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determination of the impact responses. At the same time, in addition to 
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latent heat of the phase transformation. The resulting governing equations are 
solved by the finite element method. The nonlinear refined constitutive laws 
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reveal that incorporation of the heat generation effects is significant in 
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1. Introduction 
 
In many cases, the structural damping does not 
render adequately dissipation of the energies of 
the undesired structural oscillations. 
Attenuation of the vibration amplitude may be 
accomplished through using the SMA elements 
that consume the undesired energy for the phase 
transformations of the microstructure of the 
material. Some limited authors have studied 
low velocity impact responses of composite 
plate with embedded SMA wires. Khalili et al. 
[1], Shokuhfar et al. [2], Meo et al. [3], and Kim 
et al. [4] are among the well-known researchers 

in this area. Roh and Kim studied low-velocity 
impact responses [5] of the hybrid smart 
composite plates, employing a finite element 
formulation based on the first-order shear-
deformation plate theory. The majority of the 
numerical investigations on low-velocity 
impact of the SMA composite plates have been 
accomplished either by using the recovery 
stress concept or assumption of a uniform 
distribution of the martensite phase distribution. 
Furthermore, effects of the lateral flexibility and 
diversity of the materials of the underneath 
layers have not been considered in the majority 
of the available articles. Shariyat and Jafari [6] 

mailto:shariyat@kntu.ac.ir


JCARME                                                     A. Niknami, et al.                                                 Vol. 6, No. 2 

14 

 

and Shariyat and Farzan Nasab [7, 8] proposed 

modified contact laws that overcome these 

shortcomings. Using outcomes of these 
researches and modifying Brinson’s model, 

Shariyat and Moradi [9] investigated impact 

responses of hybrid composite plates with 

embedded SMA wires. Recently, Shariyat and 
Hosseini [10] have extended these novelties 

through accurate eccentric impact analysis of 

the preloaded SMA composite plates, proposing 
a new mixed-order hyperbolic global-local 

plate theory. 

Effects of the loading rate on responses of the 

abruptly loaded SMA structures were discussed 
by some authors. In order to simulate the strain 

rate effect in phase transformation of the SMA, 

Helm and Haupt [11] proposed a model within 
the continuum thermo-mechanics framework 

and showed that the SMAs exhibit strong 

thermo-mechanical coupling and consequently, 
the material model must comply with the 

second law of thermodynamic. Tobushi et al. 

[12] studied the influence of the load-rate on 

superelastic properties of the TiNi shape 
memory alloy and demonstrated that the 

temperature increases in proportion to the strain 

rate. Kadkhodaei et al. [13] presented a 
Helmholtz free energy expression for the SMAs 

that involved effects of the strain rate. Other 

studies in this field have been published by 
Monteiro et al. [14], Morin et al. [15], and Roh 

[16].  

All the aforementioned impact researches have 

only considered effects of the superelastic 
characteristics of the SMA wires on the impact 

responses. In the present analysis, effects of the 

superelasticity and shape memory natures of the 
SMA wires of the impacted SMA composite 

plates are considered simultaneously, for the 

first time. In addition to refining Brinson’s 

model for the SMAs and Hertz contact law, 
influences of the impact-induced-heat on the 

resulting phase transformations and responses 

are considered based on the energy balance and 
thermodynamic equations. The finite element 

form of the governing equations is solved by an 

iterative numerical time integration method 
wherein the nonlinear constitutive equations are 

solved by a Newton-Raphson procedure, within 

each time step.  

2. The governing equations 
 
2.1. The thermodynamic formulation 
 
Length, width, and thickness of the plate are 

denoted by a, b, and h, respectively and initial 

velocity and radius of the rigid spherical 
indenter are denoted by V and R, respectively 

(Fig. 1).  

 

 
Fig. 1. The configuration of the composite plate with 

embedded SMA wires, and the employed 

rectangular elements. 

 
Effects of transformation rate of the SMA wires 

on the resulting temperature rise may be 

determined based on the first law of 
thermodynamics [17, 18]: 

 

𝑞𝑖,𝑖 − 𝜎𝑖𝑗𝜀�̇�𝑗 + 𝜌0(𝑓̇ + �̇�𝑆)

− 𝜌0(𝑟 − 𝑇�̇�) = 0 

(1) 

 

where 𝑞, 𝜎𝑖𝑗, 𝜀�̇�𝑗, 𝜌0, 𝑓, 𝑇, 𝑆,   and 𝑟 are the heat 

flux vector, Cauchy’s stress tensor, strain-rate 

tensor, mass density, Helmholtz free energy, 

temperature, entropy, and the internal heat 
generation, respectively. The comma symbol 

denotes a partial differentiation with respect to 

the indicated parameter. On the other hand, 
based on the second law of thermodynamics: 

 

𝜎𝑖𝑗 = 𝜌0
𝜕𝑓

𝜕𝜀𝑖𝑗
 

𝑆 = −
𝜕𝑓

𝜕𝑇
 

Λ = −𝜌0
𝜕𝑓

𝜕𝜉
 

(2) 

 

where Λ is the driving force of the 

transformation and 𝜉 is the martensite volume 

fraction. The Helmholtz free energy expression 

that is especially suitable for dynamic loading 
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of SMAs may be proposed by extending that of 

Ref. [13]: 

 

