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Abstract 
In this paper, a general solution for torsion of hollow cylinders made of 
functionally graded materials (FGM) was investigated. The problem was 
formulated in terms of Prandtl’s stress and, in general, the shear stress and angle 
of twist were derived. Variations in the material properties such as Young’s 
modulus and Poisson’s ratio might be arbitrary functions of the radial 
coordinate. Various material models from the literature were also used and the 
corresponding shear stress and angle of twist were individually computed. 
Moreover, by employing ABAQUS simulations, finite element results were 
compared with the analytical ones. 

1. Introduction

Torsion is one of the interesting fields for 
researches. In 1903, Prandtl [1] presented a 
membrane analogy for torsional analysis and 
proved the accuracy and efficiency of his 
approximation. Baron [2] studied torsion of 
hollow tubes by multiplying the connected 
cross sections. He used an iterative method to 
satisfy the equilibrium and compatibility 
equations. A computational method for 
calculating torsional stiffness of multi-material 
bars with arbitrary shape was studied by Li et 
Al. [3]. In this work, they considered additional 
compatibility and equilibrium equations in 
common boundaries of different materials in 
their formulation and got good results. Mijak 
[4] considered a new method to design an

optimum shape in beams with torsional loading. 
In his work, cost function was torsional rigidity 
of the domain and constraint was the constant 
area of the cross-section while shape parameters 
were co-ordinates of the finite element nodes 
along the variable boundary. The problem was 
solved directly by optimizing the cost function 
with respect to the shape parameters. He solved 
this problem using finite elements (FE method. 
A method based on finite elements for torsional 
analysis of prismatic bars by modeling only a 
small slice of the bar was published by Jiang et 
al. [5]. Another work related to the torsion in 
prismatic bars was introduced by Louis et al. 
[6], in which they presented a solution using a 
power fit model for the torsion problem of a 
rectangular prismatic bar. Recently, 
Doostfatemeh et al. [7] obtained a closed-form 
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approximate formulation for torsional analysis 
of hollow tubes with straight and circular edges. 
In this work, the problem was formulated in 
terms of Prandtl’s stress function. Also, 
accuracy of the formulas was verified by 
accurate finite element method solutions. 
In recent years, the composition of several 
different materials has been often used in 
structural components in order to optimize 
responses of the structures subjected to thermal 
and mechanical loads. Functionally graded 
materials (FGMs) are suitable for achieving this 
purpose. Although they were first invented as a 
thermal shield to sustain very high temperature 
gradients in thin structures [8], FGMs are 
currently being used for many other 
applications such as wear-resistant linings, heat 
exchanger tubes, thermoelectric generators and 
heat-engine components. Actually, FGMs are 
mixtures of two or more different materials. 
Volume fraction of each material varies 
continuously along certain direction(s). The 
gradual change of material properties can be 
tailored to meet the requirements of different 
applications and working environments.     
Many relations are available for characterizing 
the varying properties of functionally graded 
materials [9]. Horgan [10] studied the modulus 
of elasticity as ( ) 0

nE r E r in the radial 

direction for investigating the impact problem 
in cylinder ( n as the anisotropy 
constant ( 2 2)n   ). Kassir [11,12] assumed 
the shear modulus as a power function of the 
depth coordinate 0( ) ny y  while the 
Poisson’s ratio was constant. Tutuncu [13] 
expanded the Horgan work for thick-walled 
FGM cylinders with exponentially-varying 
properties.  
An analytical formulation for the torsional 
analysis of FG elastic bars with circular cross 
sections was presented by Horgan [14], in 
which it was supposed the shear modulus of 
rigidity as a function of radius. Moeini [15] 
studied the torsion of a FGM cylinder with FE 
model. An analytical formulation for the 
torsional analysis of functionally graded hollow 
tubes of arbitrary shape was carried out by 
Arghavan et Al. [16]. In this paper, shear 

