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Article info:  Abstract 
The non-Fourier effect in heat conduction is important in strong thermal 
environments and thermal shock problems. Generally, commercial FE codes are 
not available for analysis of non-Fourier heat conduction. In this study, 
a meshless formulation is presented for the analysis of the non-Fourier heat 
conduction in the materials. The formulation is based on the symmetric local 
weak form of the second-order non-Fourier heat conduction equation in terms 
of the temperature. Using the local weak form of heat transfer equations in the 
sub-domains, the governing equation of the non-Fourier heat conduction 
is discretized in the space domain to the second order ordinary differential 
equations for the time. The discretized equations are integrated into the time 
domain with an appropriate finite difference method. The fictitious numerical 
oscillations are completely suppressed from the front of temperature waves in 
the presented method. An analytical series solution is developed for the non
Fourier heat transfer in one-dimensional heat transfer for special boundary 
conditions and the accuracy of presented numerical meshless method is 
validated by comparison of the results of the numerical meshless solution and 
the series solution. The numerical results are presented for non-Fourier heat 
conduction for various Vernotte numbers and boundary conditions and the 
results are compared with the results of the classical Fourier heat conduction. 
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Nomenclature 
c*: dimensionless speed 
c: heat capacity (J/kg/K) 
Fo: Fourier number 
g: volumetric heat generation rate (W/m3) 
k: the coefficient of thermal conductivity (W/m/K) 
n: outward normal direction to the boundary 
qi

*:dimensionless heat flux  
qi: heat flux (W/m2) 

q : prescribed normal heat flux (W/m2) 
t ̅: dimensionless time 
T: temperature (C) 
t: time (s) 
Th(x): trial approximation for temperature  
T : prescribed temperature 
v :test (weight) function 
Ve: Vernotte number 
t: time step (s)
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Greek symbols: 
: thermal diffusivity (1/s) 
q: Neumann boundary, 
T: Dirichlet (essential) boundary,  
s

I: local sub-domain around node I 
∂s

I : boundary of local sub-domain around node 
I  

 Penalty parameter 
(x): shape function of the MLS 
: mass density (kg/m3) 
integrationparameter 
0: thermal relaxation time (1/s) 
 
1. Introduction  
 
The classical Fourier's law of heat conduction 
assumes that the phase lag between the heat flux 
and temperature gradient is zero. By this 
assumption, Fourier heat conduction leads to 
parabolic governing equations which theoretically 
show infinite propagation speed of thermal signals 
in the material. The experimental approach by 
Peshkov [1] in 1944 demonstrated the finite speed 
of heat propagation. Later, in 1968 experiments in 
solid helium and in other crystalline solids showed 
the nature of damped wave of heat conduction [2]. 
Other researchers in 1995 indicated that the heat 
flows in the nature of damped wave at very low 
temperatures [3], and at very short duration [4]. 
On the other hand, the parabolic heat conduction 
equation and infinite propagation speed of thermal 
signals is in contradiction with the theory of 
relativity and with the known mechanisms of heat 
conduction. 
It is well known that the Fourier's heat conduction 
equation is an approximate model as far as it 
describes the heat propagation with infinite speed. 
However, in most cases, the Fourier's heat 
conduction equation is in excellent description of 
heat conduction physics since real propagation 
speeds of heat signals are very high and the model 
that assumes infinite speed is often sufficient in 
accuracy and efficiency. 
In order to eliminate the paradox of infinite speed 
of heat wave and to develop a model for heat 
conduction with finite speed, Cattaneo [5] and 
Vernotte [6] independently suggested a modified 
heat-flux model with thermal relaxation time. In 
their model, heat flow does not start 