𝑓 =
𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙
2𝜌0

−
𝛽𝑖𝑗(𝑇 − 𝑇0)𝜀𝑖𝑗

𝜌0

−
𝜀𝑙𝜉𝑠𝐸𝑠𝑉𝑠𝜀11

𝜌0
+ 𝑉𝑠

𝜆

𝑇∗
(𝑇 − 𝑇∗)𝜉

+ 𝐶𝐸 (𝑇 − 𝑇0 − 𝑇𝑙𝑛 (
𝑇

𝑇0
)) 

(3) 

 

where 𝐶𝑖𝑗𝑘𝑙 , 𝛽𝑖𝑗 , 𝜀𝑙 , 𝜉𝑠 , 𝐸𝑠 , 𝑉𝑠 , 𝜆, 𝑇
∗, 𝐶𝐸 , and 𝑇0 

are the elasticity tensor, stress-temperature 

coupling coefficients, maximum recoverable 
strain, stress-induced martensite volume 

fraction, modulus of the SMA, SMA volume 

fraction of the hybrid composite, latent heat of 
the phase transformation, critical temperature, 

the specific heat of the material, and  initial 

temperature, respectively. Comparing Eqs. (2) 

and (3), the transformation driving force and 
entropy may be written in the following explicit 

forms: 

 

Λ = −𝜌0
𝜕𝑓

𝜕𝜉
= 𝜀𝑙𝐸𝑠𝑘𝑠𝜀11

− 𝜌0𝑉𝑠
𝜆

𝑇∗
(𝑇 − 𝑇∗) 

 

(4) 

𝑆 = −
𝜕𝑓

𝜕𝑇
=
𝛽𝑖𝑗𝜀𝑖𝑗
𝜌0

− 𝑉𝑠
𝜆

𝑇∗
𝜉

+ 𝐶𝐸𝑙𝑛 (
𝑇

𝑇0
) 

(5) 

 
The second term of the last side of Eq. (5), i.e., 

Vs
λ

T∗
ξ that has been ignored by other 

researchers is retained in the present research. 

The rate form of the entropy equation (5) may 

be written as follows: 

 

�̇� =
𝛽𝑖𝑗𝜀�̇�𝑗
𝜌0

− 𝑉𝑠
𝜆

𝑇∗
�̇� + 𝐶𝐸

�̇�

𝑇
 (6) 

 

Generally, in low-velocity impacts, the first 

term of right-hand side of Eq. (6), i.e., 
𝛽𝑖𝑗 �̇�𝑖𝑗

𝜌0
 may 

be neglected in comparison to the second one, 

that contains the heat generated by the latent 

heat [17, 18].  

 

𝑞𝑖,𝑖 − (𝜀𝑙𝐸𝑠𝜀11 + 𝜌0𝜆)𝑉𝑠ξ̇

+ 𝜌0𝐶𝐸�̇� = 0 
(7) 

 

Equation (7) reveals that the martensite 

transformation produces heat and causes 

temperature rise and vice versa.  

 
2.2. The refined constitutive and contact laws 
 
The constitutive relation of the ith layer of the 

plate in the principal coordinates of the material 

is:  
 

{
 
 

 
 
𝜎1
𝜎2
𝜏12
𝜏13
  𝜏23}

 
 

 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄12 𝑄22 0 0 0
0 0 𝑄44 0 0
0 0 0 𝑄55 0
0 0 0 0 𝑄66]

 
 
 
 

 

{
 
 

 
 
𝜀1 − α1∆T
𝜀2 − α2∆T

𝛾12
𝛾13
𝛾23 }

 
 

 
 

= 𝑸(𝜺 − 𝜺𝑻) 

(8

) 

 

where the subscripts 1, 2, and 3 correspond to 

the fiber direction, the in-plane transverse 
direction of the fiber and the out-of plane 

transverse direction of the fiber, respectively, 

and the non-zero components of the reduced 

stiffness matrix 𝑄 are: 

𝑄11 =
𝐸1

1 − 𝜈12𝜈21
 

𝑄22 =
𝐸2

1 − 𝜈12𝜈21
 

𝑄12 =
𝜈12𝐸2

1 − 𝜈12𝜐21
 ,     𝑄44

= 𝐺 12 

𝑄55 = 𝐺13 ,     𝑄66 = 𝐺23 

(9) 
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where E, ν, G, α, and 𝜺𝑻 are Young’s modulus, 

Poisson’s ratio, shear modulus, the coefficient 

of the thermal expansion, and vector of the 

thermal strains, respectively. Based on 
Brinson’s constitutive equation of the shape 

memory alloy [19], the stress and strain 

quantities may be related through the martensite 

volume fraction (ξ) as: 

 

σ− σ0 = 𝐸(𝜉)𝜀 − 𝐸(𝜉0)𝜀0
+Ω(𝜉)𝜉𝑠
−Ω(𝜉0)𝜉𝑠0
+Θ(𝑇 − 𝑇0),      

𝜉 = 𝜉𝑠 + 𝜉𝑇 

(10) 

 

where Ω is the transformation function and ξs 
and ξT represent the stress- and temperature-

induced martensite volume fractions, 

respectively. The subscript 0 denotes the initial 
quantities of the local or global event under 

investigation. The Young’s modulus of 

elasticity of the SMA is dependent on the 

martensite and austenite moduli; so that, 
according to the rule of mixtures:  

 

𝐸(𝜉) = 𝐸𝐴 + 𝜉(𝐸𝑀 − 𝐸𝐴) 
Ω(𝜉) = −𝜀𝑙𝐸(𝜉) 

(11) 

