables 
and their range of variations are shown in Fig. 2 
and Table 3, respectively. In this paper, the 
thickness of airfoils was constant and equal to 
12% of chord length; in fact, the xx12 NACA 
airfoils were studied. By changing the design 
variables according to Table 3, various designs 
would be generated and evaluated by CFD. 
Consequently, some meta-models could be 
optimally constructed using the GMDH-type 
neural networks, which will be further used for 
multi-objective Pareto based design of such 
airfoils. 
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2.3. Validation of the CFD Results 
 
The number of 324 various CFD runs were 
performed due to those different design 
geometrics. The samples of numerical results 
using CFD are shown in Table 4. To attain 
confidence about the simulation, it is necessary 
to compare the CFD results with the 
experimental data.   
 
Table 2. Comparison of CL and CD for 3 grid types 
around NACA 4412. 

AoA 
(deg) 

CD 

 a b c 
max 
diff 
(%) 

0  0.0056 0.0058 0.0058 3.44 
4  0.0073 0.0072 0.0075 4.00 
8  0.0099 0.0101 0.0096 4.95 
12  0.0157 0.0159 0.0159 1.25 
16  0.0244 0.0247 0.0247 1.21 
20  0.0366 0.0368 0.0367 0.543 
   CL   

0  0.397 0.405 0.404 1.97 
4  0.866 0.874 0.876 1.14 
8  1.246 1.308 1.309 4.88 
12  1.543 1.599 1.589 3.51 
16  1.694 1.720 1.717 1.51 
20  1.412 1.439 1.441 2.01 

 
 

Table 3. Design variables and their range of 
variations. 
Design Variable From To 
Maximum camber height as 
percentage of chord length (x1 ) 

1 9 

Maximum camber location as 
percentage of chord length (x2 ) 

1 8 

Angle of attack (x3) 0o 20o 
 
 

Figure 3 shows the computed lift coefficient 
versus angle of attack compared with the 
experimental data. As can be observed in this 
figure, the computed result was reasonably 
close to the graph which was experimentally 
obtained. The stall angle was overestimated by 
2 % and the maximum CL by 3 % because, in 
general, there exists a difficulty for numerical 
approaches to match the lift coefficient for 
angles of attack above the separation angle [13]. 
The comparison between numerical and 
experimental pressure coefficient (CP) is shown 
in Fig. 4. It is obvious that numerical 

simulations can properly adapt with the pattern 
of experimental CP curve.  

 

 
Fig. 1. Schematic representation of computational 
grid. 
 

 

 
Fig. 2. Definition of design variables. 

 
 

Table 4. Samples of numerical results using CFD. 

Num 

Input Data  Output Data 

x1 x2 x3(deg)  CL CD 

1 6 2 0  0.687 0.0061 

2 9 2 0  1.024 0.0066 
3 3 4 4  0.874 0.0072 
4 7 3 4  1.321 0.0069 
5 5 1 8  1.395 0.0094 
6 5 6 8  1.491 0.0115 
7 1 3 12  1.541 0.0141 
8 5 8 12  1.539 0.0212 
9 9 2 16  1.341 0.0278 
10 5 6 16  1.661 0.0271 

…       

323 9 8 20  1.451 0.0567 
324 4 8 20  1.495 0.0461 

 
 
The results obtained in such CFD analysis can 
now be used to build the response surface of 
both CD and CL for those different 324 
geometries using GMDH-type polynomial 
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neural networks. Such meta-models will, in 
turn, be used for the Pareto-based multi-
objective optimization of the 4-digit NACA 
airfoils. A post analysis using the CFD was also 
performed to verify optimum results using the 
meta-modeling approach. Finally, the solutions 
obtained by the approach of this paper exhibited 
some important trade-offs among those 
objective functions which can be simply used 
by a designer to optimally compromise among 
the obtained solutions. 
 

 
Fig. 3. Comparison of numerical and experimental  
[12] results for CD versus angle of attack around 
NACA 4412. 