modulus of rigidity was supposed to change 
continuously as power-low form between two 
constituent phases on the inner and outer 
boundaries across the thickness.  
In the above-mentioned works, varying material 
properties has been usually treated as specific 
gradient variation. However, in practice, 
material properties often vary in an arbitrary 
manner. For the sake of overcoming the 
restriction of gradient assumption of special 
forms, it is much desirable to present an 
approach for dealing with an arbitrary gradient 
variation. For this purpose, a new formula for 
the generalized twist was presented by Ecsedi 
[17]. This formula was valid for linearly elastic, 
nonhomogeneous and anisotropic beams of 
solid cross section. Batra [18] studied the 
torsion of FG circular cylindrical solid bar 
made of either an isotropic compressible or an 
isotropic incompressible linear elastic material 
with the material varying only in the axial 
direction. In another work, Tutuncu et al. [19] 
presented a novel approach to stress analysis of 
the pressurized FGM cylinders, disks and 
spheres. In this work, the relationships for 
arbitrary function of FG materials were 
investigated using complementary functions 
method. Xian-Fang et al. [20] developed an 
analytical solution for pressurized functionally 
graded hollow cylinder with arbitrarily varying 
material properties which was solved by 
expanding the solution as a series of Legendre 
polynomials. In addition, thermoelastic analysis 
of a cylindrical vessel of functionally graded 
materials was presented by Long Peng et al. 
[21], in which material properties were arbitrary 
functions in radial direction. Nie et al. [22] 
recently derived some mathematical 
relationships for different material tailoring for 
orthotropic elastic rotating disks. In this study, 
they investigated how to tailor material moduli 
for achieving a desirable stress field in a 
rotating disk composed of radially 
inhomogeneous materials. 
The purpose of this study was to present 
analytical formulas for torsional analyses of an 
FG hollow cylinder with material properties of 
arbitrary nonhomogeneity. In fact, material 
properties of functionally graded material were 
assumed to be arbitrary functions of radial 
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direction. The relations of the shear stress and 
twist angle were generally obtained. Various 
material models such as power law function, 
exponential law and combined ceramic–metal 
material were used. For power and exponential 
law functions, the relation of shear stress and 
angle of twist were separately obtained. 
Besides, for combined ceramic-metal models, 
the numerical results were represented 
analytically using Maple calculation. Finally, 
by employing ABAQUS simulations, the finite 
element method, compared with the analytical 
results, was implemented to solve the problem.  
It should be emphasized once again that the 
analytical solution procedure is not confined to 
any particular choice of material model; it is 
equally suitable for arbitrary functions, defining 
the gradient variation of material properties. 
 
2. Governing equations 
 
A typical cross-section of a FGM circular 
hollow cylinder with the internal radius ‘a’ and 
external radius ‘b’, as shown in Fig. 1, was 
considered. 
Regarding the Cartesian-coordinates, the 
torsion is applied in z-axis direction. The 
dimensionless variable /k b a  is used in the 
derivation of the formulas. The governing 
equations can be expressed as the following 
[14]: 

      
(1) 

1.( . ) 2 


   
   

      
(2) 112 2 S
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where T, and 

1SA are torsional couple, 
angle of twist per unit length and area 
bounded by 1S respectively. Also 
 represents shear stress that can be 
expressed as follows: 

                            
    
                         

d
dr
  

      

 
 

 
Fig.  1. Cross section of a hollow circular cylinder 
with internal radius “a” and external radius “b”. 
 
where the Prandtl’s stress function must be 
chosen to satisfy the boundary conditions (3, 4). 
Eq. (1) for axisymetric case was [23]: 

      

(6) 
1[ ( )] 2

( )
d r d

r dr r dr





 
 

As an approximation, it was assumed that the 

shear stress variation was in the radial direction. 

The solution of Eq. (6) was: 

   
(7) 1 2

( )( ) ( )
r r

a a

rr r r dr c dr c
r


      

 
where 1c  and 2c  are integration constants.  

By substituting Eq. (7) in Eq. (5), the shear 
stress could be expressed as shown below: 

      
(8) 1

( )( ) rr r c
r


   

 
From the boundary conditions (3, 4) results: 
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Also, the stress function   and the shear stress 
  could be written as: 
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2.1. Model A: The shear modulus used a power 
law function as 

      
(11) 0 ( )nr

a
 

 
 
where n  is the inhomogeneity constant which 
can be determined empirically. The range 

2 2n    was used for the inhomogeneity 
constant. 0  was the shear modulus for a 
homogeneous material 0n  which could be 
clearly  expressed by the Lame’s coefficient as 
follows: 

      
(12) 

0
0 2(1 )

E



        

Furthermore, the Poisson’s ratio was assumed 
to be constant. 
By substituting Eq. (11) in Eq. (10) and using 
Eq. (2) and (3), the torque of twist and the shear 
stress were obtained as: 
 

   
(13) 

4 4 1
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where /k b a . Use of Eq. (13) resulted in: 
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2.2. Model B: Shear modulus with exponential 
form 
 
For this case, the shear modulus obeyed the 
following relation: 

      
(15) 

 0

nr
ae 


  

where n is the inhomogeneity constant and 0 is 
the shear  modulus for a homogeneous 
material 0n  . The range of n implemented 
here was 1 1n   . Also, the Poisson’s ratio 
was assumed to be constant. 
From Eq. (15), the torque of twist was obtained 
as: 
 

