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This paper describes a new method for harvesting maximum electrical 
energy in wind farms. In proposing technique, the stochastic process 
principles are applied for detecting fault measurements of sensors. On the 
other hand, the wind farm is modeled by using fuzzy concept. Thereby the 
turbines are controlled against continuous changes in speed, direction and 
eddy currents of the blowing wind. To evaluate the performance of the 
proposed method three practical conditions of wind blowing are simulated. 
In the first scenario, the normal wind is simulated with low turbulence and 
slow changes. The second scenario belongs to high turbulence winds with 
sudden shifts in their parameters, and finally in the most complex scenario, 
several eddy currents are considered in blowing winds too. The obtained 
results show that the proposed method provides greater and more uniform 
harvested power compared to alternative methods. Furthermore, its 
superiority against other techniques has increased in parallel with the 
scenario become more complicated. 
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1. Introduction  

Wind energy is a free renewable energy 
resource which has been concerned in the last 
decades because of its benefits in availability, 
energy prices and environmental impacts [1-2]. 
Today the share of wind energy in global 
electricity production of the world is 2.1% 
compared to 0.2% in 2001 [3]. In order to 
harvest more electrical energy, wind turbines 
have been reached higher into the atmosphere, 

and wind farms have been expanded beyond 
more than ten kilometers in length.  
Furthermore, to obtain maximum efficiency 
variable speed wind turbines are being used [4]. 
These parameters make the efficient control 
strategy as a vital factor for management of 
wind farms. There are two main factors which 
limit the performance of such a control strategy. 
The first limitation is continuous changes in 
wind speed and direction. These changes lead to 
sudden shifts in generating electrical powers. 
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So forecasting of wind speed and direction is 
vital to produce uniform electrical power [5-6].   
The second limitation is the faults of sensors 
which are installed on turbines [7-8]. The wind 
turbines must be feathered to reduce unwanted 
destructive vibrations, especially when wind 
gusts are blowing. Therefore, their sensors send 
feedback signals to the controller in order to 
load reduction. If these sensors send incorrect 
alarms, the loads may be increased instead of 
reduced. The above limiting parameters not 
only decrease the performance of the produced 
electricity, but also increase fluctuations, which 
leads to structural fatigue [9]. Therefore, 
estimating wind parameters and detecting 
sensor faults may help the control strategy to 
minimize both uncertainties in power 
production and fatigue load in wind farms.  
Several algorithms have been developed for 
controlling wind farm turbines, which a group 
of them is based on simplifying assumptions 
that allow the use of a vector control techniques 
similar to those employed in induction machine 
control [10]. Unfortunately, these assumptions 
are not correct in real condition and therefore 
the performance of the controller is degraded in 
wind farms. 
Another group of wind farm controllers uses 
field oriented techniques. These controllers 
generally work based on the locally linearized 
model of the wind turbine around its operating 
points [11]. Though these methods may achieve 
high-performance control during the transient 
period, but the non-deterministic and nonlinear 
nature of wind causes considerable faults in 
their performance for long time periods. 
Some techniques have been utilized nonlinear 
controllers based on this assumption that the 
wind turbine operates under steady state 
conditions [12]. Unfortunately, the dynamical 
aspect of the wind and the turbine is not taken 
into consideration by these controllers. 
Another group of methods uses an adaptive 
control concept based on recursive algorithms 
[13]. Although they have shown a fast response 
in low turbulence winds, they don’t lead to a 
reliable long-term controlling because of the 
stochastic nature of wind parameters.  
Another group of methods includes Kalman 
filter-based controllers [14]. The main 