instantaneously, but raises gradually with a 
relaxation time 0 with respect to the temperature 
gradient. This non-Fourier heat conduction model 
conjugated with the equation of energy 
conservation makes (forms) a hyperbolic system 
of equations which describes a heat propagation 
with the finite speed c=(k/cp0)1/2. The hyperbolic 
equation for heat conduction also previously had 
been derived by Maxwell [7] in 1867.  
In 1994, Ozisik and Tzou [8] point out that the 
speed of the thermal wave in solids is in the order 
of 105 m/s and in the gases is in the order of about 
103 m/s. Mitra et al., [3] and Kaminski [9] 
performed experiments on heat conduction in the 
processed meat and dry sand and reported the 
wave speed about 0.1mm/s which is several orders 
of magnitude smaller than those reported for other 
engineering materials. Herwing and Beckert [10] 
presented an experiment and try to reproduce the 
results of Mitra et al. [3] and Kaminski [9]. The 
results of their experiment showed that the 
reported values in [3] and [9] are doubtful. 
Roetzel et al., [11] analyzed non-Fourier heat 
conduction experimentally inside a material with 
non-homogeneous inner structure and measured 
thermal diffusivity and relaxation time for this 
material. In the field of engineering, the non-
Fourier heat conduction is used in practical 
engineering problems [12-14] by different 
authors.  
Analytical and numerical methods have been 
used for solving the hyperbolic heat conduction 
equations. Among earlier studies which used 
analytical strategies, one may refer to [15-
23]. Taitel [15] introduced an analytical solution 
for a thin layer with a step change in the 
temperature of both sides. Baumeister  
and Hamil [16] studied the temperature wave in a 
semi-infinite solid subjected to sudden change in 
the temperature of the wall by Laplace transforms 
method. Ozisik and Vick [17] investigated the 
wave nature of heat propagation in a finite slab 
with isolated boundaries by analytical 
solution. Tzou [18, 19] studied the damping and 
resonance characteristics of thermal waves in 
periodic heating. Frankel et al., [20] used the flux 
formulation and gave an analytical solution for a 
finite slab with the rectangular heat 
pulse. Gembarovic and Majernik [21] presented 
an analytical solution for a finite slab with 
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instantaneous and extended heat pulse. In 1995, 
Tang and Araki [22] used the Laplace transforms 
method for the solution of hyperbolic heat 
conduction in a finite medium subjected to 
periodic thermal disturbance. In 2000, they used 
the Green's function and finite integral transform 
technique to solve a finite medium subjected to a 
pulse surface heating [23].  
Numerical methods are also used for analysis of 
non-Fourier heat conduction problem with various 
boundary conditions. Among the numerical 
methods, the finite difference method [24-32] is 
extensively used to discrete the governing 
equation of non-Fourier heat transfer in the space 
domain. Most of the finite difference schemes are 
based on the first order hyperbolic constitutive 
model of Cattaneo [6] and Vernotte [7] which is 
coupled with the local energy balanced equation 
and use the McCormack’s predictor-corrector 
method for solving the equations. Some other 
researchers combined the Cattaneo and Vernotte’s 
model by the local energy balance equation and 
obtained the second-order hyperbolic equation in 
terms of temperature, which yields the so-called 
thermal wave equation, and directly solved the 
second order wave equation [30-32]. The main 
problem in the numerical solution of the 
hyperbolic heat conduction equations is the 
presence of fictitious numerical oscillations in the 
results in sharp propagation fronts, which 
physically is unrealistic [26, 28]. 
The finite element method [33-37] is also 
employed for analysis of non-Fourier heat transfer 
problems. Tamma and Railkar [33] used the finite 
element method with special shape functions to 
remove the fictitious numerical oscillations from 
the results. Manzari and Manzari [34] used a 
mixed approach to finite element analysis of 
hyperbolic heat conduction problems. Ai and LiA 
[35] introduced a discontinuous finite element 
method for analysis of non-Fourier heat 
conduction. Wu and Li [36] extended the time 
discontinuous Galerkin finite element method to 
the heat wave propagation problem in the medium 
subjected to different kinds of heat source. Wang 
and Han [37] used the finite element space 
discretization for non-Fourier heat conduction and 
solved the obtained differential equations in time 
with different time integration methods. 

Mishra et al., [38] solved the energy equation of 
combined radiation and non-Fourier effect by the 
lattice Boltzmann method (LBM) combined with 
the finite volume method (FVM). 
Vishwakarma et al., [39] in 2011 employed the 
smoothed particle hydrodynamics method for 
analysis of the non-Fourier heat transfer in a slab 
with initial temperature and convection boundary 
conditions. 
The meshless methods are used previously for 
analysis of the steady-state and transient heat 
conduction based on the Fourier heat transfer [40-
44].  
In general, commercial finite element codes are 
not available for analysis of non-Fourier heat 
conduction problems. In this study, a meshless 
formulation is presented for analysis of the non-
Fourier heat conduction. In the presented meshless 
method, the second order wave equation of non-
Fourier heat conduction is discretized to the 
second order ordinary differential equations in 
time. For solving the obtained equations, a set of 
new variables is defined and the second order 
discretized differential equation is written as a 
first order differential equations. A numerical 
integration method is used for time integration of 
the equations. On the other hand, an analytical 
series solution is obtained for non-Fourier heat 
conduction in a one-dimensional finite domain for 
two kinds of boundary conditions. In addition, the 
predictions of the presented meshless formulation 
are compared with the predictions of the presented 
series solution. It is seen that the fictitious 
numerical oscillations can be suppressed and 
removed from the numerical results. The 
numerical results show that the presented 
meshless method and the time integration scheme 
could predict temperature wave propagation with 
a sharp discontinuity in the wave front and 
without fictitious numerical oscillations.  
 