(16) 
4

0
04

2 ( ( ) ( ))
nr
aaT I n I nk and r e

n
     


  

 
where  

   (17) 3 2( ) ( 3 6 6)nI n e n n n     
And, Eq. (16) resulted in: 

    (18) 
4
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2.3. Analysis of other FGM models 
 
Another verification attempt was made 
regarding the FGM cylinder with Poisson’s 
ratio and Young’s modulus varying as (Model 
C): 

     
(19) 

 
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1

1
c c m c

c c m c

V V

E E V E V
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This model was taken from [24]. The region 
between the inner and outer surfaces was made 
of the combined ceramic–metal material with 
different mixing ratios of ceramic and metal in 
which indices of c and m implied ceramic and 
metal, respectively. The volume fraction of the 
ceramic constituent was defined as: 

      
(20) 

n
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An additional model (Model D) expressed for 
metal–ceramic FGM was given in [25]. Overall, 
Poisson’s ratio and modulus of elasticity were 
assumed to vary as: 
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where the constants   and  were given by 
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In Eq. (22), cE , c  and c are Young’s 
modulus, Poisson’s ratio and the shear modulus 
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of the ceramic constituent and mE , m , m are 
those of the metal constituent. 
Firstly, the material properties given by these 
models were substituted in Eq. (10). Then, 
using Eqs. (2) and (3), the torque of twist and 
the shear stress were subsequently calculated. 
These terms would yield extremely complex 
expressions; that is why, they were not 
explicitly given in the present paper. 
 
3. Finite element analysis 
 
A specimen was modeled using a commercial 
FE code, ABAQUS. An “8-node linear brick” 
element was used to represent the FGM 
specimen.  The analysis of problem would have 
to take a long time because of modeling the 
specimen in three-dimensional space. For the 
sake of overcoming this problem, the cylinder 
could be modeled as a short length cylinder 
(disk) instead of long cylinder. Actually, by the 
symmetry of the problem, it was reasonable to 
assume that the motion of each cross-sectional 
plane induced by the end moments was a rigid 
body rotation about the z-axis. The final FEM 
model consisted of 28000 elements in total. In 
the model, the variation in material properties 
was implemented by dividing the thickness to 
10 layers with each layer having a constant 
value of the material properties [26, 27]. For 
applying the torsional load, one side of the 
cylinder was tied by a circular rigid plane and 
the torque was exerted in the center of circular 
rigid plane. Besides, the circular plane was free 
to rotate about z-axis while constraining the 
other directions alone. Another side of the 
cylinder was fixed completely. The 
characteristics of the model are listed in Table 1. 
Figure 2 shows the meshing region and the 
element type. 
 
4. Results and discussion 
 
The analytical solution and FE analysis 
presented in the previous section were applied 
to a thick hollow cylinder with the 
characteristics listed in Table 1. 
First, using the properties 0 200( )E GPa  and 

0.3  , the Models A and B were examined.  

Table 1. Characteristics of the finite element model. 
 Characteristics of the model 

l=0.005 Cylinder length (m) 
a=0.04 Inner radius (m) 
b=0.06 Outer radius (m) 
T=1 Exerted torque (kN.m) 

 
 
 

 
Fig.  2. Finite element mesh region and element 
type. 
 
 

 
Fig. 3.  Deformed shape and von Mises stress 
distributions for model (A) for 1n  . 

 

Figure 3 illustrates the deformed shape and von 
Mises stress distributions at the cross section of 
cylinder for model (A) for 1n  . 
Results of the presented formulation and FEM 
solutions are compared in Figs. 4 to 11.  
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4.1 Model (A) 
 
Figure 4 demonstrates shear stress for different 
values of n through thickness in that the results 
were normalized with respect to the 
homogenous cylinder results, being explored 
for the effect of inhomogeneity. 
 

 
Fig. 4. Distribution of dimensionless shear stress 
with respect to r/a for different values of n 
(MODEL A). 
 
According to the Fig. 4, the dimensionless shear 
stress increased from inner to outer surface for 

0n   whereas it reduced for 0n  . 
Approximately for / 1.27r a  , stress values for 
all values of n converged toward the stress 
values in the homogenous material ( 0)n  . 
Distribution of shear stress with respect to its 
values at the inner surface is plotted in Fig. 5. 
 

 
Fig. 5.  Distribution of normalized shear stress with 
respect to inner values (Model A). 