limitation of these methods is the non-Gaussian 
and non-linear treat of high turbulence winds 
which is not compatible with the common 
theory of Kalman filters. Therefore, the 
performance of these methods decreases in high 
turbulence winds.   
Artificial neural networks have been used to 
predict wind parameters and controlling 
turbines [15]. This approach provides 
acceptable results in low turbulence winds and 
in the lack of considerable faults of sensors. 
However, there is a considerable decrease in its 
performance when it is applied to control 
turbines in high turbulence winds. 
In this paper, a novel method is introduced for 
optimum energy harvest from wind farms. In 
the proposed method, firstly the blowing wind 
is considered as a stochastic process. The 
belonging of each measurement to correct or 
faulty observations is determined by calculating 
the probability of its belonging to the above 
stochastic process. In the second step, the wind 
farm is modeled by fuzzy-logic framework and 
turbines are controlled based on the predicted 
parameters for blowing the wind which is 
obtained from this model. The proposed method 
has a considerable consistency with the 
stochastic nature of the wind and its nonlinear 
treat in a wind farm. Furthermore, it controls 
turbines by considering their sensor faults and 
wake effects. Therefore, it harvests more 
qualified electrical energy compared to existing 
methods. 
In the second section of this paper, the proposed 
algorithm is introduced, including detecting 
sensor faults by using stochastic models, 
constructing a fuzzy model for wind farm based 
on turbine spatial information and finally 
updating this model based on wind parameters 
and wake effect. In the third section, three 
different scenarios, based on real wind blowing 
conditions, are described to test the proposed 
algorithm. In the fourth section, the 
performance of the proposed method is 
evaluated in the above scenarios. In the fifth 
section, the obtained results are compared with 
the results of existing methods by using their 
effective parameters. The conclusion is 
presented in the last section of the paper. 
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2. Materials and methods  

As shown in Fig.  1, suppose a wind farm 
containing wind turbines, which their polar 
coordinates are as:  
 

  NirX T
iii ,...,2,1,,                                  (1)                                                         

 
where iX  represents the position of turbine i  in 
wind farm. Each turbine is equipped with an 
anemometer and vane to measure velocity and 
direction of its received wind in time slot t: 
 

  TtNiv T
ititjt  0,,...,2,1,,                (2)                                                                           

 
Furthermore, the wind farm is covered using 
M  pairs of external anemometers and vanes 
which are located at positions: 
 

  MjrX T
jjj ,...,2,1,',''                              (3)                                                                                         

 
Using the external sensor j the velocity and 
direction of blowing wind in each time slot are 
measured as: 

  TttMjv T
jtjtjt  '0,,...,2,1,, '

'
'

'
'

'        (4) 
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Fig. 1. Topology of turbines and sensors. 
  

2. 1. Vane fault detection 
 
Let }{ it  be a time sequence of wind directions 
which are received by turbine i  constructed 
from its vane measurements during time period

]0[ t .  

   itiiit  ,...,, 10                                           (5)                                                                                      
 
To determine the dependence probability of

)1( ti  to correct blowing wind or faulty 
measurement, its history is supposed as a 
stochastic process with a distribution function: 
 

),...,...,,|,...,,( 2110 itOitoitititii                      (6)                                                                                  
 
In the above equation, ito  is the distribution 
parameter of (.)  which may be estimated 

based on  it . For brevity ito  parameters are 
shown as: 
 

},...,...,,{ 21 itOitoitit                                     (7)                                                               
 
Eqs. (6) and (7) may be combined as: 
 

0 1

0 1

 ( , ,..., | )

 ( | ).  ( | )...  ( | )
i i it

i i it

    

        


                        (8)                                                                            

 
The likelihood function (.)L is defined as: 
 







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t
ititii

itiiL

0"
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)|()|,...,,(

),...,,|(




              (9)                                                                                    

Equation (9) may be re-written as sum of 
probability distribution components in 
logarithmic form as: 

0 1 '
' 0

ln  (  ( | , ,..., ))  ln( ( | ))
t

i i it it
t

L       


      (10)                                                                                     

Therefore, the likelihood function may be 
estimated as: 
 

0 1
1ˆ ln  ( ( | , ,..., ))

1 i i itL L
t

   


                     (11)                                                                                          

 
Based on maximum likelihood estimation,  is 
estimated as [16-17]: 
 

0 1
ˆˆ arg max  ( ( | , ,..., ))i i itL                         (12)                                                                           
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Substituting the above estimated parameters in 
Eq. (6) leads to determine belonging of )1( ti  to 
correct or faulty measurements by defining 

)( )1( tiZ   as: 
 

))|,...,,(|()( 10)1()1(  itiititi PZ                 (13)                                                                                         
 
In the above equation, P  is the probability of 
depending )1( ti  to (.) . Finally the decision Eq. 
(14) associates )1( ti  to fault measurement set 

}{ t  if its probability of dependence to 
stochastic model (.)  is less than the threshold
 .  