 

where 𝐸𝐴 and 𝐸𝑀 are Young’s moduli of the 
austenite and martensite phases, respectively. In 

this regard, the following kinetic laws of the 

transformation may be used: 
(i) Conversion from the austenite to the de-

twinned martensite phase (𝜎𝑠
𝑐𝑟 + 𝐶𝑀(𝑇 −

𝑀𝑠) < 𝜎 < 𝜎𝑓
𝑐𝑟 + 𝐶𝑀(𝑇 − 𝑀𝑠) and 𝑇 >

𝑀𝑠): 
 

𝜉𝑠 =
1 − 𝜉𝑠0
2

× cos {
𝜋

𝜎𝑠
𝑐𝑟 − 𝜎𝑓

𝑐𝑟 [𝜎

− 𝜎𝑓
𝑐𝑟 − 𝐶𝑀(𝑇 − 𝑀𝑠)]} +

1 + 𝜉𝑠0
2

 

𝜉𝑇 = 𝜉𝑇0 −
𝜉𝑇0

1 − 𝜉𝑠0
(𝜉𝑠 − 𝜉𝑠0) 

(12) 

 
(ii)  Conversion from de-twinned martensite to 

austenite phase. For 𝑇 > 𝐴𝑠 and 𝐶𝐴(𝑇 −

𝐴𝑓) < 𝜎 < 𝐶𝐴(𝑇 − 𝐴𝑠) 

 

𝜉 =
𝜉0
2
× {cos [

𝜋

𝐴𝑓 − 𝐴𝑠
(𝑇 − 𝐴𝑠

−
𝜎

𝐶𝐴
)] + 1} 

𝜉𝑠 = 𝜉𝑠0 −
𝜉𝑠0

𝜉0
(𝜉0 − 𝜉), 

𝜉𝑇 = 𝜉𝑇0 −
𝜉𝑇0
𝜉0
(𝜉0 − 𝜉) 

(13) 

𝐴𝑠, 𝐴𝑓, and 𝑀𝑠 correspond to the start and finish 

temperatures of the austenite phase 
transformation and temperature of the start of 

the martensite transformation, respectively. 

 𝐶𝑀 , 𝐶𝐴 , 𝜎𝑠
𝑐𝑟 and 𝜎𝑓

𝑐𝑟 are the SMA 

transformation properties [20]. Since the 

structure is subjected to thermo-mechanical 
loads, Eq. (8) may be modified for a layer with 

embedded SMA wires in the transformed 

coordinates, as: 

 

�̅� =

{
 
 

 
 
𝜎xx
𝜎yy
𝜏xy
𝜏xz
𝜏yz}
 
 

 
 

=

[
 
 
 
 
 
 𝑄11 𝑄12 𝑄16 0 0

𝑄12 𝑄22 𝑄26 0 0

𝑄16 𝑄26 𝑄66 0 0

0 0 0 𝑄45 𝑄55

0 0 0 𝑄44 𝑄45]
 
 
 
 
 
 

× 

{
 
 

 
 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

−

{
 
 

 
 

α𝑥𝑥Δ𝑇
α𝑦𝑦Δ𝑇

2αxy

0
0 }

 
 

 
 

}
 
 

 
 

−

{
 
 

 
 

𝑘𝑠𝐸𝑠𝜉𝑠𝜀𝐿 cos
2(𝜃)

𝑘𝑠𝐸𝑠𝜉𝑠𝜀𝐿 sin
2(𝜃)

𝑘𝑠𝐸𝑠𝜉𝑠𝜀𝐿 sin(𝜃) cos(𝜃)

0
0 }

 
 

 
 

= �̅�(�̅� − �̅�𝑇) − �̅�
s 

(14) 
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where, Es and ε̅T are the modulus of elasticity 

of the SMA material and thermal strains vector 

in the body coordinates of the material, 

respectively. The non-zero components of the 

transformed reduced stiffness matrix �̅� are [21]: 
 

𝑄11 = 𝑄11𝑐𝑜𝑠
4𝜃

+ 2(𝑄12
+ 2𝑄66)𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃
+ 𝑄22𝑠𝑖𝑛

4𝜃 

𝑄12 = (𝑄11 + 𝑄22
− 4𝑄66)𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃
+ 𝑄12(𝑠𝑖𝑛

4𝜃
+ 𝑐𝑜𝑠4𝜃) 

𝑄22 = 𝑄11𝑠𝑖𝑛
4𝜃

+ 2(𝑄12
+ 2𝑄66)𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃
+ 𝑄22𝑐𝑜𝑠

4𝜃 

𝑄16 = (𝑄11 − 𝑄12
− 2𝑄66)𝑠𝑖𝑛𝜃𝑐𝑜𝑠

3𝜃
+ (𝑄12 − 𝑄22
+ 2𝑄66)𝑠𝑖𝑛

3𝜃𝑐𝑜𝑠𝜃 

𝑄26 = (𝑄11 − 𝑄12
− 2𝑄66)𝑠𝑖𝑛

3𝜃𝑐𝑜𝑠𝜃
+ (𝑄12 − 𝑄22
+ 2𝑄66)𝑠𝑖𝑛𝜃𝑐𝑜𝑠

3𝜃 

𝑄66 = (𝑄11 + 𝑄22 − 2𝑄12
− 2𝑄66)𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃
+ 𝑄66(𝑠𝑖𝑛

4𝜃
+ 𝑐𝑜𝑠4𝜃) 