 

 

 
Fig. 4. Comparison of numerical and experimental 
[12] results for CL around NACA 4412 at angle of 
attack 8o. 

 

3. Modeling of CL and CD using GMDH-type 
neural network  

 
By means of GMDH algorithm, a model could 
be represented as a set of neurons in which 
different pairs of each layer were connected 
through a quadratic polynomial and thus  new 
neurons were produced in the next layer. Such 
representation can be used in modeling in order 
to map inputs to outputs. The formal definition 
of the identification problem was to find a 
function ˆf which can be approximately used 
instead of actual one,f  in order to predict 

output ŷ  for a given input vector 

( , , , ..., )
1 2 3

X x x x x
n

=  as close as possible to its 
actual output y. Therefore, given M observation 
of multi-input-single-output data pairs so that: 

( , , , ..., )
1 2 3

y f x x x x
i i i i in

= (i=1, 2… M),      (4) 

It is now possible to train a GMDH-type neural 
network to predict the output values 

i
ŷ for any 

given input vector as:  

1 2 3
( , , , ..., )

i i i in
X x x x x= ,  

that is: 

ˆˆ ( , , , ..., )
1 2 3

y f x x x x
i i i i in

=        (i=1, 2… M),      (5) 

The problem is now to determine a GMDH-
type neural network so that the square of 
difference between the actual output and the 
predicted one is minimized, that is: 

2ˆ[ ( , , , ..., ) ] min
1 2 3

1

M
f x x x x y

i i i in i
i
∑ − →
=

           (6) 

General connection between inputs and output 
variables can be expressed by a complicated 
discrete form of the Volterra functional series in 
the form of: 

0
1 1 1

n n n
y a a x a x xi i ij i j

i i j
∑ ∑ ∑= + +
= = =     

...
1 1 1

n n n
a x x xijk i j ki j k

∑ ∑ ∑ +
= = =

+                              (7)         
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where … is known as the Kolmogorov-Gabor 
polynomial [7]. This full form of mathematical 
description can be represented by a system of 
partial quadratic polynomials consisting of only 
two variables (neurons) in the form of: 

ˆ ( , ) 0 1 2y G x x a a x a xi j i j= = + +   

2 2
53 4a x x a x a xi j i j+ + +                                   (8) 

There are two main concepts involved in the 
design of GMDH-type neural networks, 
namely, the parametric and the structural 
identification problems. In this way, some 
authors have presented a hybrid GA and 
singular value decomposition (SVD) method to 
optimally design such polynomial neural 
networks [8]. The methodology in these 
references was successfully used in this paper 
to obtain the polynomial models of CL and CD. 
The obtained GMDH-type polynomial models 
showed very good prediction ability of 
unforeseen data pairs during the training 
process, which will be presented in the 
following sections. 
 

 
Fig. 5. CFD versus Network for drag coefficient. 

 

The input–output data pairs used in such 
modeling involved two different data tables 
obtained from CFD simulation discussed in 
Section 2. Both of the tables consisted of three 
variables as inputs, namely, the geometrical 
parameters of the airfoils, maximum camber 

(x1), location of maximum camber (x2) and 
angle of attack (x3), and outputs, which were CL 
and CD. The tables consisted of the total of 324 
patterns, which were obtained from the 
numerical solutions to train and test such 
GMDH type neural networks.  

 

 
Fig. 6. CFD versus Network for lift coefficient. 