 

otherwise
Zi ti

t




)( )1(                                  (14)                                                                                             

 
2. 2. Wind farm fuzzy clustering 
 
The wind energy which is received by each 
turbine is tightly associated with velocity and 
direction of wind received by it. Based on Eqs. 
(2) and (4), let '

ijt  and '
ijtv  be velocity and 

direction differences between turbine i and 
external sensor j . Therefore, a 12 M  
dimensional feature vector itf  may be 
constructed for turbine i as: 
 

TtMjNi
vvvrf iMtijttiiMtijttiiit





0,,...,2,1,,...,2,1
]......,......,[ '''

1
'''

1 
      (15)                                                                                            

 
The feature space tF  which is the set of all itf  
vectors is defined as: 
 

}|,...,,...,,{ 12
21

 M
ktNktttt RfffffF                 (16)                                                                                            

 
Based on this fact that the wind farm is affected 
with several wind fronts, tF  may be partitioned 
into different clusters in such way that all 
turbines of each cluster receive the similar 
wind. If each cluster considered as a fuzzy set 
of some turbines, then a fuzzy entropy function 

tE  may be defined for the entire wind farm as 
[18]: 
 

NkQq
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t
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Q
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


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log.
1 1                                     (17)                                                                                    

 
This function explains the uncertainty in 
belonging of turbine k, with feature vector ktf  
to clusters and may include values in the range







N
10 . Furthermore, tQ  and qktp  represent the 

number of clusters and probability of belonging 
turbine k to cluster q in each time slot t which 
constructs the belonging probability matrix as: 
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(18)                                                                                         

 
Now let the fuzzy decision function to be 
defined in terms of a mean of fuzzy weighted 
distances and fuzzy entropy function of the 
wind farm as: 
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q
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qktttt
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t
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



 

 



 
                   (19)                                                                                 

 
where t  shows a vector contacting centers of 
clusters - e.g. qt - in time t. Minimizing the 
above function leads to obtaining the 
probability of belonging turbines to clusters as 
[19]: 
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To determine the number of clusters in each 
time slot, e.g. tQ , firstly the scattering of 
clusters is defined as: 
 

t

t

tq

Ft

Q

q
t Q

QS


 
 1)(                                        (21)                                                                                           

 
In above equation members of 

qt  are: 
 





N

k

l
qt

l
ktqk

l fp
Nqt
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2)(1
                        (22)                                                                                          

 
where l

qt  is member l  of qt and

121  Ml . Also 
tF  represents the 

variance of tF  and 
tF is computed as: 

 
2/1).(

ttt F
T
FF  

                                      
(23)

                                                                                          
 

 
The second term which may be computed in 
determining tQ  is distance function: 
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where tDmax,  and tDmin,  are determined as: 
 

},....,3,2,1{',
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t

tqqtt

tqqtt

Qqq
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To construct or maintain the best clusters they 
must be determined in such way that each 
cluster has maximum compactness and 
maximum separation with other clusters. For 
this purpose, the function )( tQ  estimates the 

number of clusters by combining two criterions 
which were introduced in the Eqs. (21) and 
(24). 
 

)()(.)( ttt QDQSQ                              (26)                                                                                        
 
where  is a regulating parameter which 
modifies the weights of compactness and 
separation in determining the number of 
clusters. Therefore, tQ  may be obtained as: 
 

 
)}min()(|{

)(),...,(),...,(
''

max,
'

,min

tt

ttt

tt

t

QQQ

QQQ








      (27)                                                                                        

 
Therefore, in each time slot, the wind farm is 
partitioned into tQ  fuzzy clusters as: 
 

},...,,...,,{ 21 tQqtttt t
ccccC                                  (28)                                                                                       

 
where qtc  represents cluster q  that contains qtN  
feature vectors.  
 

 
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2. 3. Decision and control  
 
By combining Eqs. (14) and (28-29) each 
cluster of turbines, e.g. qtc , is partitioned into 

two subsets qt and '
qt which the first one 

contains the index of turbines of cluster q with 
faulty vane measurements and the second one 
represents the index of turbines without faulty 
measurements in the same cluster. 
 