𝑄44 = 𝑄44𝑐𝑜𝑠
2𝜃 + 𝑄55𝑠𝑖𝑛

2𝜃 

𝑄45 = (𝑄55 − 𝑄44)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 

𝑄55 = 𝑄55𝑐𝑜𝑠
2𝜃 + 𝑄44𝑠𝑖𝑛

2𝜃 

𝛼
𝑥𝑥
= 𝛼1𝑐𝑜𝑠

2𝜃 + 𝛼2𝑠𝑖𝑛
2𝜃 

𝛼
𝑦𝑦
= 𝛼1𝑠𝑖𝑛

2𝜃 + 𝛼2𝑐𝑜𝑠
2𝜃 

𝛼
𝑥𝑦
= (𝛼1 − 𝛼2)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 

(15) 

 

Since it is assumed that the SMA wires are 

parallel to the composite fibers, the following 
relations may be used to determine the effective 

material properties of each layer in the principal 

directions of the fibers, using the 

micromechanical relations appeared in Eq. (11) 

[22]: 

𝐸1 = 𝐸1𝑐𝑉𝑐 + 𝐸𝑠𝑉𝑠 
𝐸2 = 𝐸2𝑐𝐸𝑠 (𝑉𝑐𝐸𝑠 + 𝑉𝑠𝐸2𝑐)⁄  

𝐺12 = 𝐺12𝑐𝐺𝑠 (𝑉𝑐𝐺𝑠 + 𝑉𝑠𝐺12𝑐)⁄  

𝐺13 = 𝐺13𝑐𝐺𝑠 (𝑉𝑐𝐺𝑠 + 𝑉𝑠𝐺13𝑐)⁄  

𝜈12 = 𝜈12𝑐𝑉𝑐 + 𝜈𝑠𝑉𝑠  
𝜌 = 𝜌𝑐𝑉𝑐 + 𝜌𝑠𝑉𝑠 
𝛼1 = 𝛼1𝑐𝑉𝑐 + 𝛼𝑠𝑉𝑠  
𝛼2 = 𝛼2𝑐𝛼𝑠/(𝛼2𝑐𝑉𝑠 + 𝛼𝑠𝑉𝑐) 

(16) 

 
where the subscripts s and c stand for the SMA 

and composite materials, respectively. The 

traditional Hertz contact law should be 

modified based on a proper micromechanical 
model and a further refinement that considers 

the finite thickness of the plate is required. For 

a transversely isotropic plate impacted by a 
rigid spherical indenter, Turner’s modification 

of Hertz law [23] may be further enhanced 

based on the employed micromechanical 
model, as follows [24]: 

 

 
𝐹𝑐 = 

8

3
𝐺12√2𝑅�̂�

3 2⁄

(1 − 𝜈12)√
𝐸1 𝐸2−𝜈13

2⁄

1−𝜈12
2

√√
𝐸1 𝐸2−𝜈13

2⁄

1−𝜈12
2 +

(𝐸1 2𝐺13⁄ )−𝜈13(1+𝜈12)

1−𝜈12
2

 (17) 

 

where, α̂ is the indentation value. For the 

unloading phase, Yang and Sun law [25] may 

be employed: 
 

𝐹𝑐 = 𝐹𝑚𝑎𝑥 (
�̂� − �̂�0

�̂�𝑚𝑎𝑥 − �̂�0
)

5

2

 (18) 

 

where, 𝐹𝑚𝑎𝑥 is the maximum contact force 

reached during the impact, αmax is the 

maximum indentation corresponds to Fmax and 

α0 is the permanent indentation, if any. 

 
2.3. The governing nonlinear equations of 
motion 
 

Using the quadrilateral element, the finite 
element form of Reddy’s third-order shear 

deformation theory becomes: 
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𝜹(𝑥,𝑦, 𝑧, 𝑡) = {
u
v
w 
}

=

[
 
 
 
 
 𝓝 𝟎

−4𝑧2

3ℎ2
𝓝,𝑥 (𝑧 −

4𝑧2

3ℎ2
)𝓝 𝟎

𝟎 𝓝
−4𝑧2

3ℎ2
𝓝,𝑦 𝟎 (𝑧 −

4𝑧2

3ℎ2
)𝓝

𝟎 𝟎 𝓝 𝟎 𝟎 ]
 
 
 
 
 

× 

{
 
 

 
 
𝐔
𝐕
𝐖
𝚽𝐱

𝚽𝐲}
 
 

 
 

= ℕ(𝑥, 𝑦, 𝑧)𝚫(𝑡) 

(19) 

where 𝛅 and 𝚫 are the displacement components 

and nodal displacement components vectors, 

respectively. U, V, and W are the nodal 

displacements of the reference plane, and 𝚽𝐱 

and 𝚽𝐲 are nodal rotations of the cross-section 

in the x–z and y–z planes, respectively. 𝓝 is the 

shape functions matrix of the quadrilateral 

element [26]. Therefore: 
 

�̅� =

{
 
 

 
 
𝜀x
𝜀y
𝛾xy
𝛾xz
𝛾yz}
 
 

 
 

= 

[
 
 
 
 
 
 
 
 
 
 
𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

𝜕

𝜕𝑦

𝜕

𝜕𝑥
 0

𝜕

𝜕𝑧
0

𝜕

𝜕𝑥

0
𝜕

𝜕𝑧

𝜕

𝜕𝑦]
 
 
 
 
 
 
 
 
 
 

𝜹

= 𝓓ℕ𝚫 = 𝓑𝚫 

(20) 

