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Article info:  Abstract 
Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-
Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied 
to solve water hammer equations. The schemes solve the equations in 
a reservoir-pipe-valve with an instantaneous and gradual closure of the 
valve boundary. The computational results are compared with those of the 
method of characteristics (MOC), and with the results of Godunov's 
scheme to verify the proposed numerical solution. The computations reveal 
that the proposed Lax-Friedrichs and Nessyahu-Tadmor schemes can predict 
the discontinuities in fluid pressure with an acceptable order of accuracy in 
cases of instantaneous and gradual closure. However, Lax-
Wendroff and Lax-Wendroff with nonlinear filter schemes fail to predict the 
pressure discontinuities in instantaneous closure. The independency of time 
and space steps in these schemes are allowed to set different spatial grid size 
with a unique time step, thus increasing the efficiency with respect to the 
conventional MOC. In these schemes, no Riemann problems are solved; 
hence field-by-field decompositions are avoided. As provided in the results, 
this leads to reduced run times compared to the Godunov scheme. 
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1. Introduction  
 
Transient flow in piping systems is generally 
caused by changes in flow conditions due to 
rapid closing or opening of valves, or due to 
start up or shutdown of pumps. Other causes of 
transient flow are load rejection of turbines, 
seismic excitation and pipe rupture. The 
phenomenon is generally called pressure surge 
or water hammer. Water hammer involves large 
transient pressure variations which can cause 
major problems such as noise, vibration, pipe 
collapse, etc. 

In order to prevent damage, water hammer can 
be suppressed and controlled by devices like 
surge tanks, air chambers, flexible hoses, pump 
flywheels, relief valves, and rupture disks. In 
practice, water hammer analyses are carried out 
to judge whether these quite expensive devices 
are necessary and, if so, what their dimensions 
should be [1]. Predicted maximum pressures 
determine the required strength of the pipework. 
Kwon and Lee simulated transient flow in a 
pipe involving backflow preventers using both 
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experimental and three different numerical 
models of the method of characteristics model 
(MOC), the axisymmetrical model and the 
implicit scheme model. The results of different 
computer models agree well with the 
experimental data [2]. Afshar and Rohani 
applied an implicit MOC to a problem of 
transient flow caused by the failure of a pump 
with and without a check valve and compared 
the results with those of the explicit MOC. 
Results showed that the implicit MOC can be 
used for any combination of devices to 
accurately predict the variations of head and 
flow in the pipeline system [3]. Sabbagh-Yazdi 
et al. applied a second-order explicit Godunov-
type scheme to water hammer problems. The 
minimum and maximum of the computed 
pressure waves were in close agreement with 
the analytical solution and laboratory data [4]. 
However, the method still fails in the precise 
prediction of discontinuities. Zhao and 
Ghidaoui applied first- and second-order 
Godunov-type schemes for water hammer 
problems. Numerical tests showed that the 
first-order Godunov gives the same results 
to the MOC with space-line interpolation 
[5]. Chaudhry and Hussaini solved water 
hammer equations by three explicit finite-
difference schemes (MacCormack’s method, 
Lambda scheme and Gabutti scheme). Their 
study revealed that for the same accuracy, 
second-order schemes required fewer 
computational nodes and less computer time as 
compared to those required by the first-order 
MOC [6]. Tijsseling and Bergant proposed a 
method based on the MOC, but a numerical grid 
is not required. The water hammer equations 
without friction have been solved exactly for the 
time-dependent boundary and constant (steady 
state) initial conditions with this method. Their 
method was the simplicity of the algorithm 
(recursion) and the fast and accurate (exact) 
calculation of transient events but calculation 
time strongly increased the events of longer 
duration [7]. Hou et al. [8] simulated water 
hammer with the corrective smoothed particle 
method (CSPM). The CSPM results are in good 
agreement with conventional MOC solutions. 

This paper aims at the investigation of four 
explicit finite difference solutions of water 
hammer and their comparison with the largely 
established solutions of MOC and Godunov. 
The implemented finite difference methods are 
fast, accurate and simple to program. The four 
schemes are two-step variant of the Lax-
Friedrichs (LxF) method, the Nessyahu-
Tadmor based (NT) method, two-step variant of 
the Lax Wendroff (LxW) method, and the LxW 
method with a nonlinear filter. A reservoir-
pipe-valve system, with both sudden and 
gradual valve-closure patterns, is taken into 
account to assess the results. To this end, 
Matlab codes based on the explicit central finite 
difference methods are provided. The 
computational results of these methods, as well 
as those of MOC and Godunov's scheme, are 
provided and discussed in detail. 
 