 

Looking at the Fig. 5, it can be said that there 
was a growth for 1n     from inner to outer 
surface. But, for 1n   , the situation was 
reversed and the shear stress decreased along 
the radial direction. The curve associated with 

1n    showed that the shear stress remained 
unchanged along the radial direction which 
could provide a useful trend from a design point 
of view. Regarding Eq. (14), the shear stress 
value throughout thickness could be obtained 

as: 3
3

32 ( 1)

T

a k 
. Also, from Eq. (14), the shear 

stress variation was linear with respect to the 
thickness for isotropic cylinder (Fig. 5).  
The angle of twist per unit length in terms of n 
is shown in Fig. 6. Here, a higher value of n 
meant increasing of the stiffness (See Eq. (11)). 
It was observed that the angle of twist declined 
as inhomogeneity constant increased. 
 
4.2 Model (B) 
 
For model B, Fig.7 illustrates the dimensionless 
shear stress for different values of n through 
thickness. In the Fig. 7, the distribution of shear 
stress is plotted regarding the homogenous 
state. 

Fig. 6.  Variation of the angle of twist per unit length 
in terms of the power law index (Model A). 

 
For positive values of n, larger stress values 
were observed at the inner surface of the 
cylinder and they decreased along the radius. 
For the negative values of n, smaller stress 
values were obtained at the inner surface with 
respect to homogenous cylinder.  
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Fig. 7.  Distribution of normalized shear stress with 
respect to homogenous cylinder (Model B). 
 
Here again, an approximate radial distance was 

1.27r  and the stress values for all values of n 
converged towards the stress values in the 
homogenous material ( 0)n  . 
For studying variation along thickness, the 
distribution of shear stress with respect to 
values at the inner surface can be seen from the 
Fig. 8. Given this information, it can be pointed 
out that the rate of the shear stress variations 
decreased along the radial direction for higher 
values of n and, for 0n  , these variations 
became liner. So, lower values of n gave higher 
stresses at the outer surface. The curve 
associated with the minimum variation of the 
shear stress along the radial direction could be 
obtained from Eq. (21) for 0.811n  . 
Actually, in this situation, the trend rose from 
inner surface to middle of the thickness and 
reached the peak of its value in the middle 
layer, which was followed by a decrease from 
middle layer to the outer surface. It should be 
emphasized that the shear stress had the same 
value at the inner and outer surfaces for 

0.811n  . Hence, the shear stress distribution 
decreased along the radial direction for 

0.811n  , while it increased along the radial 
direction for 0.811n  . 
The angle of twist versus variations of n is 
displayed in Fig. 9. At a glance, it can be seen 
that, for higher n values, the angle of twist 
increased. 
 
4.3. Metal–ceramic FGM models 
 
For metal–ceramic FGM models (Models C and 
D), the applied properties were 

360( )E GPac  , 0.333c  , 
75( )GPac  , 200( )mE GPa , 0.2m  ,
150( )m GPa    

Using Maple 11, distribution of shear stress was 
obtained for metal–ceramic FGM models 
(Models C and D). Graph of shear stress 
variation which was normalized with respect to 
the homogenous cylinder versus radius is 
plotted in Fig. 10 for different values of n.  
 
 

 
Fig. 8.  Distribution of normalized shear stress with 
respect to inner values (Model B). 
 

 
      Fig. 9. Variation of the angle of twist versus 

variation of the power law index (Model B). 
 

Here, 0n   means cylinder material is pure 
ceramic. As seen, for higher values of n, the 
shear stress in the regions which were near the 
inner surface became smoother since these 
regions were rich of ceramic. In fact, for higher 
values of n, the proportion of ceramic, rather 
than metal, increased. So, to put it another way, 
for the higher values of n, the shear stress 
distribution near the inner surface tended to 
become more similar with the pure ceramic 
one(n=0).   
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Fig. 10.  Distribution of normalized shear stress with 
respect to homogenous cylinder (Model C). 
 
4. 4. Comparison models 
 
Figure 11 indicates comparison of different 
models (A through D) for the distribution of 
shear stress. The typical in homogeneity 
constant (n) was taken 1n  . 

 
Fig. 11. Comparison of different models (A through 
D) for the distribution of shear stress for 1n  . 

 
Different models resulted in substantial 
differences in the shear stress distribution 
through the thickness. For 1n  , Models A and 
C yielded more variation of shear stress than 
Models B and D. It was also observed that 
shear stress values converged by about the same 
magnitude at around 1.29r  . 