 

However, in order to demonstrate the prediction 
ability of the evolved GMDH type neural 
networks, the data in both input–output data 
tables were divided into two different sets, 
namely, training and testing sets.  The training 
set, which consisted of 304 out of the 324 
input–output data pairs for CD and CL, was used 
for training the neural network models. The 
testing set, which consisted of 20 unforeseen 
input–output data samples for CD and CL during 
the training process, was merely used for 
testing in order to show the prediction ability of 
such evolved GMDH type neural network 
models.  
The GMDH type neural networks were then 
used for such input–output data to find the 
polynomial models of CD and CL with respect to 
their effective input parameters. In order to 
genetically design such GMDH type neural 
networks described in the previous section, the 
population of 10 individuals with crossover 
probability (Pc) of 0.7 and mutation probability 
(Pm) of 0.07 wasn used in 500 generations for 
CD and CL. The corresponding polynomial 
representation for CD is as follows:  
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2

1 1 2 1
0.018 0.0001  -0.0017 -4.7e-6Y x x x= +  

2

2 1 2
+0.0002 0.0001x x x+                          (9a)                                                                                                                         

2

1 3 1
0.013-0.95 -0.001 30.45

D
C Y x Y= +     

2

3 1 3
+9.81e-005  0.072x Y x+                             (9b) 

Similarly, the corresponding polynomial 
representation of the model for CL is in the form 
of:  

2

1 1 2 1
0.715 0.0819 0.167 -0.0054Y x x x′= + +  

2

2 1 2
-0.0178  0.0034x x x+        (10a) 

2

2 2 3 2
0.178 0.212 0.1454 -0.0173Y x x x′ = + +  

2

3 2 3
-0.00441 -0.0021x x x           (10b) 

2

3 1 3 1
 0.006 0.169 0.163 -0.0066Y x x x′ = + +  

2

3 1 3
-0.0043 -0.0062x x x                              (10c) 

2

4 1 1 1
-5.770 12.50 -0.572` -5.6882Y Y x Y′ ′ ′= +  

2

1 1
-0.0165 0.5824x x Y ′+               (10d) 

2

2

5 2 3
0.1930 -0.5041Y 1.232Y -0.3342Y  Y ′ ′ ′ ′= +

 
2

3 3 2
-1.0680Y 1.507Y Y′ ′ ′+           (10e) 

2

4 5 4
-1.661 2.015Y  0.973Y -0.424Y

L
C ′ ′ ′= + +

 
2

5 4 5
 0.1647Y  -0.2950 Y Y′ ′ ′+                              (10f) 

The very good behavior of such a GMDH type 
neural network model for CD is also depicted in 
Fig. 5, for both the training and testing data. 
Such a behavior is also shown for the training 
and testing data of CL in Fig. 6. It is evident that 
the evolved GMDH type neural network in 
terms of simple polynomial equations 
successfully model and predict the outputs of 
the testing data that have not been used during 
the training process. The models obtained in 
this section can be utilized in a Pareto multi-
objective optimization of the airfoil considering 
both CD and CL as conflicting objectives. Such a 
study may unveil some interesting and 
important optimal design principles that would 
not have been obtained without using a multi-
objective optimization approach. 
  
4. Multi-Objective Optimization 

  
Multi-objective optimization, which is also 
called multi criteria optimization or vector 
optimization, has been defined as finding a 

vector of decision variables satisfying 
constraints to give acceptable values to all 
objective functions [14]. In these problems, 
there are several objective or cost functions (a 
vector of objectives) to be optimized 
(minimized or maximized) simultaneously. 
These objectives often conflict with each other 
so that improving one of them will deteriorate 
another. Therefore, there is no single optimal 
solution as the best with respect to all the 
objective functions. Instead, there is a set of 
optimal solutions, known as Pareto optimal 
solutions or Pareto front [15], for multi-
objective optimization problems.  
The concept of Pareto front or set of optimal 
solutions in the space of objective functions in 
multi-objective optimization problems (MOPs) 
stands for a set of solutions that are non-
dominated to each other but are superior to the 
rest of the solutions in the search space. This 
means that it is not possible to find a single 
solution to be superior to all other solutions 
with respect to all objectives so that changing 
the vector of design variables in such a Pareto 
front consisting of these non-dominated 
solutions could not lead to the improvement of 
all objectives simultaneously.  
Consequently, such a change will lead to 
deterioration of at least one objective. Thus, 
each solution of the Pareto set includes at least 
one objective inferior to that of another solution 
in that Pareto set although both are superior to 
others in the rest of search space. Such 
problems can be mathematically defined as: 

