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Article info:  Abstract 
The concept of “energy harvesting” is to design smart systems to capture the 
ambient energy and to convert it to usable electrical power for supplying 
small electronics devices and sensors. The goal is to develop autonomous 
and self-powered devices that do not need any replacement of traditional 
electrochemical batteries. Now piezoelectric cantilever structures are being 
used to harvest vibration energy for self-powered devices. However, the 
geometry of a piezoelectric cantilever beam will greatly affect its vibration 
energy harvesting ability. This paper deduces a remarkably precise analytical 
formula for calculating the fundamental resonant frequency of bimorph V-
shaped cantilevers using Rayleigh method. This analytical formula, which is 
convenient for mechanical energy harvester design based on Piezoelectric 
effect, is then validated by ABAQUS simulation. This formula raises a new 
perspective that, among all the bimorph V-shaped cantilevers and in 
comparison with rectangular one, the simplest tapered cantilever beam can 
lead to maximum resonant frequency and highest sensitivity. The derived 
formula can be commonly used as a relatively precise rule of thumb in such 
systems. 
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1. Introduction 

Energy harvesting has been around for decades. 
To feed the world’s needs for energy, macro 
scale energy harvesting technologies have 
successfully established. On the other hand, for 
low powered electronics devices, harvesting 
energy from the ambient vibrations seems to be 
an ideal solution due to the definite life span 
and high cost for replacement of the traditional 
batteries. Three mechanisms are available for 
vibration energy harvesting; using electrostatic 

devices, electromagnetic field and utilizing 
piezoelectric based materials. The performance 
of piezoelectric vibration energy harvesters is 
more often than other methods. Compared to 
other structural forms of beams, a cantilever 
beam can obtain the maximum deformation and 
strain under the same conditions. The larger 
deflection leads to more stress, strain, and 
consequently a higher output voltage and 
power. Therefore the vast majority of 
piezoelectric vibration energy harvesting 
devices use a cantilever beam structure. [1-4]. 
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A cantilever-type energy harvester has been 
intensively studied. The cantilever geometrical 
structure plays an important role in improving 
the harvester’s efficiency and a triangular 
tapered cantilever has been found to be the 
optimum design [5], because it ensures a large 
constant strain in the piezoelectric layer 
resulting in higher power output compared with 
the rectangular beam with the width and length 
equal to the base and height of the 
corresponding triangular tapered cantilever 
beam. 

Most of the previous research works focused 
on designing a linear vibration resonator, which 
has maximum output power when reaching 
resonance frequency. Therefore the practical 
applications of these devices are limited due to 
narrow bandwidth as well as small power 
density. If the excitation frequency slightly 
shifts, the performance of the harvester will 
dramatically decrease. Since in the majority of 
practical cases, the vibration in the environment 
is frequency-varying or totally random with the 
energy distributed in a wide spectrum, how to 
broaden the bandwidth of harvesters becomes 
one of the most challenging issues before their 
practical deployment [6]. 

In practice, the energy harvester is a multi-
degree-of-freedom system or a distributed 
parameter system. Certain vibration mode can 
be excited when the driving frequency 
approaches one natural frequency of the 
harvester. To date, one of the most important 
strategies to widen the bandwidth, include using 
a generator array consisting of small generators 
with different resonant frequencies. If multiple 
vibration modes of the harvester structure are 
utilized, useful power can be harvested over 
multiple frequency spectra, that is, wider 
bandwidth can be covered for efficient energy 
harvesting. Rather than discrete bandwidth due 
to the multiple modes of a single beam, 
multiple cantilevers or cantilever array 
integrated in one energy harvesting device can 
provide continuous wide bandwidth, if the 
geometric parameters of the harvester are 
appropriately selected. Power spectrum of a 
generator array is a combination of the power 
spectra of each small generator [6-8]. 
Accordingly, by division of a triangular 

bimorph piezoelectric beam into some V-
shaped bimorph beams with different 
dimensions and mass and hence different 
resonant frequencies, can be found in an array 
of beams that can cover a wider range of 
frequencies (Fig. 1). If the Δ in Error! 
Reference source not found., assumed to be 
negligible, the V-shaped beams, will be a 
cantilever beam [9, 10]. 
 