}",|"{

},',|'{
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'
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tqttiqt

tqttiqt

icfi

icfi






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                                (30)                                                                                           

 
To detect the yawing faults firstly the efficiency 
of non-vane-fault turbines in each cluster is 
computed as: 
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
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Where tiV"  and )( "tiv  represent the obtained and 
the expected voltages from the non-vane-fault 
turbine "i in time slot t. It is important that the 
expected voltage of each turbine, e.g. )( "tiv , is 
obtained as a function of the velocity of its 
received wind, e.g. tiV" , by utilizing its standard 
curve. Using tiV"  in calculating of efficiency 
allows it to include the wake effects of turbines. 
By applying the threshold , the set '

qt  is 

partitioned into two subsets "
qt  and "

qt which 
the first one contains the index of low efficient 
turbines encountered with yawing faults and the 
second one represents the index of turbines 
without such a fault: 
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
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Based on Eqs. (30) and (32), the sets qt and 

"
qt  contain turbines with vane and yawing 

faults respectively, and therefore, they are 
controlled by using the predominant wind 
information of their cluster, e.g. q , instead of 
their installed sensors. To perform this control 
an allocated Neuro-fuzzy model is constructed 
for each qtc  only based on its "

qt subset, e.g. 
turbines with neither vane nor yawing faults. 
The Takagi-Sugeno neuro-fuzzy model [20] 
which is shown in Fig. 2 is updated in 
successive time slots to regulate nacelle 
direction qt . Having the time sequence of 
velocity and direction of the blowing wind in 
each cluster, the fuzzy rules of this model may 
be explained as [21]: 
 

22222"2"

11111"1"
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 (33)                                                                                          

In the above equations 1A , 2A , 1B  and 2B   show 
the fuzzy rules of the Takagi-Sugeno model.  
Based on the Neuro-fuzzy theorem qt may be 
estimated as: 
 

2222"22"2
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In equation above the model parameters are 
divided in two groups: the linear premise 
parameters

 
),,,,,( 2121211 O  and 

consequent parameters ),( 212 wwO   with 
nonlinear nature.  The premise parameters are 
estimated by using minimum square error 
algorithm while the steepest descent algorithm 
is utilized for estimation of consequent 
parameters. 
 

 
Fig. 2. Takagi-Sugeno neuro-fuzzy model for cluster 
q of turbines in wind farm.  

                                                                                                  
3. Proposed model  
 
The proposed algorithm was evaluated using 
simulation. The simulation was carried on a 
wind farm which contained 24 wind turbines 
and equipped with 5 external sensors around 
with equal distances. The topology of the 
simulated wind farm, sensors and turbines are 
shown in Fig. 1. The proposed method was 
implemented by using Matlab 2009 on a PC 
with a six-core CPU with 2.40GHz   processor 
and 32 GB RAM. Furthermore, two recent 
algorithms were implemented to compare with 
the proposed method. The first alternative 
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algorithm was “fuzzy gain-scheduled active 
fault-tolerant control of a wind turbine” which 
has been introduced in [22] and is called 
AFTCS for brevity in this article. The second 
one was “control strategy of maximum wind 
energy capture of direct-drive wind turbine 
generator based on neural-network” which has 
been introduced in [23] and is called MWEC 
for brevity in this article. Tests were carried on 
three different scenarios which had been 
generated using Wind-Pro software. In the first 
scenario, the low turbulence wind was 
simulated, while in the second one the 
simulated blowing winds had high turbulences. 
Finally, in the third scenario, high turbulence 
blowing winds were simulated containing 
several eddy currents. Specifications of the 
simulated turbines are shown in Table 1. 

 
Table 1. Specifications of simulated turbines. 

Specification Value 
Turbine Model Vestas V100-1.8 MW™ 
Rated power 1,800 kW 
Cut-in wind speed 3 m/s 
Rated wind speed 12 m/s 
Cut-out wind speed 20 m/s 
Wind class IEC 3A 
Rotor diameter 80 m 
Swept area 5,027 m² 
Air density 1.225 
Hub height 80 m 

 
3. 1. First scenario 
 
In the first scenario a long historical record of 
wind speed with the turbulence bellow 10% and 
the speed of less than 12 m/s, containing no 
eddy current were used to simulate the real 
world condition and to utilize the typical site 
wind characteristics. In this scenario, wind 
blows south more than 85% of the time, 
whereas south-east only 15% within  2.3% 
discrepancy in direction. All the turbines had an 
average gross yield within -0.2% and +0.7% of 
the mean gross yield. 
 