2. Theoretical modeling 
 
The heterogeneous domain is considered as some 
homogeneous domain which is bonded together in 
the interfaces. The continuity conditions in the 
interfaces couple the governing equations of the 
domains. So in this study, the governing equation 
is discretized for the homogeneous equation, and 
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the continuity conditions in the interfaces are 
enforced to the discretized equations.  
 
2. 1 Governing equations 
 
In order to eliminate the paradox of infinite 
propagation speed of thermal signals in the 
Fourier heat conduction, Cattaneo, 1985 and 
Vernotte, 1958 suggest a modified time-dependent 
relaxation heat flux model as: 
 

0 ,

0





  

 
  

 

i i i

i
i

i

q q kT
q Tq k
t x

      (1) 

 
where qi is the heat flux in the xi direction, T is the 
temperature, k is the thermal conductivity and 0 is 
a new parameter which is named thermal 
relaxation time. In the present study, subscript 
follows a comma i.e. T,i which shows the partial 
derivation with respect to xi and the upper dot on 
the variable i.e. T shows the partial differential 
with respect to time. The equation of the balance 
of heat energy in the differential form can be 
written as: 
 

,  
p i ic T q g        (2) 

 
in which  is the mass density and cp is the 
specific heat capacity of the material. By 
elimination of the heat flux from Eqs. (1) and (2), 
the second order equation of non-Fourier heat 
conduction can be obtained as: 
 

0 , 0        p p jjc T c T k T g g    (3) 
 

in which j is the dummy index. The appropriate 
Dirichlet and Neumann boundary conditions for 
Eq. (3) can be considered as:  
 

0

,

( ),

 


   



T

q

T T on
Tk q q on
n

    


In Eq. (4), T  is the prescribed temperature on  
and q ̅(t) is the prescribed heat flux on q. Equation 
(3) is in the form of the hyperbolic differential 

equation and its solution leads to propagation of 
thermal waves with finite speed as c=√/0) in 
which=k/cp is the thermal diffusivity of the 
material. From Eq. (3), it is clear that 0=0 leads to 
the parabolic equation of classic Fourier heat 
diffusion with infinite propagation speed. 
In this section, a meshless formulation based on 
the local weak formulation is presented for 
discretization of the non-Fourier heat conduction 
equation in the space domain to second order 
ordinary differential equations. Then an 
appropriate method is employed to integrate the 
discretized equations in the time domain to obtain 
the propagation of the heat wave in the material. 
 
2.2. Meshless discretization 
 
The generalized local weak form of Eq. (3) in an 
arbitrary local sub-domain s

I can be written as: 
 

0 , 0( ( )

( ) 0

I
s

I
sT
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   (5) 

 
in which the second integral is added to Eq. (5) in 
order to impose the essential boundary conditions 
to 

sT.  is a large number which is called penalty 
parameter and 

sT is a part of the boundary of s
I 

which co-inside the Dirichlet boundary conditions 
and v is the weight function. Now using the 
divergence theorem the symmetric local weak 
form of Eq. (5) can be written as: 
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which ∂s

I is the boundary of s
I. By applying the 

boundary conditions to Eq. (6), it can be written 
as: 
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where I
sq is the part of ∂s

I over which the 
natural boundary condition is specified as Eq. (4) 
and Ls

I is a part of ∂s
I which is totally located 

inside the global domain. 
Without losing the generality, the weight function 
v can be chosen in such a way that it vanishes on 
Ls

I, so Eq. (7) can be rewritten as: 
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As noted before, s

I is local sub-domain around 
node I in the domain and the nodes are scattered 
randomly in the global domain . The moving 
least square (MLS) approximation method is used 
for discretization of Eq. (8). Using the MLS 
method the trial function for the field variable can 
be written as: 
 

1
ˆ( ) ( )


 Nh J J

JT T xx x x Ω     (9) 
 

where (x) is usually called the shape function of 
the MLS approximation corresponding to node I 
and ˆ IT is called the fictitious nodal values in node 
I. The details of construction of the shape function 
by MLS method can be found in [44].  
Now for discretization of Eq. (8), the MLS 
approximation is substituted from Eq. (9) into Eq. 
(8) as: 
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(10) 

 
Equation (10) is the discretized governing 
equations of non-Fourier heat transfer. It can be 
written in the standard form as 
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in which the matrices are defined as: 
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3. Numerical time integration 
 
After spatial discretization of the governing 
equations, the obtained ordinary differential 
equation must be integrated into the time domain. 
For time integration, the second order differential 
equations are converted into a set of the first order 
differential equation. The new set of variables is 
defined as:  
 

ˆ ˆ{ } { , } J J Tx T T                   (13) 
 

Using the new set of variables in Eq. (13), the 
second order equation in Eq. (11) can be written 
as:  
 