 

 
Fig. 1. Division of a triangular beam into some V-
shaped beams [9]. 
 
The geometry of a piezoelectric cantilever beam 
will greatly affect its vibration energy 
harvesting ability. The sensitivity of resonant 
cantilever piezoelectric energy harvesters is 
directly proportional to the resonant frequency. 
So far, the calculation of resonant frequency of 
bimorph V-shaped cantilevers has not been 
reported in the literature and the calculation 
only for a simple V-shaped cantilever beam is 
done [11]. In order to calculate the resonant 
frequency of V-shaped cantilevers, this paper 
deduces a highly precise analytical formula 
using Rayleigh method, and then introduces the 
optimization method for enhancing the resonant 
frequency with this formula. This useful 
analytical formula, is confirmed by simulation 
results in ABAQUS 14.1 software, and presents 
a strong potential to be used in the design and 
optimization of triangular V-shaped cantilever 
bimorph piezoelectric energy harvesters. It is 
noteworthy that a cantilever beam can have 
many different modes of vibration, each with a 
different resonant frequency. The first mode of 
vibration has the lowest resonant frequency, 
and typically provides the most deflection and 
therefore electrical energy. Accordingly, energy 
harvesters are generally designed to operate in 
the first resonant mode [9, 10]. 
This research proposes a new design for a 
cantilever-type bimorph piezoelectric energy 
harvester called V-shaped cantilever and the 
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main focus of this paper is to study the resonant 
frequency of the new design in piezoelectric 
mechanical energy harvester.  

 
2. Theoretical analysis 

2. 1. Deflection function of rectangular 
bimorph cantilevers 

Equating the maximum total potential energy 
associated with vibration to the maximum 
kinetic energy associated with vibration results 
in an upper-bound estimate of the fundamental 
natural frequency, provided the dynamic 
displacement forms assumed are admissible. A 
displacement function is admissible if it does 
not violate any geometric constraints and can 
represent the displaced form of the system 
without any discontinuity. 
Fig. 2 shows the structure of bimorph 
piezoelectric rectangular cantilever with length 
L, width W, density ρ1 and ρ2, thickness H1 and 
H2, cross-sectional area moment of inertia I1 
and I2 and Young's modulus E1 and E2 for 
substrate and piezoelectric layers, respectively. 
When applying a normal force F at the free end 
of the cantilever, the differential equation of the 
cantilever can be expressed as [12] 

 
2

2 3
1 1 2 2

( ) ( ) ( ) 12 ( )d z x F L x F L x F L x
dx EI E I E I EWH

  
  


 

(1) 

 
where x is the distance from the fixed end. It is 
notable that for a doubly symmetric section, 

i i
i

EI E I [13]. 

As one end of the cantilever is fixed, the 
corresponding boundary conditions are; 
 

(0) 0z   (2) 
and 

0

( ) 0
x
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  (3) 

 
The solution of (1) - (3) can be expressed as; 
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This is the deflection function along the length 
direction where A is a constant. 

 

 
Fig. 2. Schematic drawing of a cantilever beam [10]. 
 
 
2. 2. Resonant frequency of cantilevers with 
arbitrary shapes 
 
When considering the resonant behavior of a 
cantilever with an arbitrary shape whose width 
function is W(x), the deflection function of (4) 
can be used as the mode shape, and the 
vibration displacement at each position can be 
written as; 

2( , ) (3 )sin( )z x t Ax L x t     (5) 
 
where A and α are constants, t is the time, and 
ω=2πf is the angular frequency. 
The kinetic energy of the system is [14]; 
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So the maximum kinetic energy of the system 
is; 
 

2 2
max 1 1 2 2

4 2

0

1 ( 2 )
2

( ) (3 )
L

T H H A

W x x L x dx

   


 (7) 



JCARME                                             Rouhollah Hosseini, et al.             Vol.6, No.1, Aut.-Win. 2016-17 

68 
 

The potential energy of the system is [14]; 
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Therefore, the maximum potential energy of the 
system is; 
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According to conservation law of mechanical 
energy; 

max maxT V  (10) 
 