The transverse distribution of the temperature 
rise may be assumed to linear; an assumption 

that may be justified, especially for the thin 

plates (as using the first-order plate theory): 

 

𝜃∗(x, y, z, t) = T0(x, y, t)
+ zT1(x, y, t)

= [𝓝 𝑧𝓝] {
𝑻𝟎
𝑻𝟏
}

= 𝓖𝚯 

(21) 

The governing equations may be derived using 
the variational principles. Based an approach 

proposed earlier by Serra and Bonaldi [27] (not 

for SMAs) the residues of the energy balance 

Eq. (7) and the equation of motion in terms of 
the stress components may be multiplied 

respectively, by variations of the temperature 

and displacement components in the integrals of 

the weighted residuals. Combining the two 

equations, using Fourier heat transfer law and 
integrating by parts, leads to: 

∫𝜌0𝐶𝐸𝜃 ∗̇𝛿𝜃
∗𝑑𝑉

𝑉

−∫𝜀𝑙𝐸𝑠𝑉𝑠𝜀11ξ̇𝛿𝜃∗𝑑𝑉
𝑉

−∫𝜌0𝑉𝑠𝜆ξ̇𝛿𝜃∗𝑑𝑉
𝑉

+∫𝑘𝑖𝑗𝜃
∗
,𝑗𝛿𝜃

∗
,𝑖𝑑𝑉

𝑉

+∫𝜎𝑖𝑗𝛿𝜀�̅�𝑗𝑑𝑉
𝑉

+∫𝜌𝑢𝑖̈ 𝛿𝑢𝑖𝑑𝑉
𝑉

= −∫𝑞𝑖𝑛𝑖𝛿𝜃
∗𝑑𝐴

𝐴

+∫𝜎𝑖𝑗𝑛𝑗𝛿𝑢𝑖𝑑𝐴
𝐴

+ ∫𝑋𝑖𝛿𝑢𝑖𝑑𝑉
𝑉

 

(22) 

The proposed terms of Eq. (22) should be 

expanded and integrated through the thickness. 
Substituting the quantities by their finite 

element equivalents, leads to the following 

result, in absence of the body forces: 
 

𝛿𝚫𝑻∫ ∫ (𝜌0ℕ
𝑻ℕ�̈�

ℎ

2

−
ℎ

2
Ω0

+𝓑𝑻�̅�𝓑𝚫)𝑑𝑧𝑑Ω0

+ 𝛿𝚯𝑇 {∫ [∫ ([𝜌0𝐶𝐸𝓖
𝑇𝓖�̇�

ℎ

2

−
ℎ

2
Ω0

+ 𝑘𝑖𝑗𝓖,𝒊
𝑇𝓖,𝒋𝚯]

− 𝜀𝑙𝐸𝑠𝑉𝑠 ξ̇𝓖
𝑇[1 0 0 0 0]𝓑𝚫)𝑑𝑧

+ ℎ𝓖𝑇𝓖𝚯]𝑑Ω0}

= 𝛿𝚯𝑇∫ {∫ 𝜌0𝑉𝑠𝜆ξ̇𝓖𝑇𝑑𝑧

ℎ

2

−
ℎ

2
Ω0

− [𝑞𝑛 + ℎ(𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑇∞)]𝓖
𝑇}𝑑Ω0

+ 𝛿𝚫𝑻∫ ∫ 𝓑𝑻(�̅�𝜺𝑇 + 𝝈
s)𝑑𝑧𝑑Ω0

ℎ

2

−
ℎ

2
Ω0

+ 𝐹𝑐𝛿𝑤𝑖 

(23) 
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where Ω0 represents area of the reference plane 

of the plate and the subscripts, n and s denote 

directions normal and tangent to the boundary, 

respectively. 𝐹𝑐 and 𝑤𝑖 are respectively the 
contact force and vertical displacement of the 

indenter and 𝑞𝑛 denotes the transverse thermal 

flow. In the derivation of Eq. (23), the total 
transverse thermal heat flux is assumed to 

include the conduction and convection heat 

fluxes: 
 

𝒬𝑛 = 𝑞𝑛 + ℎ(𝓖𝚯 + 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑇∞) (24) 
 
where, h is coefficient of the convection heat 

transfer of the top/bottom surface of the plate. 

The temperature rise and displacement 

parameters may be gathered in an augmented 
vector of unknowns as follows: 

 

{

u
v
w
𝜃∗

} = [
ℕ 𝟎
𝟎 𝓖

] {
𝚫
𝚯
} = 𝚵𝚲 (25) 

 
Based on Eq. (23), the coupled governing 

thermomechanical equations of motion of the 

plate became: 
 

𝛿𝚲𝑻[𝓜�̈� + 𝓒(𝚲)�̇� +𝓚(𝚲)𝚲

− 𝓕(𝚲)] = 0 
(26) 

 
Equation (26) must hold for any arbitrary choice 

of 𝛅𝚲 ≠ 𝟎. Therefore, 

 

𝓜�̈� + 𝓒(𝚲)�̇� + 𝓚(𝚲)𝚲 = 𝓕(𝚲)𝑻 (27) 
 

The system of Eq. (27) has to be assembled with 

the governing equation of motion of the 

indenter based on Newton’s second law [28, 
29]: 

𝑚𝑖�̈�𝑖 + 𝑘𝑐(𝑤𝑖 −𝑤𝑐)
3/2 = 0 (28) 

where 𝑘𝑐 and 𝑤𝑐 are the impact stiffness and 

lateral deflection of the central point of the 

plate, respectively. 