3. 2. Second scenario 
 
In the second scenario the blowing winds were 
simulated with turbulence more than 80% and 
speed more than 8m/s and like the previous 

scenario containing no eddy current. Unlike the 
first scenario, this time wind blows south equal 
than 40% of the time, whereas south-east 15%, 
east 23% and north 22% within 5.8% 
discrepancy in direction and an average gross 
yield for all turbines within -0.4% and +1.1% of 
the mean gross yield. 
 
3. 3. Third scenario 
 
In the third and the most complex scenario the 
blowing winds were simulated with turbulence 
and speeds similar to the second scenario but 
they contain 21% eddy currents. The scenario 
introduced at a unidirectional wind rose with 
predominate wind direction perpendicular to the 
row direction. It means wind blows south equal 
than 35% of the time, whereas south-east 15%, 
north-west 14%, east 23% and north 13% 
within 9.5% discrepancy all turbine groups 
had an average gross yield within -0.9% and 
+1.8% of the mean gross yield.  
 
4. Results  
 
Figure 3 show an example of the results 
obtained from the first scenario. Figure 3(a) 
shows a simulated wind during 4950 second 
period. Figures 3(b), 3(c) and 3(d) show the 
obtained power by using proposed, AFTCS and 
MWEC algorithms, respectively. All of above 
results have been obtained for three sample 
turbines in front, middle and end of wind farm 
(e.g. turbines, which have been located at 
column 2 of first row, column 4 of third row 
and column 6 of the final row of wind farm). 
These figures show using the proposed method 
which led to a stable electrical power with mean 
levels equal to 1732, 1683 and 1628 Watts for 
the above three examined turbines, respectively. 
The levels of generated powers were obtained 
typically 1720, 1659 and 1626 Watts by using 
AFTCS and 1718, 1662 and 1618 Watts by 
using MWEC. These values have the same 
order with values obtained using the proposed 
method. In the same manner, the proposed 
method achieved maximum variance equals to 
16, 18 and 17 Watts for sampled turbines. 
These parameters were obtained typically 21, 
28 and 27 Watts and 24, 31 and 38 Watts by 
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using AFTCS and MWEC algorithms, 
respectively. The results which were obtained 
in this example show when the low turbulence 
wind blows, the power and uniformity of the 
generated electricity improve a little by using 
the proposed method.  
Figure 4 show an example of the results 
obtained from the second scenario. Figure 4(a) 
shows the simulated wind during 4950 second 
period. Figures 4(b), 4(c) and 4(d) show 
obtained power by using proposed, AFTCS and 
MWEC algorithms respectively, for those three 
sample turbines which their performances were 
investigated in section 3.1. These figures show 
that the proposed method leads to obtain 
electrical energy with mean powers equals to 
1331, 1083 and 979 Watts and maximum 
variances equal to 31, 67 and 71 Watts for the 
sampled turbines. The generated powers were 
950, 631 and 588 Watts for AFTCS algorithm 
and 791, 508 and 390 Watts for MWEC 
algorithm. In parallel with the loss of generated 
powers, the alternative algorithms showed less 
uniformity compared with the proposed method 
in such way that the variances of generated 
power obtained by using AFTCS were 71, 228 
and 329 Watts. These parameters were obtained 
as 103, 357 and 345 Watts by utilizing MWEC 
algorithm. The above parameters show that in 
the second scenario, AFTCS and MWEC 
algorithms resulted in power levels and 
uniformities considerably weaker than which 
were obtained by using the proposed method. 
Figure 5 shows an example of the results 
obtained from the third scenario. Figure 5(a) 
shows the simulated wind during 4950 second 
period with eddy current equals to 40% of total 
time. Figures 5(b), 5(c) and 5(d) show the 
obtained power by using proposed, AFTCS and 
MWEC algorithms for those three sample 
turbines which their performances were 
reported in the previous sections. These figures 
show that using the proposed method led to an 
electrical energy with mean powers equal to 
1061, 793 and 638 Watts and maximum 
variances equal to 60, 83 and 109 Watts for 
sampled turbines. However, the power levels of 
generated electricity by using AFTCS were 
361, 185 and 160 Watts, while the power levels 
of generated electricity by using MWEC were 