Find the vector * * * *

1 2
, , ..., T

n
X x x x=    to 

optimize: 

[ ]1 2
( ) ( ), ( ), ..., ( ) T

k
F X f X f X f X= ,             (11) 

Subject to m inequality constraints: 
( ) 0    ,      i 1  to  m

i
g X ≤ = ,                        (12) 

And p equality constraints: 
( ) 0     ,     j 1  to  p

j
h X = = ,                          (13) 

where 
* nX ∈ ℜ  is the vector of decision or 

design variables and ( ) kF X ∈ ℜ  is the vector 
of objective functions, each of which must be 
either minimized or maximized. However, 
without loss of generality, it is assumed that all 
objective functions are to be minimized. Such 
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multi-objective minimization based on Pareto 
approach can be conducted using some 
definitions. 
 
4.1. Definition of Pareto Dominance 
 

A vector [ ]1 2
, , ..., k

k
U u u u= ∈ ℜ  is dominant to 

vector [ ]1 2
, , ..., k

k
V v v v= ∈ ℜ  (denoted by 

U Vp  ) if and only if }{1, 2,...,i k∀ ∈ , 
i i

u v≤  

∧ }{1, 2,...,j k∃ ∈  : 
j

u <
j

v . In other words, 

there is at least one ju  which is smaller than 

jv  while the remaining u s are either smaller or 

equal to the correspondingv s . 
 
4.2. Definition of Pareto Optimality 
 
A point *X ∈ Ω  ( Ω  is a feasible region in nℜ  
satisfying Eq. (12 and 13) is said to be Pareto 
optimal (minimal) with respect to all X ∈ Ω  if 

and only if *( ) ( )F X F Xp . Alternatively, it can 
be readily restated as: 
  

}{1, 2,...,i k∀ ∈  , *{ }X X∀ ∈ Ω −  
*( ) ( )

i i
f X f X≤  ∧ }{1, 2,...,j k∃ ∈  : 

*( ) ( )
j j

f X f X< .  

In other words, the solution *X  is said to be 
Pareto optimal (minimal) if no other solution 
can be found to dominate *X  using the 
definition of Pareto dominance. 
 
4.3. Definition of a Pareto Set 
 

For a given MOP, a Pareto set Ƥ٭is a set in the 
decision variable space consisting of all the 
Pareto optimal vectors as: 
 
Ƥ٭ { |X= ∈ Ω ∄ : ( ) ( )}X F X F X′ ′∈ Ω p  
In other words, there is no other X ′  as a vector 
of decision variables in Ω that dominates any 

X ∈Ƥ٭.  
 
 
 

4.4. Definition of a Pareto Front 
 
For a given MOP, the Pareto front ƤŦ٭ is a set 
of vector of objective functions which are 
obtained using the vectors of decision variables 
in the Pareto set Ƥ٭; i.e.:  
 
ƤŦ٭

1 2
{ ( ) ( ( ), ( ),...., ( )):

k
F X f X f X f X X= = ∈Ƥ٭}   

In other words, the Pareto front ƤŦ٭ is a set of 
the vectors of objective functions mapped from 
Ƥ٭.  
Evolutionary algorithms have been widely used 
for multi-objective optimization because of 
their natural properties suited for these types of 
problems. This is mostly because of their 
parallel or population-based search approach. 
Therefore, most of the difficulties and 
deficiencies within the classical methods in 
solving multi-objective optimization problems 
are eliminated. For example, there is no need 
for either several runs to find the Pareto front or 
quantification of the importance of each 
objective using numerical weights.  
In this way, the original non-dominated sorting 
procedure given by Goldberg [16] is the 
catalyst for several different versions of multi-
objective optimization algorithms [17]. 
However, it is very important that the genetic 
diversity within the population be preserved 
sufficiently. This main issue in MOPs has been 
addressed by many related studies [18]. In this 
paper, the premature convergence of MOEAs 
was prevented and the solutions were directed 
and distributed along the true Pareto front using 
a recently developed algorithm, namely, the є-
elimination diversity algorithm by some of the 
authors [9‒11]. 
 