[ ]{ } [ ]{ } { } A x B x F                       (14) 
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[ ] , [ ] , { }

[0]
     

       
    IJ IJ IJ I

I I
A B F

M K C f
 

                    (15) 
 

For time integration of Eq. (14), an appropriate 
finite difference method is used. Using the 
backward difference approximation, the governing 
Eq. (14) at the time t=tm can be written as: 
 

1{ } { }
[ ]( ) [ ]{ } { }

 


m m
m m

x x
A B x F

t
       (16) 

 
By replacement of m with m+1, {x}m+1 can be 
obtained from Eq. (16) as: 
 

1
1 1{ } ([ ] [ ]) ([ ]{ } { } )
    m m mx A t B A x t F (17) 

 
Using the forward difference approximation, Eq. 
(14) at the time t=tm can be written as:  
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1{ } { }
[ ]( ) [ ]{ } { } 

 
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m m
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        (18) 

 
{x}m+1 can be obtained by solution of Eq. (18) as: 
 

1 1
1{ } ( [ ] [ ]){ } [ ] { } 
     m m mx I t A B x t A F   

                    (19) 
 

In general, solution of Eq. (14) can be obtained by 
combination of the forward difference and 
backward difference method as: 
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where 0 ≤≤1is a real parameter. For =0, Eq. 
(20) is known as the forward difference method, 
for =1 it is known as the backward difference 
method, for =0.5 it is known as Crank-Nicolson 
method and for =2/3 it is known as Galerkin 
method. The effect of parameter on the 
numerical results of time integration Eq. (20) is 
investigated in the present study. 
The solution algorithm of equations based on the 
meshless method is as follows. 
a) Nodes are scattered in the solution domain 

and MLS is used to make the interpolation 
functions. 

b) The integrations over the subdomains in Eq. 
(12) are done based on the Gussian 
integration method for all of the subdomains 
around the nodes and the discretized 
equations are obtained. 

c) The numerical integration method in Eq. (20) 
is used for time integration of the discretized 
equations and the time history of the 
temperature is obtained. 

 
4. Analytical solution for 1D domain 
 
For a 1D finite domain which one boundary is 
subjected to a temperature shock and the other 
boundary is kept isolated or is kept at constant 
temperature, the analytical series solution for the 
non-Fourier heat transfer is obtained. The results 
of this analytical series solution are used to verify 
the accuracy and efficiency of the presented 

meshless formulation and the numerical 
integration method. 
Consider a 1D finite isotropic domain with the 
length L and the spatial coordinate x, 0≤x≤L which 
its thermal diffusivity is . For generality of 
solution and numerical results, the following 
dimensionless parameters are defined as: 
 

2 0
2 2, ,


   

x tx t Fo Ve
L L L

        (21) 

 
in which x̅ is the dimensionless spatial co-
ordinate, t ̅=Fo is a dimensionless variable for 
time and is called Fourier number and Ve is the 
Vernotte number. By employing the above 
dimensionless parameters, the second order 
equation of non-Fourier heat transfer in Eq. (3) for 
1D domain can be written as: 
 

2 2 2
2

02 2 ( )
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   
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e
T T T LV g g

t kt x
              (22) 

 
and in the absence of the heat source, the above 
equation could be written as: 
 

2 2
2

2 2

  
 
 e

T T TV
tt x

                 (23) 

 
In the next section, a series solution is obtained 
for Eq. (23) for two types of boundary conditions 
(B.Cs) at x=L. The initial value for temperature 
and temperature rate are zero and the B.C in the 
right side is different. 
B.C type 1- The left side of the domain is 
suddenly subjected to a temperature shock 
(change) as T1 at t=0+ and the right side is kept 
isolated and the initial conditions are zero.  
B.C type 2-The left side of the domain is suddenly 
subjected to a temperature shock (change) as T1 at 
t=0+ and the right side is kept at fixed temperature 
T2=0 and the initial conditions are zero. 
 
4.1. Isolated boundary at right side 
 
Consider the domain with zero initial temperature 
T(x, t=0)=0 and zero initial rate of temperature 
change T (x, t=0)=0. At t=0+, the left side (x=0) is 
suddenly subjected to constant temperature jump 
as T1 and the right side (x=L) is kept isolated. The 



JCARME                                                      A truly meshless . . .                Vol. 6, No. 1, Aut.-Win. 2016-17 

81 
 

series solution of (23) for these boundary and 
initial conditions can be obtained as: 
 

1 1 2
1,3,...