2. Mathematical modelling 
 
2.1. Governing equation 
 
If neglecting friction terms, the following 
continuity and momentum equations govern 
one-dimensional transient lfow in pipes�[9, 10]: 
 

 (1      )                                               𝜕𝑉

𝜕𝑥
+

𝑔

c2
𝜕𝐻

𝜕𝑡
= 0 

 )2 (                                                          
𝜕𝑉

𝜕𝑡
+ 𝑔

𝜕𝐻

𝜕𝑥
= 0 

 
where V = fluid velocity, H = fluid pressure 
head, g = gravitational acceleration, c = wave 
velocity, x = coordinate axis along the conduit 
length and t = time. 
Equations (1-2) are simplified unsteady pipe 
flow equations in which convective transport 
terms are neglected. A full derivation of these 
equations can be found in many water hammer 
texts e.g., [9-11] 
 
2.2. Solution procedures 
 
The computational grids consist of individual 
cells with spatial grid size ∆𝑥 and time step ∆𝑡 
(see Fig. 1.). In this study, multi-step methods 
are used to enhance convergence and accuracy. 
Multi-step methods, which use finite difference 
relations at split time levels, work well 
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especially when they are applied to non-linear 
hyperbolic equations [12]. 
The two governing equations can be written as 
the following compact form: 
 

  )3       (                        퐮 − 퐟(퐮) = 0, 퐮 = ,    

푨 =
 0        − 푐

푔
−푔              0

, 퐟(퐮) = 푨퐮 =
− 푐

푔 푉

−푔퐻
 

 
 

 
Fig. 1. Stencil for two time steps method. 

 
 
2.3. Lax-Friedrichs method 
 
The LxF method is the finite difference based 
numerical method appropriate for the solution 
of hyperbolic PDEs. This method is actually a 
prototype of many central schemes. The LxF 
method is conservative and monotone; 
therefore, this is a total variation diminishing 
(TVD) method. Like the original Godunov 
method, the LxF scheme is based on a piecewise 
constant approximation of the solution, but it 
does not require solving a Riemann problem for 
time advancing and only uses flux estimates 
[13]. The stability condition is the  ∆

∆
≤ 1, 

when c is the corresponding wave speed and  ∆푡 
and ∆푥 are time step and spatial step, 
respectively.  
In this method, firstly, a half time step is taken 
based on LxF scheme on a staggered mesh. 

Next, the second half step is implemented based 
on LxF to arrive at the solution on the original 
mesh. This discretization procedure, which 
adapts the two-step variant of LxF method on 
the staggered grid, is applied on Eq. (3). 
Accordingly, the first half step becomes [14]: 
 

)4 (                
퐮 (퐮 퐮 )

∆ = 퐟(퐮 ) 퐟(퐮 )
∆   →

  퐮 = (퐮 + 퐮 ) + ∆ (퐟(퐮 ) 퐟(퐮 )
∆

)     

 
Note that this step has to be applied for all 
spatial nodes in the time level  푛 +  . 
In the second half step, the desired unknowns 
are obtained as follows: 
 

)5(    
퐮 (퐮 퐮 )

∆ =
퐟(퐮 ) 퐟(퐮 )

∆   →       

퐮 =
1
2

퐮 + 퐮  

+
∆푡
2

(
퐟(퐮 ) − 퐟(퐮 )

∆푥
) 

 
In Fig. 2, the stencil of the two-step LxF scheme 
discussed before is plotted. 
 
 

 
Fig. 2. The stencil of the two-time step LxF.  

  
2.4. Nessyahu-Tadmor method 
 
Actually, the prototype of NT method is LxF 
scheme. The stability condition again is ∆

∆
≤

1. It is based on a staggered grid and uses the 

http://en.wikipedia.org/wiki/Hyperbolic_partial_differential_equation
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reconstruction of Monotonic Upstream-
Centered (MUSCL) type piecewise linear 
interpolants in space, oscillation-suppressing 
nonlinear limiters, and the midpoint quadrature 
rule for the numerical integration with respect 
to time [13]. On this basis, the discretized form 
of Eq. (3) with NT method on the staggered grid 
reads: 
 

 )6(  𝐮
𝑖+

1

2

𝑛+
1

2 =
1

2
(𝐮𝑖

𝑛 + 𝐮𝑖+1
𝑛 ) +

1

8
(d𝐮𝑖 − d𝐮𝑖+1) 