5. Multi-Objective optimization of 4-Digit 
NACA airfoils using polynomial neural 
network models 
 
In order to investigate the optimal performance 
of the 4-digit NACA airfoils in different 
conditions, the polynomial neural network 
models obtained in the previous sections were 
employed in a multi-objective optimization 
procedure. The two conflicting objectives in 
this study were CL and CD that were to be 
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simultaneously optimized with respect to the 
design variables, x1, x2 and x3 (Fig. 2). The 
multi-objective optimization problem can be 
formulated in the following form: 
                                             
            Maximize CL= f1 (x1, x2, x3) 
            
           Minimize CD= f 2(x1, x2, x3)              (14)   
                                            
                                          1<x1<9                              (14) 
            Subject to:             1<x2<8 
                                         0o<x3<20o 
 
 
The evolutionary process of Pareto multi-
objective optimization was accomplished using 
the recently developed NSGA II algorithm, 
namely the є-elimination diversity algorithm [8 
and 10], in which the population size of 60 was 
chosen in all runs with crossover probability of 
Pc and mutation probability of Pm as 0.7 and 
0.07, respectively. 
Figure 7 depicts the obtained non-dominated 
optimum design points as a Pareto front of 
those two objective functions. There were five 
optimum design points, namely, A, B, C, D and 
E, the corresponding design variables and 
objective functions of which are shown in Table 
5. Moreover, for more clarity, the pressure 
contours of optimum design points (airfoil 
number plus angle of attack) are shown in Fig. 
8.  These points clearly demonstrate the 
tradeoffs in objective functions CD and CL from 
which an appropriate design can be 
compromisingly chosen.  
It is clear from Fig. 7 that all the optimum 
design points in the Pareto front are non-
dominated and could be chosen by a designer as 
the optimum airfoil. Evidently, choosing a 
better value for any objective function in the 
Pareto front would cause a worse value for 
another objective. The corresponding decision 
variables of the Pareto front shown in Fig. 7 
were the best possible design points so that, if 
any other set of decision variables is chosen, the 
corresponding values of the pair of objectives 
will locate a point inferior to this Pareto front. 
Such an inferior area in the space of the two 
objectives is in fact bottom/right side of Fig. 7. 

In Fig. 7, the design points A and E stand for 
the best CD and CL , respectively. Moreover, the 
other optimum design points B and D can be 
simply recognized from Fig. 7.  
The design point B exhibits important optimal 
design concepts. In fact, optimum design point 
B obtained in this paper exhibits an increase in 
CD (about 3.46%) in comparison with that of 
point A while its CL improves by about 42.4%. 
Similarly, optimum design point D exhibits a 
decrease in CL (about 14.25%) in comparison 
with that of point E while its CD improves by 
about 62.6% in comparison with that of point E. 
It is now desired to find trade-off optimum 
design points which compromise both objective 
functions. This can be achieved by the method 
employed in this paper, namely, the mapping 
method. In this method, the values of objective 
functions of all non-dominated points were 
mapped into intervals 0 and 1.  

 
Fig. 7. Pareto front of lift and drag coefficients for 
4-digit NACA airfoils. 
 
 
Table 5. Design variables and objective functions 
values of Pareto points. 