Hence, the resonant frequency can be obtained 
as; 
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In particular, for the case of a rectangular 
cantilever with length L1 and width W1, the 
resonant frequency can be deduced from (11); 
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(12) 

 
 
2. 3. Resonant frequency of bimorph triangular 
V-shaped cantilevers 
 
Fig. 3(a) shows that a typical bimorph 
triangular V-shaped cantilever can be treated as 
the difference between two bimorph triangular 
cantilevers, with lengths L0 and L1, and with 
widths W0 and W1 respectively. It can be easily 
confirmed by (11), that due to the mirror 
symmetry of bimorph triangular V-shaped 
cantilever, we need only analyze half of it, 
which is a quadrilateral cantilever as shown in 
Fig. 3(b). 
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Fig. 3. Shape and dimension of (a) bimorph V-shaped cantilever (b) half of the bimorph V-shaped cantilever (c) 
triangular tapered cantilever. 
 
 
Obviously, the width function of the 
quadrilateral cantilever is a piecewise-
continuous function of x, that is; 
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For calculation convenience, it is reasonable to 
define the width ratio u and the length ratio v of 
the two bimorph tapered cantilevers; 
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Substituting (13) and (14) into (11), the 
resonant frequency formula of the quadrilateral 
cantilever (just the resonant frequency of 
bimorph triangular V-shaped cantilever) is 
obtained. 
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In order to represent the relationship between 
the resonant frequency and the two ratios u and 
v, a characteristic function can be defined; 
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Thus, the resonant frequency of V-shaped 
cantilever is; 
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(17) 

 
As shown in Fig.  4, g(u,v) reaches the 

maximum value 3 0.2474
7

 , when v=0 or v=1 

or u=0 [15]. That means bimorph V-shaped 
cantilever achieves maximum resonant 
frequency only when L0=0 or L0=L1 or W0=0. 
Apparently, when L0=0 or W0=0, the V-shaped 
cantilever turns into a tapered cantilever as 
shown in Fig. 3(c). When L0=L1, the bimorph 
V-shaped cantilever turns into two side by side 
bimorph triangular tapered cantilevers, 
however, this peculiar shape is difficult to carry 
out in practice. 

Anyway, triangular tapered cantilever, a special 
kind of V-shaped cantilever and easy for micro-
fabrication, can reach the maximum resonant 
frequency and thus the highest sensitivity. 
 
3. Verification by simulation results 

In order to assess the accuracy of (17), relative 
error δ is introduced to compare the calculation 
results using this formula with the 
corresponding simulation results. 
 
 

f f
f




  (18) 

 
 
where f refers to the calculation results with 
(17), and f’ refers to simulation results with 
ABAQUS modal analysis. 
Consider a bimorph rectangular cantilever, 
assuming ρ1=8740kg/m3, ρ2=7800kg/m3, 
E1=9.7×1010Pa, E2=6.6×1010Pa, H1=1mm, 
H2=1mm, W1=80mm and L1=100mm. The 
frequency calculation according to (12) is 8.84 
Hz and the corresponding simulation result with 
ABAQUS is 8.82 Hz. Hence the relative error 
is only 0.24% and an excellent agreement is 
obtained between the calculation results and the 
simulation results, yielding little relative error. 
The simulated shape is shown in Fig. 5. 

 
 
 
 

 
Fig.  4. The function image of g(u,v). 
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Fig. 5. Deformed shaped for the first vibration mode of bimorph piezoelectric cantilever [10]. 

 

 
Fig. 6. Deformed shaped for the first vibration mode of bimorph piezoelectric cantilever.

 
 
Also the experimental results are achieved for 
another rectangular cantilever and it is observed 
that a good agreement is obtained between 
experimental, FEM and analytical methods 
[10]. 
Also consider a series of V-shaped cantilevers 
with different shapes, assuming, ρ1=8740kg/m3, 
ρ2=7800kg/m3, E1=9.7×1010Pa, E2=6.6×1010Pa, 
H1=0.6mm, H2=0.4mm, W1=80mm , 
W0=40mm, L1=100mm and changing L0, the 
calculation according to (17) and the 
corresponding simulation results with 
ABAQUS are listed in Table 1. 
It can be seen from Table 1 that, a very good 
agreement is obtained between the calculation 
results and the simulation results, yielding little  
 

 
 
relative error (less than 6.2%). When L0=60mm, 
the simulated shape is shown in Fig. 6. 