    +λℎ𝑎𝑙𝑓 [𝐟 (𝐮𝑖+1
𝑛+

1

4) − 𝐟 (𝐮𝑖
𝑛+

1

4)]  

 

in which λℎ𝑎𝑙𝑓 =
0.5∆𝑡

∆𝑥
 and the terms 𝐮

𝑖+1

𝑛+
1

4 and 

𝐮
𝑖

𝑛+
1

4 are as follows: 
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𝑛+
1

4 = 𝐮𝑖+1
𝑛 +

λℎ𝑎𝑙𝑓

2
d𝐅𝑖+1   

 𝐮
𝑖

𝑛+
1
4 = 𝐮𝑖

𝑛 +
λℎ𝑎𝑙𝑓

2
d𝐅𝑖 

 
Making use of the representation 𝐅𝑖 = 𝐟(𝐮𝑖𝑛) to 
approximate the partial derivatives scaled by ∆𝑥 
gives: 
 

)8(       d𝐅𝑖+1 = 𝑀𝑀(𝐅𝑖+2 − 𝐅𝑖+1, 𝐅𝑖+1 − 𝐅𝑖)    
d𝐅𝑖 = 𝑀𝑀(𝐅𝑖+1 − 𝐅𝑖, 𝐅𝑖 − 𝐅𝑖−1)   
 
Herein MM is the MinMod limiter [15] which 
can be defined for two scalar arguments a and b 
as: 
 

(9)                                                          𝑀𝑀(𝑎, 𝑏) = 
1

2
(𝑠𝑖𝑔𝑛(𝑎) + 𝑠𝑖𝑔𝑛(𝑏)) min (|𝑎|, |𝑏|) 

 
Likewise 𝑑𝐮𝑖 and 𝑑𝐮𝑖+1 in Eq. (6) are 
evaluated: 
 
d𝐮𝑖+1 = 𝑀𝑀(𝐮𝑖+2 − 𝐮𝑖+1, 𝐮𝑖+1 − 𝐮𝑖)      (10) 
d𝐮𝑖 = 𝑀𝑀(𝐮𝑖+1 − 𝐮𝑖, 𝐮𝑖 − 𝐮𝑖−1)   
 
Eq. (6) provides a piecewise constant 
approximation at time level 𝑛 + 1

2
. The second 

step is exactly the same as Eq. (6) with some 
changes: 
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The variables of Eq. (11) provide an analogous 
relation to Eqs. (7, 8and10) if therein substitute 
indices 𝑛 + 1

4
 to + 3

4
 , 𝑛 to 𝑛 + 1

2
, 𝑖 to 𝑖 − 1

2
 , 𝑖 +

1 to 𝑖 + 1

2
, 𝑖 − 1 to 𝑖 − 3

2
  and 𝑖 + 2 to 𝑖 + 3

2
. 

 
2.5. Lax-Wendroff and Lax-Wendroff with 
nonlinear filter methods 
 
The Lax-Wendroff finite-difference scheme can 
be derived from a Taylor-series expansion [12]. 
This scheme is second-order accurate with 
truncation error order of 𝑂[(∆𝑥)2, (∆𝑡)2]. It is 
also stable for  𝑐∆𝑡

∆𝑥
≤ 1. When the scheme is 

applied to Eq. (3), an explicit two-step three-
time-level discretization is derived [15]. The 
first time step of LxW is identical to the first 
time step of LxF method (Eq. 4). The other step 
is: 
 

(12)                    𝐮𝑖
𝑛+1−𝐮𝑖

𝑛

∆𝑡
=

𝐟(𝐮
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1
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1
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∆𝑥
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    𝐮𝑖
𝑛+1 = 𝐮𝑖

𝑛 +
∆𝑡

∆𝑥
(𝐟(𝐮

𝑖+
1
2

𝑛+
1
2) − 𝐟(𝐮

𝑖−
1
2

𝑛+
1
2)) 

 
Actually, step one is the LxW method applied 
at spatial midpoints (𝑖 + 1

2
) and at half time 

increments, and step two invokes the leapfrog 
procedure for the remaining half time 
increment. If the result of step one is substituted 
into step two, the original Lax-Wendroff 
procedure is given [12]. The stencil of the 
described two-step LxW is plotted in Fig. 3. 
LxW method is dispersive so one may use an 
option to follow each step with a nonlinear filter 
to reduce the total variation of the numerical 
solution [13]. The method is then called 
smoothed Lax-Wendroff (SLxW). The 
aforementioned filter is usually defined as 
follows [15]: 
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  )13(  퐷푝 = 퐮 − 퐮 , 퐷m = 퐮 − 퐮  
If the multiplication of Dp and Dm is negative, 
the nonlinear filter is applied and the results of 
LxW are amended as follows (SLxW). 
Otherwise, the results do not change. 
 