( , )
4(1 [ exp( ) exp( )]sin( ))

2n n n n
n

T x t
n xT A t B t

n
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 (24) 
 

in which 1n and n are the roots of the following 
equation 
 

2 2 2( ) ( ) 0
2


   n n
nVe                          (25) 

 
and An and Bn must be obtained from the initial 
conditions. For zero initial conditions, the 
coefficients An and Bn can be obtained as: 
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The series solution of this problem for the 
classical Fourier heat conduction theory can be 
obtained as: 
 

1
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     (27) 

 
in which n=-(n/2)2. 
 
4.2. Constant temperature at right side 
 
A sudden fixed temperature jump at the left side 
(x=0) as T(0,t+)=T1 is considered and the right side 
is kept at constant temperature T2=0, and the 
initial conditions are zero. For these boundary 
conditions, the solution of Eq. (21) can be 
obtained as 
 

1 1 1
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where 1n and n are the roots of the 
characteristic equation as: 
 

2 2 2( ) ( ) 0    n nVe n                 (29) 

 
For zero initial conditions, An and Bn can be 
obtained the same as Eq. (26). The series solution 
of the same problem for the classical Fourier heat 
conduction theory can be obtained as: 
 

1 1 1
1
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T x L T t n x L
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
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      (30) 

 
in which n=-(n)2. The series solutions which are 
obtained in these sections are employed for 
verification of the results of presented meshless 
method. 
 
5. Numerical results and discussions 
 
Due to the hyperbolic nature of the non-Fourier 
heat transfer, the propagating of the temperature 
in the domain has the wavy form. In the numerical 
solutions, in order to obtain reasonable accuracy 
in the solution of the non-Fourier equations, the 
nodes must be dense enough and the chosen time 
step ∆t for numerical integration must be small 
enough for obtaining the sharp discontinuity in the 
wave front. So, the solutions of 2D and 3D 
problems lead to relatively heavy computational 
cost. In this study, in order to avoid the excessive 
computational time, and to examine the efficiency 
and accuracy of the method, one-dimensional heat 
transfer is studied in the numerical results. 
A 1D finite isotropic domain with the spatial 
coordinate x and the length L is considered in 
which the physical properties of the domain are k, 
cp,  and 0 and so the thermal diffusivity of the 
domain can be obtained as =k/cp. According to 
the non-Fourier heat transfer, the speed of the 
temperature waves can be obtained as c=√/0). 
The typical value for the thermal diffusivity is 
about ~10-4 m2/s and for relaxation time is about 
0~10-12 s and so the speed of the temperature 
wave can be obtained as c=√/0)~104 m/s. Tzou 
and Chen, 1998 [45] estimated time constants for 
non-Fourier effect are of the order of micro-to 
picoseconds. 
Now the new parameter c* is defined as c*=1/Ve 
and from Eq. (21) it can be concluded that: 
 
t ̅ c*=ct/L=x̅                         (31)                
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So it is clear that c* is the dimensionless speed of 
the temperature waves. Now * is defined the 
dimensionless time in which the temperature 
waves (disturbances) travel across the domain 
from the left side (x̅=0) to the right side (x ̅=1). 
According to the definition of the dimensionless 
speed c*, it is clear that *=1/c*=Ve. So any 
disturbance at the left side will be sensed at the 
right side at t ̅=*=Ve. 
 
5.1. Parameters study  
 
The effect of the parameters such as , Δt̅ and the 
number of nodes on the predictions of the 
meshless method is studied in this section for two 
kinds of boundary conditions. The domain with 
the initial and boundary conditions of type 1 is 
considered i.e. the left side is subjected to sudden 
temperature jump as T1=1 at t̅=0+ and the right 
side is kept isolated and the initial conditions are 
zero. The series solution of this problem is 
obtained in Eq. (24).  
At first, the effects of  parameter (see Eq. (20)) 
on the numerical results of the time integration are 
studied. In the space discretization by the 
meshless method, 401 nodes are scattered in the 
domain 0 ≤x ̅ ≤1. In the time integration method 
which is introduced in Eq. (20), the parameter  
will affect the results of the numerical integration. 
As noticed before, the  parameter, (0≤≤1), can 
be chosen in the time integration and for =1, 
=0.5 and =0 the integration method is known as 
backward difference method, Crank-Nicolson 
method, and forward difference method, 
respectively. For =2/3 it is known as Galerkin 
method. In the numerical analysis in this study, it 
is seen that for <0.5 the time integration is 
unstable and does not converged. For Ve=1, the 
results of the time integration for different values 
of ≥0.50 and the chosen time step as Δt̅=0.001* 
are seen in Fig. 1. This figure shows the 
distribution of the temperature in the domain at 
t ̅=0.1τ*, t̅=0.5τ*, t̅=0.9τ* and t ̅=1.4τ*. As seen in 
Fig. 1, for t ̅<τ* the wave is traveling from the left 
to the right of the domain and for t ̅>τ* the wave is 
reflected and is traveling from the right to the left. 