4. 5. Numerical analysis 
 
The numerical analysis was performed with the 
ABAQUS finite element (FE) package. As seen 
in the Figs. 4 trough 11, values of the results 
computed by the present formulation were near 
the solutions of FEM. Tables 2 and 3 compare 
the analytical and FEM values determined for 
different values of r for typical 1n  . In fact, 

these tables are numerical results of Fig. 11. 
The percentage of difference was defined as  
 

(%) * 100
Anal FEM

Diff
Anal




  
 
Considering Tables 2 and 3, it is clear that the 
Diff (%) was less than 0.1%.  Actually, one can 
expect that for smaller divisions (more than ten 
layers), this difference had more decrease. 
 
 
Table 2. Comparison of analytical and FEM 
calculations for typical 1n  (for Models A and B). 

r/a Type 

MODEL(A)  MODEL(B) 
Shear 
stress  
(Pa) 

%Diff 
 Shear 

stress 
 (Pa) 

%Diff 

1.025 Anal. 1981186.8 0.0612  3267151.5 0.0153 FEM 1982400.0  3266650.0 

1.075 Anal. 2179187.6 0.0605  3259411.2 0.0160 FEM 2180505.0  3258890.0 

1.125 Anal. 2386617.0 0.0600  3244654.7 0.0163 FEM 2388050.0  3244125.0 

1.175 Anal. 2603475.0 0.0597  3223584.8 0.0167 FEM 2605030.0  3223045.0 

1.225 Anal. 2829761.7 0.0593  3196852.5 0.0171 FEM 2831440.0  3196305.0 

1.275 Anal. 3065476.9 0.0591  3165060.2 0.0174 FEM 3067290.0  3164510.0 

1.325 Anal. 3310620.8 0.0589  3128765.0 0.0176 FEM 3312570.0  3128215.0 

1.375 Anal. 3565193.3 0.0585  3088481.7 0.0179 FEM 3567280.0  3087930.0 

1.425 Anal. 3829194.4 0.0584  3044685.8 0.0179 FEM 3831430.0  3044140.0 

1.475 Anal. 4102624.1 0.0588  2997815.6 0.0177 FEM 4105035.0  2997285.0 
 
 
 Table 3. Comparison of analytical and FEM 
calculations for typical 1n  (for Models C and D). 

r/a Type 

MODEL(C) MODEL(D) 
Shear  
Stress 
  (Pa) 

%Diff  
Shear 
 Stress 
  (Pa) 

%Diff 

1.025 Anal. 1661028.2 0.0916  2838067.6 0.0063 FEM 1662550.0 2838245.0 

1.075 Anal. 1895060.9 0.0910  2904786.8 0.0058 FEM 1896785.0 2904955.0 

1.125 Anal. 2146603.8 0.0907  2968366.3 0.0052 FEM 2148550.0 2968520.0 

1.175 Anal. 2416200.0 0.0900  3029022.5 0.0045 FEM 2418375.0  3029160.0 

1.225 Anal. 2704415.2 0.0897  3086952.7 0.0041 FEM 2706840.0 3087080.0 

1.275 Anal. 3011839.2 0.0893  3142336.4 0.0041 FEM 3014530.0 3142465.0 

1.325 Anal. 3339086.8 0.0892  3195338.1 0.0037 FEM 3342065.0 3195455.0 

1.375 Anal. 3686799.4 0.0888  3246108.1 0.0038 FEM 3690075.0 3246230.0 

1.425 Anal. 4055646.2 0.0889  3294784.5 0.0037 FEM 4059250.0  3294905.0 

1.475 Anal. 4446326.2 0.0891  3341494.2 0.0035 FEM 4450290.0 3341610.0 
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5. Conclusions 
 
An exact analytical closed-form formulation 
was presented for shear stress and angle of twist 
of hollow cylinder. Material properties of 
functionally graded material were assumed to 
be an arbitrary function of radial direction. 
Several models were served as benchmarks to 
prove the ability of analytical closed-form. 
Moreover, the problem was also investigated by 
finite element method. The comparison between 
analytical and FEM simulations indicated that 
the errors were less than 0.1% for the studied 
cases.  
From the above results, it could be seen that the 
inhomogenity coefficient “n” had a significant 
effect on the shear stress distribution for 
different models. Thus, the inhomogeneity 
constant of FGM cylinder was a useful 
parameter from a design point of view and 
could be applied for specific applications to 
control stress distributions. Finally, an optimum 
value could be found for n such that variation of 
stresses along the radial direction was 
minimized. Hence, in this paper, for model (A) 
in which material properties change as the 
power law function, the curve associated with 

1n    the shear stress along the radial direction 
was constant. And for model (B) in which the 
material properties changed as the exponential 
law function, the curve related to 

0.811n  nearly resulted in a uniform shear 
stress distribution with the same values at the 
inner and outer surfaces and a peak value at the 
middle layer.  
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