 )14     (                                 → 푖푓    |퐷푝| > |퐷푚|    
퐮 = 퐮 + 푐표푟푟(퐷푝, 퐷푚)                     
퐮 = 퐮 − 푐표푟푟(퐷푝, 퐷푚)                     

 
푖푓    |퐷푝| ≤ |퐷푚| →   
 

퐮 = 퐮 + 푐표푟푟(퐷푝, 퐷푚)                      
 

퐮 = 퐮 − 푐표푟푟(퐷푝, 퐷푚)                         
 

)15(                                          → 푖푓    |퐷푝| > |퐷푚|  
푐표푟푟(퐷푝, 퐷푚) = 푠푖푔푛(퐷푝) × min (|퐷푚|, | |)  
 
푖푓    |퐷푝| ≤ |퐷푚| →  
 
푐표푟푟(퐷푝, 퐷푚) = 푠푖푔푛(퐷푝) × min (|퐷푝|, | |)   
                                          
 

 
Fig. 3. Stencil of two-time steps LxW.  

 
2.6. Initial and boundary conditions 
 
The initial conditions are taken according to the 
steady state situation of the system. The 
boundary conditions describe the situation at 
the ends of the pipeline, e.g. reservoir, junction, 
pump or valve [16]. Since the mesh is staggered 
herein, there is no need to construct 
approximate solutions on the boundaries at the 
first half step for either method.  
In this study, the pipe system consists of a 
reservoir at the upstream end of the pipeline and 

a valve at the downstream end discharging to 
the atmosphere (Fig. 4). Two boundary 
conditions are required at the two ends i.e. at x 
= 0 and at x = L. For the reservoir at the 
upstream end of a piping system (x=0) a 
constant pressure is prescribed 퐻 = 퐻 , in 
which subscript “0” shows the steady state 
situation of the system. This relation can be 
combined with the discretized form of Eq. (2) at 
the first point of the region (reservoir) to 
directly obtain its velocity variations: 
 

)16(
∆

= −푔
∆

→                              

  푉 = 푉 + ∆
∆

(퐻 − 퐻 )            
 

For a downstream valve at x=L with 
instantaneous closure 푉 =0, in which 
subscript “M” refers to the valve computational 
section.  Eq. (1) can now be discretized at the 
last point of the region (valve) to arrive at 
pressure head variations at the valve: 
 

)17(                                
∆

= − 푽 퐕
∆

   

  →   퐻 = 퐻 +
−푐

푔
∆푡
∆푥

(푉 − 푉 ) 

 
 

 
Fig. 4. Reservoir-pipe-valve system. 

 
 
For a valve with non-instantaneous closure, the 
following relation between pressure head 
퐻  and velocity 푉  holds [7]: 
 
 

푉 = 퐻 ,   휏 = (  )
(  )

  

    (18)  
where 퐻 , 푉  are steady state head and velocity 
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at the upstream end of the valve respectively. 
The opening ratio of the valve, 휏,is usually 
defined by the manufacturer over time. It is a 
function of 푐   = discharge coefficient and 퐴  = 
opening area of the valve which depends on its 
type and function. In the current simulation, the 
following function for 휏(푡) which is specified  
based on measurements ball-valve is used [17]. 

휏(푡) =

⎩
⎪
⎨

⎪
⎧ 1 −

.
  푓표푟     0 ≤ 푡 ≤ 0.4푇  

0.394 1 −
.

  푓표푟       0.4푇 ≤ 푡 ≤ 푇  
0     푓표푟       푡 ≥ 푇         

 

)19(      
in which 푇  is the duration of the valve closure. 
Equations (17 and 18) can be combined to 
provide a direct relation for the velocity 
computation at the valve point: 

)20(  푉 = 퐻 + ∆
∆

(푉 − 푉 )