Design 
Points x1 x2 

x3 

(deg) CD CL 

A 2 3 2.75 0.0056 0.7188 
B 6 3 3.51 0.0062 1.2066 
C 7 4 4.01 0.0068 1.3256 
D 8 4 9.04 0.0121 1.7058 
E 8 5 13.84 0.0229 1.8692 

 

 
Using the sum of these values for each non-
dominated point, the trade-off point simply was 
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one with the minimum sum of those values. 
Consequently, the optimum design point C was 
the trade-off points obtained from the mapping 
method. 
There were some interesting design facts which 
can be used in the design of such airfoils. It is 
clear from Fig. 9 that there was a quadratic 
relation between CD and angle of attack (x3).  
Variations of x1 and x2 corresponding to the 
Pareto front of CD and CL are shown in Fig.10 
and 11, respectively.   
As seen from these figures, from point A to B, 
x1 varies almost linearly whereas x2 is constant; 
similarly, from point B to C, x1 and x2 are 
constant. From point C to D, x1 oscillates 
between values 7 and 8 whereas x2 is constant. 
Finally, from point D to E, x1 is almost constant 
whereas x2 has two values of 4 and 5. These 
useful relationships that are indefeasible 
between the optimum design variables of 4-
digit NACA airfoils could not be discovered 
without the use of multi-objective Pareto 
optimization process presented in this paper.  
 
 

 
Fig. 8. Pressure contour of optimum points. 

 
The Pareto front obtained from the GMDH-type 
neural network model (Fig. 7) was 
superimposed with the corresponding CFD 

simulation results in Fig. 12. It can be clearly 
seen from this figure that the Pareto front 
obtained in this way is placed on the best 
possible combination of the objective values of 
CFD data, which demonstrates the effectiveness 
of this paper both in deriving the model and in 
obtaining the Pareto front.   
In a post numerical study, the design points of 
the obtained Pareto front were re-evaluated by 
CFD. It should be noted that the optimum 
design points of the Pareto set were not 
included in the training and testing sets utilized 
meta-modeling using GMDH-type neural 
network, which made such re-evaluation 
sensible. The results of such CFD analysis re-
evaluations were compared with those of 
numerical results using the GMDH model, as 
shown in Table 6. As can be seen, the GMDH 
data agreed well with the CFD results. 
 

 
Fig. 9. Optimal quadratic relation of CD with respect 
to angle of attack (x3). 
 

 
Fig. 10. Optimal variation of CD with respect to x1 
and x2. 
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Table 6. Re-evaluation of the obtained optimal Pareto front using CFD. 

Points CD-GMDH CD-CFD Error (%) CL-GMDH CL-CFD Error (%) 
A 0.0056 0.0059 5.91 0.7188 0.7620 5.68 
B 0.0062 0.0065 5.08 1.2066 1.2439 3.11 
C 0.0068 0.0069 2.54 1.3256 1.3909 4.70 
D 0.0121 0.0125 3.69 1.7058 1.7540 2.81 
E 0.0229 0.0239 4.51 1.8692 1.9450 3.90 

 
 

 
Fig.11. Optimal variation of CL with respect to x1 
and x2. 
 
 

 
Fig. 12. Overlay graph of the obtained optimal 
Pareto front with the CFD data. 
 
 

 
 
6. Conclusions  
 
Genetic algorithms were successfully used both 
for optimal design of generalized GMDH type 
neural networks models of CL and CD in 4-digit 
NACA airfoils and for multi-objective Pareto 
based optimization of such processes. Two 
different polynomial relations for CL and CD 
were found by the evolved GS-GMDH type 
neural networks using some experimentally 
validated CFD simulations for input–output 
data of the airfoils. 
The derived polynomial models was then used 
in an evolutionary multi-objective Pareto based 
optimization process so that some interesting 
and informative optimum design aspects were 
revealed for airfoils with respect to the control 
variables of airfoils, geometrical parameters of 
x1, x2 and angle of attack (x3). Consequently, 
some very important trade-offs in the optimum 
design of airfoils were obtained and proposed 
based on the Pareto front of two conflicting 
objective functions. Such combined application 
of GMDH type neural network modeling of 
input–output data and subsequent non-
dominated Pareto optimization process of the 
obtained models could be very promising in 
discovering useful and interesting design 
relationships. 
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