 
3. Solution procedure 
 
The resulting governing finite element 

equations of the hybrid plate are highly 

nonlinear; because both nonlinear piecewise-

defined material constitutive equations and 

nonlinear contact law are used. The resulting 
system of equations is solved iteratively within 

each time step, using a return-mapping Newton-

Raphson algorithm that is especially used to 

solve the non-linear constitutive equation of the 
SMA. In this procedure, the residue may be 

defined based on Eq. (10) as: 

 

ℛ = σ − 𝐸(𝜉)𝜀 − 𝐸(𝜉0)𝜀0
+Ω(𝜉)𝜉𝑠
−Ω(𝜉0)𝜉𝑠0
+Θ(𝑇 − 𝑇0)
= 𝑲(σ)σ− 𝑭 

(28) 

So that the tangent stiffness matrix (KT) and 
increment of the unknown stress of an arbitrary 

nodal point may be defined as follows:  

 

𝑲𝑻 =
𝜕ℛ

𝜕σ
|
σ
 ,          ∆σ = −𝑲𝑻

−1ℛ (29) 

 

Therefore, based on Eqs. (11), and (14): 

ℛ = �̅�11(𝜀𝑥 − 𝛼𝑥𝑥Δ𝑇)

+ �̅�12(𝜀𝑦𝑦 − 𝛼𝑦𝑦Δ𝑇)

+ �̅�16(𝛾𝑥𝑦 − 2𝛼𝑥𝑦Δ𝑇)

− 𝑉𝑠𝐸𝑠𝜉𝑠𝜀𝑙 cos
2 𝜃 − 𝜎𝑥 

𝑲𝑻 =
𝜕�̅�11
𝜕𝜎

(𝜀𝑥 − 𝛼𝑥Δ𝑇)

+ �̅�11 (−
𝜕𝛼𝑥
𝜕𝜎

Δ𝑇)

+
𝜕�̅�12
𝜕𝜎

(𝜀𝑦 − 𝛼𝑦Δ𝑇)

+ �̅�12 (−
𝜕𝛼𝑦
𝜕𝜎

Δ𝑇)

+
𝜕�̅�16
𝜕𝜎

(𝛾𝑥𝑦 − 2𝛼𝑥𝑦Δ𝑇)

+ �̅�16 (−2
𝜕𝛼𝑥𝑦
𝜕𝜎

Δ𝑇)

− 𝑉𝑠𝜀𝑙 cos
2 𝜃
𝜕(𝐸𝑠𝜉𝑠)

𝜕𝜎
− 1 

(30) 

The stress value of the kth iteration may be 

determined from: 

 

𝜎𝑘+1 = 𝜎𝑘 + ∆𝜎 (31) 
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The expanded form of the partial 

differentiations appeared in Eq. (30) is: 

 

𝜕�̅�11
𝜕𝜎

=
𝜕𝑄11
𝜕𝜎

𝑐𝑜𝑠4𝜃

+ 2 (
𝜕𝑄12
𝜕𝜎

+ 2
𝜕𝑄44
𝜕𝜎

) 𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃

+
𝜕𝑄22
𝜕𝜎

𝑠𝑖𝑛4𝜃 

𝜕�̅�12
𝜕𝜎

= (
𝜕𝑄11
𝜕𝜎

+
𝜕𝑄22
𝜕𝜎

− 4
𝜕𝑄44
𝜕𝜎

) 𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃

+
𝜕𝑄12
𝜕𝜎

(𝑠𝑖𝑛4𝜃

+ 𝑐𝑜𝑠4𝜃) 
𝜕𝛼𝑥𝑥
𝜕𝜎

=
𝜕𝛼1
𝜕𝜎

(cosθ)2

+
𝜕𝛼2
𝜕𝜎

(sinθ)2 ,     
𝜕𝛼𝑦𝑦
𝜕𝜎

=
𝜕𝛼1
𝜕𝜎

(sinθ)2

+
𝜕𝛼2
𝜕𝜎

(cosθ)2 

𝜕�̅�16
𝜕𝜎

= (
𝜕𝑄11
𝜕𝜎

−
𝜕𝑄12
𝜕𝜎

− 2
𝜕𝑄44
𝜕𝜎

) 𝑠𝑖𝑛𝜃𝑐𝑜𝑠3𝜃

+ (
𝜕𝑄12
𝜕𝜎

−
𝜕𝑄22
𝜕𝜎

+ 2
𝜕𝑄44
𝜕𝜎

) 𝑠𝑖𝑛3𝜃𝑐𝑜𝑠𝜃 

𝜕𝛼𝑥𝑦
𝜕𝜎

= (
𝜕𝛼1
𝜕𝜎

−
𝜕𝛼2
𝜕𝜎

) sinθcosθ 

𝜕(𝐸𝑠𝜉𝑠)

𝜕𝜎
=
𝜕ξ

𝜕𝜎
(𝐸𝑀 − 𝐸𝐴)𝜉𝑠 +

𝜕ξs
𝜕𝜎

𝐸𝑠 

 

 

(32) 

and, based on Eqs. (12) and (13): 

(i) For  conversion from the austenite to the 

de-twinned martensite phase: 

 

𝜕ξs
𝜕𝜎

=
1 − 𝜉𝑠0
2

[
−𝜋

𝜎𝑠
𝑐𝑟 − 𝜎𝑓

𝑐𝑟 sin {
𝜋

𝜎𝑠
𝑐𝑟 − 𝜎𝑓

𝑐𝑟 [𝜎

− 𝜎𝑓
𝑐𝑟 − 𝐶𝑀(𝑇 −𝑀𝑠)]}] 