The moving direction of the wave is shown in the 
figure. In Fig. 1, the best sharpness in the 
discontinuity in the wave front is seen for =0.50. 
Also for =0.50 the fictitious numerical 
oscillations are seen near the wave front. As seen 
in Fig. 1, for ≥.55, the fictitious oscillations are 
suppressed from the results, and the sharpness of 
the discontinuity in the wave front is decreased by 
increasing . The best value for  is the value that 
suppresses the fictitious oscillation and gives the 
sharpness in the wave front. So the best value of  
must be near to 0.5. The analysis shows that 
=0.55 is a good value for  because for =0.55 
no fictitious oscillations are seen in the results and 
the sharpness of the wave front is good. In the 
next results, =0.55 is used in the numerical 
integration. 
The effects of the dimensionless time step Δt ̅ on 
the numerical results of the time integration are 
investigated in Fig. 2. The results of numerical 
integration for Δt̅=0.005*, Δt̅=0.002*, 
Δt̅=0.001*, Δt̅=0.0005* with are shown 
in Fig. 2. In Fig. 2, 401 nodes are used for space 
discretization of the domain. As it can be seen in 
this figure, for Δt̅=0.005* and Δt̅=0.002*, 
fictitious numerical oscillations are seen in the 
results. The results show that by decreasing Δt̅, the 
oscillation is suppressed and the sharpness of the 
discontinuity is increased. In the next results 
Δt̅=0.001* is used as the time step in the 
numerical integration.  

 
Fig. 1. The results of numerical integration for various 
value for , (Ve=1) 
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The effect of the number of nodes in meshless 
discretization on the numerical results is shown 
in Fig. 3. The results are shown for 101, 201, 401 
and 801 nodes in the domain. In the results of 
Fig. 3, the dimensionless time step Δt ̅=0.001* is 
used for numerical integration of the equations. It 
is seen that some numerical oscillations are seen 
for 101 and 201 nodes. There are no oscillations 
for 401 and 801 nodes and increase of nodes 
from 401 to 801 increased the computational cost 
but the predictions of 401 nodes are very close to 
the predictions of 801 nodes. So in the next 
results, 401 nodes are used in the meshless space 
discretization of the equations. 

 
Fig. 2. The effect of dimensionless time step Δt̅ on the 
results of numerical integration. 

 
Fig. 3. Effect of the number of nodes on the 
predictions of the meshless method. 
 
5. 2. Validation of the results 
 
For validation of the accuracy of the predictions 
of the meshless method and the integration 
method, the predictions of the presented meshless 
method are compared with the predictions of the 
obtained series solution. In the results of the 

meshless method, 401 nodes are used for spatial 
discretization, the dimensionless time step is 
chosen as Δt̅=0.001* and =0.55.  
 
5. 2. 1 Boundary conditions type 1 
 
The right side of the domain is isolated and the 
left side is subjected to constant temperature 
shock as T1=1 at t=0+ (B.C type 1). The series 
solution for this problem is obtained in Eq. (24). 
The comparison of the prediction of the meshless 
method and analytical solution for Ve=1 are 
shown in Fig. 4. As seen in Fig. 4, the 
temperature shock in the left side travels to the 
right with the speed c*=1/τ*=Ve. In t ̅<* the front 
of the wave does not reach to the isolated 
boundary at x=L, but for t̅>* the wave is 
reflected from the right boundary. The dashed 
lines show the predictions of the meshless 
method and the solid lines show the predictions 
of the analytical series solution. It is seen that 
there is good agreement between the predictions 
of the meshless method and series solution, 
except for the wave front which is completely 
sharp in the prediction of the analytical method. 
As seen in Fig. 2 the sharpness of the wave front 
in numerical solution increases by decreasing of 
the Δt ̅.  
For analysis of the effects of Ve number on the 
numerical results, the predictions of the present 
meshless method and series solution for Ve=4 are 
shown in Fig. 5. By comparing Fig. 4 with Fig. 5 
it is evident that for Ve=1 the height of the wave 
front is decreased as the wave travel in the 
domain and when the wave reaches to x=L the 
wave front height is about 0.63 and the wave is 
reflected by the height about 1.25. For Ve=4 the 
decreasing rate of the wave height is smaller and 
the wave height at x=L is about 0.89 and it is 
reflected by the height about 1.77. It is concluded 
that by increasing the Ve, the effect of damping 
decreases and the temperature wave will be 
damped to the final steady state temperature very 
slowly.  
The propagation of the temperature in the domain 
with Ve=0.1 is shown in Fig. 6. The predictions 
of non-Fourier and Fourier heat conduction 
theories will be close for a small Ve number. This 
figure contains the prediction of a series solution 
and meshless solution for both hyperbolic (non-
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Fourier) and parabolic (Fourier) heat conduction 
equations. The first conclusion is that the 
predictions of the numerical solution are in close 
agreement with the predictions of analytical 
series solution for both Fourier and non-Fourier 
heat conduction. A look at Fig. 6 make it clear 
that for Ve=0.1, in the non-Fourier theory the 
wave front is damped very quickly. Fig. 6 also 
shows the predictions of the parabolic heat 
transfer equations i.e. Ve=0. It can be seen that 
the form of the temperature propagation by 
hyperbolic equations with Ve=0.1 is very close to 
temperature diffusion by parabolic equation i.e. 
Ve=0. For hyperbolic equation with Ve=0.1 the 
dimensionless speed of temperature wave is 
c*=10 and as known in the parabolic equation the 
temperature diffuse with infinity speed, so as 
seen in Fig. 6 for t̅=1.4* the prediction of the 
parabolic equation is over than the prediction of 
the hyperbolic equation. 