213, 80 and 62 Watts. Furthermore, the 
variances of the generated electricity by using 
AFTCS were 162, 31 and 18 Watts while the 
same parameters for MWEC were 150, 41 and 
20 Watts. These parameters show dramatically 
increases in variance and a considerable 
decrease in levels of generated power in 
AFTCS and MWEC algorithms in contrast with 
the proposed method. 
 
5. Discussion 

Three practical wind types were simulated. In 
the first scenario, the wind maintained low 
turbulence and its parameters changed slowly 
while in the second scenario, the wind 
demonstrated high turbulence and its 
parameters undergone sudden shifts. Finally, in 
the last scenario, several eddy currents were 
added to high turbulence. The proposed, 
AFTCS and MWEC algorithms were applied to 
the simulated winds and the results were 
compared using three standard parameters: i) 
the mean of generated power, ii) the power 
uniformity which was indexed by using the 
variance of the generated electricity, and iii) the 
error in estimation of the wind speed. The 
obtained parameters for the entire wind farm in 
several examined scenarios are shown in Table 
2. 
These results clearly show the superiority of the 
proposed method compared to its alternatives in 
all scenarios. Based on this table, in low 
turbulence scenario the generated power by 
using proposed algorithm showed typically 22 
and 44 Watts more than those obtained by two 
alternative algorithms. In the same manner, the 
variance of the generated electricity by using 
the proposed method had 8.66 and 21.04 Watts 
better than the two other algorithms. 
Furthermore, the wind estimation error of the 
proposed method was a little better than the two 
other algorithms (e.g. 6.03% and 9.14%). All of 
these low differences show that the examined 
algorithms worked properly in the first scenario 
(e.g. normal conditions), but the proposed 
algorithm resulted in a little better output. 
 
 
 



JCARME                                             A new strategy for . . .                Vol. 6, No. 1, Aut.-Win. 2016-17 
 

59 
 

 

 
 

 
 

 
 

 
 

Fig. 3. An example of the results obtained from the first scenario: (a) the simulated wind and the obtained power 
by using (b) the proposed method, (c) AFTCS algorithm, (d) MWEC algorithm. 
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Fig. 4. An example of the results obtained from the second scenario: (a) the simulated wind and the obtained 
power by using (b) the proposed method, (c) AFTCS algorithm, (d) MWEC algorithm. 
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Fig. 5. An example of the results obtained in the third scenario: (a) the simulated wind and the obtained power 
by using (b) the proposed method, (c) AFTCS algorithm, (d) MWEC algorithm. 
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Table 2. Comparison of performances of the examined algorithms in different scenarios. 
Algorithm Evaluation Parameters Simulated Scenarios 
  First Second Third 

Proposed Algorithm Power level (W) 1742 1331 1107 
 Variance (W) 18.14 68.29 88.07 
 Wind Estimation Error (%) 8.17 18.31 44.75 

AFTCS Algorithm Power level (W) 1720 1030 600 
 Variance (W) 26.80 294.81 364.70 
 Wind Estimation Error (%) 14.20 78.19 182.10 

MWEC Algorithm Power level (W) 1698 870 370 
 Variance (W) 39.18 360.92 458.14 
 Wind Estimation Error (%) 17.31 153.79 207.25 

Proposed Algorithm Power level (W) First Second Third 
 Variance (W) 1742 1331 1107 
 Wind Estimation Error (%) 18.14 68.29 88.07 