𝜕ξT

𝜕𝜎
= −

𝜉𝑇0

1−𝜉𝑠0

𝜕ξs

𝜕𝜎
,    

𝜕ξ

𝜕𝜎
=

𝜕ξs

𝜕𝜎
+

𝜕ξT

𝜕𝜎
 

(33) 

 
(ii) For conversion from de-twinned 

martensite to austenite phase: 

 
𝜕ξ

𝜕𝜎

=
𝜉0
2

𝜋

(𝐴𝑓 − 𝐴𝑠)𝐶𝐴
sin [

𝜋

𝐴𝑓 − 𝐴𝑠
(𝑇

− 𝐴𝑠 −
𝜎

𝐶𝐴
)] 

𝜕ξs
𝜕𝜎

=
𝜉𝑠0
𝜉0

𝜕ξ

𝜕𝜎
 

(34) 

 
4. Results and discussion 
 
While the element size is adopted based on a 

convergence analysis (whose results are not 

included here due to length restriction of the 
paper) in the present research, an integration 

time step in the order of 10−5(sec) is adopted to 

accurately trace the time history of the 
displacement parameters. This time step is 

much less than the fundamental period time of 

the structure and especially much less than the 

response time of the structure. 

 
4.1. Verification of the results 
 

Since instantaneous and localized phase 

transformations of the SMA wires have not 

been considered in the limited available 
researches on the impact analysis of the hybrid 

SMA composite plates, an example previously 

presented by Tiberkak et al. [30] is reconsidered 
to verify the results.  
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Fig. 2. A comparison between present and Tiberkak 

et al. [30] results for the time histories of the contact 

force. 

 

The predicted time histories of the contact force 

and lateral deflection predicted by the present 

analysis are compared with those of Tiberkak et 
al. in Figs. 2 and 3, respectively. These 

comparisons confirm the good agreement 

between the results.  

 
4.2. Results of the parametric study 
 
In order to investigate effects of the impact-

induced heat generation on the impact 

responses of composite plates with SMA wires, 
a simply supported plate whose top and bottom 

surfaces have convection heat transfer with the 

ambient is considered. Length, width, and 
thickness of the plate are 0.100, 0.100, and 

0.005 m, respectively. Specifications of the 

[0/90/0/90/0] composite plate and the indenter 

are as follows: 
 

Plate:     E1 = 120.7 GPa, E2 = 7.93 GPa, G12

= G13 = 5.5 GPa, ν12 = 0.3, ρ = 1580
kg

m3
 

Indenter:  E = 207 GPa, ν = 0.3 
To choose the proper analysis conditions for the 
SMA wires, the three loading paths shown in 

Fig. 4 are considered. Path 1 is associated with 

a case where both the superelastic and shape 

memory effects are engaged (T = 20C < 𝐴f), 
but the heat generation phenomenon is 

neglected. Path 2 is similar to path 1 but 

includes effects of the heat generation on the 
transformation from the austenite to the 

martensite phase. In both cases, the energy 

dissipation region includes the entire region 

beneath the stress-strain curve. Path 3 invokes 

the superelastic behavior. Therefore, it seems 

that paths 1 and 2 represent more dissipative 
conditions and for this reason, are chosen.      

 

 
Fig. 3. A comparison between the time histories of 

the lateral deflection of the central point, predicted 
by present results and results of Tiberkak et al. [30]. 

 

 

 
Fig. 4.The considered loading paths of the SMA. 

 

Three different velocities (V = 5, 10, 30
m

s
) and 

four different masses (m = 0.8, 2, 4, 6.8 kg) are 

considered for the indenter. The volume 

fractions of the composite (Vc) and SMA wires 

(Vs) in different layers are adopted as: Vc =
[0.5/1/ 1/ 1 /0.5] and Vs = [0.5/0/ 0/ 0 /
0.5], respectively. The thermal and mechanical 

specifications of the SMA wires are [31]: 

 

εl = 0.067, ρ = 6450
kg

m3
, EA = 67 GPa, EM

= 26.3 GPa, G = 29.4 GPa, As = 34.5 °C 

Af = 49 °C,Ms = 18.4 °C,Mf = 9 °C, CA

= 13.8
MPa

°C
, CM = 8

MPa

°C
, T0 = 20 °C 
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4.3. Results of V=5m/s 
 

The stress-strain variations and time histories of 
the martensite volume fraction and temperature 

rise of the impacted point of the plate are 

depicted in Figs. 5 to 7 for various indenter 

masses and compared with the traditional 
results wherein the impact-induced heat 

generation is neglected. From Fig. 5 it can be 

deduced that the highest stress induced by the 
0.8kg mass is lower than that required for the 

martensite phase transformation. The dissipated 

energy includes the whole region above each 

stress-strain curve. The difference percent in the 
dissipated energy due to neglecting the heat 

generation is given in Table 1, for various initial 

velocities and masses of the indenter. As Fig. 5 
shows, more energy dissipation is expected 

when considering the heat generation 

phenomenon. Based on the results of Table1, 
the maximum discrepancy due to neglecting the 

heat generation is associated with the 6.8 kg 

indenter (8.7%). Comparing Figs. 6 and 7, 

reveals that the temperature rise variations are 
somewhat in relation to the time history of the 

resulting martensite volume fraction. As may be 

easily noted from Figs. 5 to 7, heat generation 
phenomenon leads to higher stresses but less 

mechanical strains (due to the resulting 

relaxation) and consequently, slightly less 
martensite volume fraction. On the other hand, 

as may be expected, the contact time increases 

with the indenter mass.   