 

Fig. 4. Comparison the results of meshless method 
with analytical solution (Ve=1, Δt̅=0.001*). 
 

 
Fig. 5. Propagation of temperature shock in the 
domain for Ve=4, meshless method and analytical 
method. 

 

 
Fig. 6. Comparison the results of temperature 
propagation with Ve=0.1 and temperature diffusion.  
 
5. 2. 2 Boundary conditions type 2 
 
To study the effect of the boundary conditions of 
the right side on the propagation of the wave, in 
this problem the boundary temperature at the 
right side of domain at x=L is kept constant at the 
initial temperature T2=0, and same as the 
previous problem, the initial conditions are zero 
and the left boundary at x=0 is suddenly 
subjected to a temperature shock as T1=1 at t̅=0+.  
The series solution of the problem is introduced 
in section 4-2. Same as before, for numerical 
solution 401 nodes are used in meshless 
discretization and Δt̅=0.001*. The propagation of 
temperature in the domain for Ve=1 is shown in 
Fig. 7.  

 
Fig. 7. Propagation of temperature shock in the 
domain with fixed temperature at x=L (Ve=1). 
 
As it can be seen the temperature disturbance in 
the left side travels to the right side, so before 
t ̅=τ* the wave front does not sense the boundary 
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condition at x=L. So as it can be seen in Figs. 7 
and 4, for both isolated boundary and fixed 
temperature boundary at x=L, for t̅<τ*, the 
temperature distribution is completely the same. 
At t ̅=τ* the wave front senses the right side 
boundary and for t̅>τ* the wave is affected by the 
boundary conditions of the right side. As seen in 
Figs. 7 and 4, for t̅>τ* the wave reflection is 
different for the isolated boundary and fixed 
temperature boundary. Also, in order to compare 
the numerical results of the present meshless 
method with the available results in the literature, 
the predictions of the present method are 
compared with the predictions of the analytical 
method which is presented in [46]. The domain 
which is isolated both at x=0 and x=L is 
considered. The initial temperature distribution in 
the domain is chosen as T=2T0x/L for 0<x≤L/2, 
and T=2T0(1-x/L) for L/2<x<L. The time history 
of the temperature in the left edge of the domain 
(x=0) is shown in Fig. 8. The prediction of the 
present meshless method and analytical method 
[46] are shown in this figure. Good agreement is 
seen between the prediction of the meshless 
method and analytical method [46] in prediction 
the time history of temperature. From Figs. 4 to 
8, it is seen that the predictions of the present 
meshless method are in good agreement with the 
predictions of the analytical method. Therefore, it 
can be concluded that the present method has 
good accuracy in the solution of the non-Fourier 
heat transfer problems. 
 

 
Fig. 8. Time history of the left edge (x=0) of the 
domain (Ve=1), prediction of meshless method (solid 
line) and analytic method [46] (dashed line). 
 