 
Table 1. Comparison between the calculation results 
and the simulation results of the resonant 
frequencies of bimorph triangular V-shaped 
cantilevers. 

L0(mm) f (Hz) f’ (Hz) δ % 
0 124.99 133.24 6.19 
10 119.55 126.86 5.76 
20 114.87 121.06 5.11 
30 110.23 115.92 4.91 
40 106.91 111.56 4.17 
50 104.19 108.21 3.71 
60 101.5 106.19 4.42 
70 102.84 106 2.98 
80 105.06 108.56 3.22 
90 111.53 115.8 3.69 

100 125.85 133.24 5.55 
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4. Application 

The resonant frequency formula presented in 
this paper is useful for many applications. First, 
this simple formula can be effectively used to 
determine the resonant frequency of bimorph 
triangular V-shaped cantilevers of any 
dimensions and material properties. Another 
significant application is the optimization of 
bimorph V-shaped cantilever vibration energy 
harvesters. The sensitivity of resonant 
cantilever vibration energy harvesters is directly 
proportional to the resonant frequency, and the 
resonant frequency is a key parameter to design 
a mechanical energy harvester. As mentioned 
above, with given length L1, given width W1, 
given thickness H1 and H2 and given material 
properties E1, E2, ρ1 and ρ2, triangular tapered 
cantilever-a special kind of V-shaped 
cantilevers-can reach the maximum resonant 
frequency and highest sensitivity. 
For a triangular tapered cantilever, substituting 
v=0 into (17), the maximum resonant frequency 
is obtained  
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(19) 

 
Apparently, the resonant frequency of a 
bimorph tapered cantilever is unrelated to its 
width W1. It is necessary to point out that, for a 
tapered cantilever, when increasing W1 and 
keeping other parameters fixed, its resonant 
frequency will remain constant. It is worth 
comparing (12) and (19), and we can get the 

resonant frequency ratio of bimorph tapered 
cantilever and bimorph rectangular cantilever. 
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(20) 

 
Hence, the bimorph tapered cantilevers can lead 
to much higher resonant frequency and higher 
sensitivity than that of bimorph rectangular 
cantilevers. 
 
5. Conclusions 
 
This paper deduces a highly precise explicit 
formula to calculate the fundamental resonant 
frequency of bimorph V-shaped cantilevers 
based on Rayleigh method. It is clear that the 
results obtained using the Rayleigh’s principle 
is dependent on the type of admissible function 
used. If the function used resembles the 
fundamental mode, the resulting estimate of the 
frequency is likely to be close to the exact 
fundamental natural frequency. It may also be 
noted that this approach gives only one value 
for the frequency. However, energy harvesters 
are generally designed to operate in the first 
resonant mode. 
With this analytical formula, the calculation 
results are in perfect agreement with the 
simulation results, yielding little relative error 
(less than 6.2%). This error for a bimorph 
rectangular cantilever reduces to only 0.24%. In 
the first mode of vibration, the exact shape of 
the cantilever is not identical to the static 
deflection profile. Accordingly the velocity 
distribution is not exactly proportional to the 
static deflection profile. This is why the natural 
frequency estimates are slightly different from 
the simulation values. 
It is clear that with the same material properties 
and given length L1, given width W1, given 
thickness H1 and H2, triangular tapered 
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cantilever can reach the maximum resonant 
frequency. Also width increasing in the base of 
triangular tapered cantilever has no effect on 
the resonant frequency of the structure.  
Because of simplicity of the derived formula, it 
is an easily learned and easily applied 
procedure for approximately calculating or 
recalling some value, or for making some 
determination. Finally, an application for 
calculating frequency of bimorph V-shaped 
cantilever energy harvesters is presented with 
this formula in order to achieve a Multi-Modal 
energy harvester. This formula can be 
commonly used in the design and optimization 
of vibration energy harvesters. 
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