 
In the second scenario, the power levels of the 
proposed, AFTCS and MWEC algorithms fell 
to 411, 690 and 828 Watts (e.g. 23.59%, 
40.11%, and 48.7%) compared to their values 
in the first scenario. The reductions were 
6.18%, 20.82% and 37.21% for variance and 
10.14%, 63.99%, 136.48% for wind estimation 
error. Despite these reductions, the mean power 
of the generated electricity by using the 
proposed algorithm showed typically 301 and 
461 Watts (e.g. 22.6%, 34.6%) superiority 
compared with the alternative algorithms. 
Similarly, the variance of the obtained 
electricity by using the proposed algorithm 
showed 226 and 292 Watts superiority 
compared with the other algorithms. 
Furthermore, wind estimation error of the 
proposed method was typically 59.2% and 
135.4% better than AFTCS and MWEC 
algorithms. These superiorities are considerably 
more than which obtained from the previous 
scenario. In the third scenario, the existence of 
eddy currents caused the parameters to fall 
more dramatically.  
In the presence of eddy current, the power 
levels of the proposed, AFTCS and MWEC 
algorithms fell by 635, 1120 and 1328 Watts 
(e.g. 36.4%, 65.1%, 78.2%) compared to the 
first (e.g. the normal) scenario. These declines 
were 15.2%, 59.7% and 85.1% for variances 
and 36.5%, 167.9% and 189.9% for wind 
estimation error. The mean power of the 

generated electricity by using the proposed 
algorithm shows typically 507 and 737 Watts 
superiority compared with two other 
algorithms. Similarly, the variance of obtained 
electricity by using the proposed method was 
276 Watts and 370 Watts better than the two 
other algorithms. Finally, the wind estimation 
error of the proposed method was typically 
137.35% and 162.5% better than those of 
AFTCS and MWEC algorithms. 
 
 6. Conclusions 
 
In this paper, a new method was introduced for 
optimum energy harvest from wind farms. In 
the proposed method firstly stochastic process 
was utilized to model the behavior of the 
blowing wind. By using this stochastic process 
the fault measurements of turbine sensors were 
determined. Then fuzzy-logic concept was 
utilized for modeling and controlling turbines 
of the wind farm. To evaluate the performance 
of the proposed algorithm, three scenarios were 
carried based on the real wind blowing 
conditions in wind farms. The first scenario 
belonged to normal conditions in which wind 
blows with turbulences bellow 10% and speed 
less than 12 m/s containing no eddy current. In 
the second scenario, the wind had the 
turbulence and speed more than 80% and 12 
m/s respectively and containing no eddy 
current.   In  most   complex   scenario,   several 
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eddy currents were added to the simulated 
winds of the second scenario. In all scenarios, 
the performance of the proposed algorithm was 
compared with two existing methods (e.g. 
AFTCS and MWEC) using their harvested 
power, uniformity, and wind estimation error. 
By exploiting the above parameters the better 
performance of the proposed algorithm was 
proved. Results showed that the generated 
power by using the proposed algorithm in the 
first scenario was at least 22 Watts more than 
other examined methods. In the same manner, 
its uniformity and wind estimation also 
showed at least 8.66 Watts and 6.03% better 
than those of other examined methods. In the 
second scenario, performances of all 
algorithms fell considerably compared with 
normal wind conditions (e.g. at least 23.59%, 
6.18% and 10.14% for generated power, 
uniformity and wind estimation, respectively). 
In parallel with these reductions, the 
superiority of the performance of the proposed 
algorithm became more considerable 
compared to the previous scenario. In this 
scenario, the generated power, uniformity and 
wind estimation of the proposed algorithm 
obtained at least 301 Watts, 226 Watts and 
59.2% better than the results of the other 
examined methods.  
The combination of high turbulence wind and 
eddy currents in the final scenario caused the 
greatest performance degradations compared 
with normal wind conditions (e.g. at least 
36.4%, 15.2% and 36.5% for generated power, 
uniformity, and wind estimation, respectively). 
In this scenario, the generated power, 
uniformity, and wind estimation of the 
proposed algorithm had at least 507 Watts, 276 
Watts, and 137.35% better than the results of 
the other examined methods. 
These superiorities are excellently more than 
which obtained in both previous scenarios. 
Therefore, it may be concluded that as the 
blowing wind becomes more complicated, the 
performance of the proposed method shows 
more gain against the other algorithms and 
therefore, it may be used as a suitable 
alternative method for managing wind farms 
especially at high turbulence or eddy contained 
wind blowing.  
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