3. Verification of numerical model

The numerical solutions presented in the 
previous section are implemented in MATLAB 
codes. To validate the developed computer 
codes, a test problem is taken into account. The 
problem defines instantaneous and gradual 
valve closure in the reservoir-pipe-valve system 
shown in Fig. 4. The properties of the test 
problem are: length of pipe = 50 m, diameter of 
pipe = 0.2 m, pressure wave speed = 1195.2 m/s, 
steady state velocity = 0.4 m/s, reservoir head = 
10 m, valve closure time = 0.029 s. The results 
of the proposed methods are then compared 
with MOC and Godunov solutions. 
In Fig. 5, the head time history of the valve is 
compared with corresponding results of MOC 
and Godunov schemes for instantaneous 
closure. As seen, the head computations of LxF 
and NT are in a good agreement with those of 
MOC and Godunov. The LxW and SLxW 
simulate water hammer with a lot of 
fluctuations at discontinuities.  
The same set of results but here for gradual 
valve closure is plotted in Fig. 6. As they 
manifest, in the case of gradual valve closure, 
the maximum relative error of LxW and SLxW 
remarkably decreases compare to MOC and 

Godunov. In addition, all spurious head 
fluctuations in discontinuities are eliminated in 
comparison with instantaneous valve closure. 
On the whole, the four proposed methods 
provide satisfactory results especially when 
transients caused by gradual valve closure. 

Fig. 5. Pressure head comparison of the 
instantaneous closure of the valve for simulations 
using MOC and Godunov (GM) schemes with (a) 
LxF (b) NT (c) LxW (d) SLxW. 
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Table 1 compares the maximum relative error 
of LxF, NT, LxW and SLxW schemes with 
MOC and Godunov. The error is evaluated as 
follows: 
 

Relative error =                                                  
  

calculations with (proposed methods −  MOC or Godunov)
calculations with MOC or Godunov

 

(21) 
 

The adapted nonlinear filter for the SLxW 
causes to less relative error than the LxW. The 
maximum relative error of LxF and NT are very 
small so as to make appropriate solutions 
together with MOC and Godunov. 

 
 

Table 1. Comparison of the maximum relative error 
LxF, NT, LxW and SLxW with MOC and Godunov.  

Method compared MOC compared Godunov 

Instantaneous Gradual Instantaneous Gradual 
LXF 0.0023 0.1154 0.0425 0.1043 
NT 0.00005 0.1087 0.00002 0.1139 

LxW 0.1749 0.1195 0.1750 0.2199 
SLxW 0.1330 0.1154 0.1331 0.2199 

 
 

Another comparison is made in Table 2 which 
shows the run-time durations for all mentioned 
methods in two cases of instantaneous and 
gradual valve closure. The above-explained 
methods are all fast, and manifest much fewer 
run times in comparison to the Godunov 
scheme. 
This is because Godunov method requires 
solving a Riemann problem for its time 
advancing yet none of the proposed explicit 
schemes are needed. 
 
 
Table 2. Run times for instantaneous & gradual 
valve closure. 

Method Run times (s) 
Instantaneous Gradual 

LxF 0.49 0.65 
NT 2 3.1 

LxW 0.53 0.7 
SLxW 1.2 1.3 
MOC 0.02 0.03 

Godunov 0.64 0.82 
 
 

 

 

  

 
 

 
Fig. 6. Pressure head comparison of the gradually 
closure of the valve for simulations using MOC and 
Godunov (GM) schemes with (a) LxF (b) NT (c) 
LxW (d) SLxW. 
 
4. Conclusions 
 
The frictionless water hammer equations are 
solved using four explicit central finite 
difference schemes: LxF, NT, LxW, and SLxW. 
The schemes are implemented in MATLAB 
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codes to observe strengths and weaknesses of 
each one in terms of their accuracy and run-time 
duration. MOC and Godunov solutions of water 
hammer are considered as reference results with 
which the proposed finite difference solutions 
are compared. Two common cases of valve 
action being instantaneous and non-
instantaneous closure, are studied.  
The time history results of the pressure head 
revealed that LxW and SLxW simulate water 
hammer with many spurious fluctuations at 
times adjacent to discontinuities. Conversely, 
NT and LxF methods calculated pressures at all 
times even around discontinuities with an 
acceptable order of accuracy. Among the two 
methods, LxF method was less accurate than 
NT but it was much faster than NT. However, 
in the case of gradual closure, all of the 
proposed methods were in good agreement with 
those of MOC and Godunov.  
The strengths of the proposed methods are the 
simplicity of the algorithms for numerical 
programming and the fast and accurate 
calculations. In addition, the independency of 
time and space steps allows for setting different 
spatial grid size with a unique time step. This, 
in turn, increases the accuracy of the method 
with respect to the conventional MOC and 
Godunov. It is therefore inferred that LxF and 
NT can be good alternatives for MOC and 
Godunov schemes as the latter methods often 
face with restrictions on selecting time or space 
steps. 
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