5. 3. Time history of temperature 
 
For a slab with a zero initial temperature which is 
subjected to a temperature shock at the left side 
as T1=1, the time history of the temperature of 
point A which is located at x=L/2 is depicted in 
Fig. 9. This figure contains the prediction of both 
theories; non-Fourier heat conduction with Ve=1 
(temperature propagation with hyperbolic 
equation) and Fourier heat conduction 
(temperature diffusion with parabolic equation). 
The time history of temperature is studied for 
both fixed temperature at the right side (T2=0) 
and also for the isolated boundary at the right 
side. As presented in the Fig. 9, in the non-
Fourier theory (hyperbolic equation) the wave 
propagates from the left side to the right and at 
t ̅=0.5τ* wave passes from point A which is 
located at x=L/2. At t̅=τ* the wave reaches to the 
right side of the domain. In non-Fourier theory as 
it can be seen in Fig. 9 before t ̅/τ*=0.5, the point 
at x=L/2 does not sense the temperature shock. 
At t ̅/τ*=1 the wave riches the right boundary and 
is reflected and at t̅/τ*=1.5, the point A senses the 
effect of the reflection from the right boundary. 
So as seen in Fig. 8, for t̅/τ*<1.5 the temperature 
of point A which is located at x=L/2 is the same 
for the both kinds of B.C at the right side of the 
domain. The effect of the right boundary on the 
temperature of point A is seen for t̅/τ*>1.5. The 
wave is reflected from the boundaries and the 
effect of these reflections is sensed at the point A 
at t̅/τ*=1.5, 2.5, 3.5, 4.5, 5.5, … . The height of 
wave front decreases by each reflection and the 
temperature tends to steady state value.  
The prediction for the temperature of point A by 
the Fourier heat conduction is also depicted in 
Fig. 9. It can be seen that in the prediction of the 
Fourier equation, the temperature shock on the 
left side is immediately sensed at the point A. For 
fixed boundary temperature T2=0 at the right side, 
the temperature of point A increased and riches 
its steady state value T=0.5T1 at about t̅=0.5τ*. 
For isolated right side, the temperature is 
increased to T1 and riches its steady state value at 
about t̅=2τ*.  
The effect of the Ve number on the time history 
of the propagation of the temperature on the 
domain is shown in Fig. 10. It also shows the 
time history of the temperature on point x=L/2 for 
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the various Ve number. In Fig. 10, it is seen that 
by decreasing of the Ve number the prediction of 
the non-Fourier and Fourier heat conduction 
theories will be very close. It can be seen that the 
speed of the propagation of the wave increases by 
decreasing of the Ve number and the height of the 
reflection of the waves is decreased by 
decreasing the Ve number. For Ve=0.1 except at 
t ̅≤0.1τ* the prediction of non-Fourier and Fourier 
heat conduction is in very close agreement. 
 

 

Fig. 9. Time history of temperature at point x=L/2, 
Fourier and non-Fourier theory. 
 

 
Fig. 10. The effect of Ve number on the time history 
of the temperature at x=L/2. 
 
5. 4. Response to initial conditions 
 
In this section, the propagation of temperature in 
the slab which is subjected to initial unsteady 
state temperature distribution is investigated. The 
slab is subjected to an initial temperature at t=0 
as T=T0x/L for x≤L/2 and T=T0(1-x/L) for x>L/2. 

First, it is considered that the temperature of 
boundaries is kept constant at T1=T2=0.  
Figure 11 shows the time history of the 
distribution of temperature in the slab for 
T1=T2=0 for Ve=1. It is seen that the initial 
temperature distribution oscillated such as a 
vibrating string with damping and at t̅=τ* the 
distribution is reversed but the height is 
decreased. At t̅=2τ* the temperature at x=L/2 is 
decreased from T0/2 to about 0.18T0.  
The distribution of the temperature in the slab 
with the same initial conditions but with an 
isolated boundary at the left and right sides are 
presented in Fig. 12. The steady state temperature 
for this case is T=T0/4 and so as seen the initial 
temperature oscillates about T=T0/4. The form of 
variation of the temperature in the domain is 
clearly shown in the figures. 
 

 
Fig. 11. Time history of the temperature distribution at 
the slab for fixed boundary temperatures T1=T2=0. 

 
Fig. 12. Time history of the temperature distribution at 
the slab for isolated boundaries. 
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6. Conclusions 
 
In this study, a truly meshless formulation is 
derived for the analysis of heat conduction based 
on the non-Fourier heat conduction theorem. The 
hyperbolic equation of non-Fourier heat 
conduction is discretized in the space domain to a 
system of ordinary differential equations in the 
time domain. The penalty parameter method is 
used for enforcement of the essential boundary 
conditions to the equations. A kind of finite 
difference method is used for time integration of 
the equations so that the fictitious isolations in 
the numerical results are suppressed. The 
presented formulation is general for 3D heat 
transfer. An analytical series solution is derived 
for the hyperbolic equation of non-Fourier heat 
conduction in a 1D domain for two types of 
boundary conditions. In the numerical results, the 
non-Fourier heat conduction in a slab is studied. 
A parametric study is done on the effect of the 
time integration parameter, dimensionless time 
step in the numerical integration and on the 
number of nodes in the meshless discretization. 
The series solution is employed to examine the 
accuracy of the predictions of the numerical 
method. It is shown that there is good agreement 
between the predictions of the numerical method 
and series solutions. It is concluded that the 
presented meshless method is efficient and 
accurate in the solution of non-Fourier heat 
conduction and it can be used for analysis of non-
Fourier heat transfer in solid structures. 
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