 

 
Fig. 5. Effects of the impact-induced heat generation 

on variations of the stresses and strains of the 

impacted point of the plate, for various indenter 

masses (V=5m/s). 

 

 
Fig. 6. Effects of the impact-induced heat generation 

on time history of the martensite volume fraction of 

the impacted point of the plate, for various indenter 

masses (V=5m/s). 

 

 
Fig. 7. Effects of the impact-induced heat generation 

on time history of the temperature rise of the 

impacted point of the plate, for various indenter 

masses (V=5m/s). 

 

Table 1. The discrepancies in the dissipated energy 

and the resulting stress magnitude, due to neglecting 

the impact-induced heat generation effects.   

Indenter 

velocity 

(m/s) 

Indenter 

mass 

(kg) 

Difference 

in the 

dissipated 

energy (%) 

Maximum 

discrepancy 

in the stress 

(%) 

5 0.8 0 0 

2 0.86 0.1 

4 2.73 1.9 

6.8 8.73 3.9 

10 0.8 1.89 1.1 

2 10.17 5.1 

4 52.72 9.7 

6.8 40.40 11.8 

30 0.8 35.65 12.9 

2 28.82 24.3 

4 26.93 13.2 

6.8 22.72 11.9 
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4.4. Results of V=10m/s 
 

Effects of the resulting heat generation are 
illustrated in Figs. 8 to 10. In this case, the phase 

transformation occurs even for the 0.8kg 

indenter, but the martensite volume fraction is 

still below 100 percent, even for the 6.8kg 
indenter. As can be seen from Table 1, the 

discrepancies have increased by increasing the 

indenter velocity.   
 

 
Fig. 8. Effects of the impact-induced heat generation 

on variations of the stresses and strains of the 

impacted point of the plate, for various indenter 

masses (V=10m/s). 

 

 
Fig. 9. Effects of the impact-induced heat generation 

on time history of the martensite volume fraction of 

the impacted point of the plate, for various indenter 

masses (V=10m/s). 

 

 

 

 
Fig. 10. Effects of the impact-induced heat 
generation on time history of the temperature rise of 

the impacted point of the plate, for various indenter 

masses (V=10m/s). 

 

Lateral deflection contour at the instant of 

maximum contact force is illustrated in Fig. 11.  

 
Fig. 11. Contours of the lateral deflection of the 

SMA composite plate, for the 6.8kg indenter. 

 

 

4.5. Results of V=30 m/s 
 

Finally, results are extracted for the maximum 

initial velocity of the indenter, i.e., V=30m/s 
and are plotted in Figs. 12 to 14. These figures 

show that in this case, neglecting the heat 

generation may lead to unreliable results with a 

mean error of 20% as may be seen in Table 1. 
Figure12 shows that SMA has become saturated 

at the impacted point, for the 4 and 6.8kg 

indenters, as Fig. 13 confirms. 

 



JCARME                                                     A. Niknami, et al.                                                 Vol. 6, No. 2 

24 

 

 
Fig. 12. Effects of the impact-induced heat 

generation on variations of the stresses and strains of 

the impacted point of the plate, for various indenter 

masses (V=30m/s). 

 

 
Fig. 13. Effects of the impact-induced heat 

generation on time history of the martensite volume 

fraction of the impacted point of the plate, for 

various indenter masses (V=30m/s). 

 

 
Fig. 14. Effects of the impact-induced heat 

generation on time history of the temperature rise of 

the impacted point of the plate, for various indenter 
masses (V=30m/s). 

 

Figure 14 reveals that the temperature rise has 

reached up to 12℃. This amount of temperature 

rise cannot be neglected. However, since the 
material properties assumed to be temperature-

independent, their effects on the global 

responses have not been remarkable. This can 

be observed from Fig. 15 that illustrates effects 

of the heat generation on the contact force of the 
plate. On the other hand, results of Table 1 

reveal that due to the nonlinear nature of the 

governing and contact equations, the resulting 

errors in the dissipated energy are case-
dependent and may reach up to 52% in some 

cases. Therefore, when the stress distribution is 

uniform and nonlocal, these effects may change 
the results by about 20%.    

 
Fig. 15. Effects of the impact-induced heat 
generation on time history of the temperature rise of 

the impacted point of the plate, for various indenter 

masses (V=30m/s, m=6.8kg). 

 
5. Conclusions 
 
In the present paper, effects of the impact-

induced heat generation on impact responses 

and phase transformations of a hybrid SMA 
composite plate are investigated through 

proposing a refined Helmholtz free energy 

expression and refined constitutive and contact 

laws, in addition to employing a return-map 
Newton-Raphson method for enhancement of 

the numerical solution algorithm. Several 

comparative results are extracted to evaluate the 
amount of errors caused by neglecting the heat 

generation effects in the dissipated energy. 

Also, results of the temperature profiles 
revealed that while effects of the heat 

generation on the global behaviors (e.g., the 

contact force) may be small; these effects can 

be significant for components with 
temperature-dependent properties. Moreover, 

results showed that for the considered data, if 

the local and global responses are almost 
identical (e.g., for components under pure 
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extensive impact loads), the errors due to 

neglecting the heat generation effects may reach 

up to 50% in the computed dissipated energy.  
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